Determination of effectiveness of berberine, a characteristic phytochemical of *Berberis* species, against human proteome using *in-silico* analysis

Tika Khan1*, Imtiaz Ahmed Khan2, Abdul Rehman2, Zohra Bibi3

1Integrated Mountain Area Research Centre, Karakorum International University, Gilgit, Pakistan.
2Department of Biological Sciences, Karakoram International University, Gilgit, Pakistan
3Centre of Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan

Article published on May 09, 2014

Keywords: *Berberis*, cancer, in-silico, diabetic, CKNP.

Abstract
Berberis spp. are important representative plants of Family Berberidaceae. *Berberis pseudumbellata* subsp. *gilgitica* and *Berberis brandisiana* are found in Central Karakorum National Park (CKNP) and rest of Gilgit-Baltistan province of Pakistan (formerly Northern mountainous areas of Pakistan). *Berberis pseudumbellata* subsp. *gilgitica* is an endemic species and has become critically endangered. They are major source of Berberine which is an essential therapeutic phytochemical agent with anticancer, anti-diabetic, anti-AIDS, anti-jaundice, anti-cholera, anti-diarrhea, anti-leprosy and anti-inflammation effects. Studies illustrate inhibitory effect on oncogene-protein expression and therefore considered as an alternative, safer and effective medicine for chemotherapy. Besides being a multi-potent natural agent to combat Alzheimer’s disease, its effectiveness against cardiovascular, hypertension, musculoskeletal and ocular ailments cannot be ignored. Present in-silico analysis investigated cancer related Berberine-protein, Berberine lead protein-protein metabolic pathways, interactions and level of effect and role in cellular activities of human metabolic process. Moreover, study also attempts to reflect on action mechanism which is not clear so far. Using FDR= <0.001 as filter molecular function, cellular compartment and Biological processes are shortlisted to identify effect of Berberine on human body. Moreover, analysis is also carried out using FI reactome plugging and pathway predicted to be effected by effectors proteins with FDR= <0.001 score are shortlisted. Study reveals that Berberine has strong positive effect and correlation between Berberine and various carcinomic proteins as exhibited through molecular docking filtered on the basis of Z’-score <-0.05. Study contributes into understanding of Berberine as an alternate potential non-toxic anticancer drug.

Corresponding Author: Tika Khan tika.khan@kiu.edu.pk
Introduction

Berberine (C20H18NO4+) is pale yellow quaternary ammonium salt from the protoberberine group of isoquinoline alkaloids (Fig. 1) extracted from plants including Berberis and Coptis chinensis etc. (ChemSpider, 2014; UofMHealth, 2014; Zhang et al., 2010; Hwang and Jin-Ming et al., 2002; Janbaz and Gilani, 2000). Berberine differentially found in the roots, rhizomes, stems, bark and berries of these plants (Kulkarni et al., 2012; Tang et al., 2009; Hu et al., 2008; Janbaz and Gilani, 2000). It has shown significant effect against different types of cancer (Fig. 2&3) including colon, prostrate, breast, tongue, glioblastoma, oral, hepatoma, pancreatic, gastric, epidermoid and leukemia (Aggarwal et al., 2013; Li-Na et al., 2012; Pinto-Garcia et al., 2010; Ho et al., 2009; Auyeung and Ko, 2009; Tang et al., 2009; Kim et al., 2009; Seraphim et al., 2008; Fukuda, 1999). However, its mechanism of action is not clearly defined (Zhang et al., 2010). Cytotoxic potency of Berberine found to be lower than camptothecin which is currently used for cancer treatment. Due to lack of undesired side effects, Berberine will significantly replace medicine recently in use for chemotherapy (Kettmann et al., 2004).

Fig. 1. Structures of Berberine (A) 2D chemical structure of Berberine (B) 3D chemical structure of Berberine green, red, blue and purple colors correspond to carbon, oxygen, nitrogen and hydrogen atoms respectively.

Fig. 2. Berberine-protein pathways.
Berberine besides having anticancer properties, is an essential therapeutic phytochemical agent (Kulkarni et al., 2012; Asif et al., 2007; Bhandari et al., 2000; Stermitz et al., 2000a; Chandra and Purohit, 1980) with anti-diabetic, anti-AIDS, anti-jaundice, anti-cholera, anti-diarrhea, anti-leprosy and anti-inflammation effects (Khan et al., 2014; Khan et al., 2013; Popov, 2011; Imanshahidi and Hosseinzadeh, 2008; Asif et al., 2007; Tang et al., 2006; Fatehi et al., 2005; Caraballo et al., 2004; Kuo et al., 2004; Kettmann et al., 2004; Kuo et al., 2004; Villinski et al., 2003; Racková et al., 2003; Hwang and Jin-Ming, et al., 2002; Stermitz et al., 2000; Janbaza and Gilanib, 2000; Fukuda, 1999; Ivanoska and Philipov, 1996; Iwasa et al., 1996; Koo and Seang, 1996; Chopra et al., 1981; Chandra and Purohit, 1980).

Studies illustrate inhibitory effect of Berberine on oncogene-protein expression (Domadia et al., 2008; Cao et al., 2011; Li et al., 2011; Tsang et al., 2009; Li et al., 2008) and therefore considered as an alternative medicine for chemotherapy. Besides being a multi-potent natural agent to combat Alzheimer’s disease, its effectiveness against cardiovascular, hypertension, musculoskeletal, cholesterol-lowering, Berberine and human serum albumin interaction (Fig. 4) and ocular ailments cannot be ignored (Marszalek et al., 2013; Hu et al., 2010; Kong et al., 2009; Abidi et al., 2005; Ji and Shen, 2011; Jung et al., 2009; Zhu and Qian, 2006; Li et al., 2005; Kong et al., 2004; Kong et al., 2004). Reports reveal that Berberine is non-toxic in clinical situations and lacks genotoxic, cytotoxic or mutagenic activity (Birdsall and Kelly, 1997; Diogo, 2011; Imanshahidi and Hosseinzadeh, 2008; Hu et al., 2009).
Fig. 4. A&B: Berberine-Cancer-Protein interaction network.

Fig. 5. Role of Berberine in various cellular activities.

In vitro studies show that Berberine inhibits biosynthesis of UNA, RNA, protein, lipids and oxidation of glucose. In S 180 cells, glucose and Berberine behave antagonistically and Phlorizin inhibit Berberine intake and nucleic acid (Creasey, 1979).

Berberine may suppress the proliferation and promote the apoptosis of IMCE cells. The mechanisms may relate to the inhibition of the phosphorylation of EGFR and Akt (Cao *et al*., 2011). Berberine arrested cell growth and inhibited cell migration in various cancer cell lines (Tsang *et al*., 2009).
Various computer based software and databases like INVDOCK, Cytoscape FI-reactome plugin, protein data bank, Drug Repositioning and Adverse Reaction via Chemical-Protein Interactome (DRAR-CPI) server, PubChem Compound database, Reactome database, GeneGo, DrugBank, BioAssay Knowledgebase, Vega-ZZ, molecular docking, ChemMine, Tide (Target Identification) etc. (Burley et al., 1999; Lindley, 1999; Brenner et al., 1997; Wells et al., 1993; Stigers et al., 1999; Clackson and Wells, 1995; Lengauer and Rarey, 1996) have helped in understanding of molecular action dynamics and effects in metabolic pathways. These drug discovery approaches by screening known targets (Drews, 2000) are critically helpful in automated identification of potential alternative medicine. These software use both forward and reverse approaches to utilize the identified chemicals as “research tools” for determining the functions, interactions, and architecture of cellular networks in living organisms (Girke et al., 2005; Borderies et al., 2003). 60% of computer-identified potential therapeutic protein targets and 27% of computer-identified potential toxicity targets have been implicated or confirmed by experiments (Chen and Ung, 2002). Drug repositioning has emerged as an efficient way of maximizing their potential. Also, it helps in minimizing adverse drug reaction which is one of the leading causes of death among hospitalized patients (Luo et al., 2011).

Present in-Silico study helps for clarifying the mechanism of Berberine’s anti-tumor effect and might be supportive to find therapy-target for treatment of human carcinoma (Lu et al., 2010).

Present in-Silico investigation was aimed at identification of Berberine’s effect on human proteome and its role in cellular metabolic dynamics with a special reference to carcinogenesis.

Material and methods

Study scope

Berberis spp. are important source of Berberine belong to Family Berberidaceae. Berberis pseudumbellata subsp. gilgitica and Berberis brandisiana found in Central Karakoram National Park (CKNP) and rest of Gilgit-Baltistan (Khan et al., 2014; CKNP, 2013; Abbas, 2013; Alam and Ali, 2010; Khan and Khatoon, 2007). Gilgit-Baltistan is famous for being home of largest and longest glacial mass outside poles and having meeting point of 3 mighty mountain ranges of the world viz; Himalaya, Hindu Kush and Karakoram. Study area harbor taxonomically diverse, rich and complex flora and fauna in the world (Abbas et al., 2014; Virk et al., 2003). Berberis pseudumbellata subsp. gilgitica is an endemic species and has become critically endangered (Khan et al., 2014; Alam and Ali, 2010).

Data retrieval and process

The molecular and structural data along with PubChem ID (CID) of Berberine was obtained from PubChem Compound database (Bolton et al., 2008). The 3-D structure of Berberine was optimized via Vega-ZZ (2014). This optimized structure was saved as .mol2 file and is uploaded to Drug Repositioning and Adverse Reaction via Chemical-protein Interactome (DRAR-CPI) server (Zhang et al., 2013; Jongejan et al., 2005). DRAR-CPI server provided list of predicted effected human proteins via molecular docking. The list of protein obtained from DRAR-CPI are filter on basis of Z'-score < -0.05.

The short-listed proteins genes’ IDs are retrieved from protein data bank (PDB, 2014) and via Cytoscape2.8(Smoot et al., 2011).A chemical-genes network is generated (Fig. 2) from these proteins’ gene IDs. By employing Cytoscape2.8 FI-reactome plugin (Smoot et al., 2011) molecular function, cellular compartment, Biological process (Fig. 3) and pathways (Fig. 4) are fetched from Reactome database (RDb, 2014) for shortlisted proteins (Fig. 4).
Using FDR= <0.001 as filter molecular function, cellular compartment and Biological processes are shortlisted (Benjamini and Hochberg, 1995) to identify effect of Berberine on human body (Fig. 4). Moreover, analysis is also carried out using FI reactome plugging and pathway predicted to be effected by effectors proteins with FDR= <0.001 score are shortlisted.

Analysis
In-Silico docking techniques are being used to investigate the structural and functional complementarity at the molecular level of a ligand and a protein target for suitable binding (Kroemer, 2007). Analysis is carried out using FI reactome plugging and pathway predicted to be effected by effectors proteins with FDR= <0.001 score are shortlisted.

Results and discussion
Cancer and other pathways
Pathway interaction reveals that Berberine plays its role directly in cancer pathway and interacts with various other pathways including FGFR2, NTRK1, MAPK10, BRAF, GSTP1, CDK2, MAPK8, GSK3B, HSP90AA1, AKT2, AKT1, EGFR and IGF1R (Fig. 2).

Proteins
Similarly, Berberine and various carcinomic proteins as exhibited through molecular docking filtered on the basis of Z’-score <0.05 exposes that molecular functioning of Berberine shows strong interaction. During such an interaction Berberine interacts with various human proteins involved in carcinogenesis are proto-oncogene tyrosine-protein kinase Sre, Fibroblast growth factor receptor 2, tyrosine-protein kinase SYK, cell division protein kinase 2 and tyrosine-protein kinase JAK2 etc. (Fig. 4).

Metabolic processes
Berberine exhibits its effect in different biological processes including transferase activity, ATP binding and nucleotide binding differentially in cytoplasm and cytosol. Cytoplasm appears as centre of Berberine lead activities (Fig. 5).

Treatment with several inhibitors suggested that Berberine uptake depended on the ATP level. Some inhibitors of P-glycoprotein, an ABC transporter involved in multiple drug resistance in cancer cells, strongly inhibited Berberine uptake, whereas a specific inhibitor for glutathione biosynthesis and vacuolar ATPase, bafilomycin A1, had little effect (Sakai, 2002).

Berberine potential
These results demonstrate that Berberine has wide physiologic function and has great potential for structural modification as new drug lead. However, there is no systematic review about the study of Berberine and its derivatives up to now. The current review would provide some useful information for further study on structural modification of Berberine for discovering new drug leads based on its pharmaco-dynamic mechanisms (Li et al., 2008).

Acknowledgements
This research is part of my PhD work and was possible due to generous research support granted by the EvK2CNR through SEED project in collaboration with Karakoram International University, Gilgit, Pakistan.

References

Berberine. Arteriosclerosis, Thrombosis, and Vascular Biology 25, 2170-2176. doi: 10.1161/01.ATV.0000181761.16341.2b

Ho YT, Lu CC, Yang JS. 2009. "Berberine induced apoptosis via promoting the expression of caspase-8, -9 and -3, apoptosis-inducing factor and endonuclease G in SCC-4 human tongue squamous carcinoma cancer cells". Anticancer research 29(10), 4063–70. PMID 19846952.

Kettmann V. 2004. In vitro cytotoxicity of berberine against HeLa and L1210 cancer cell lines. Die Pharmazie 59(7), 548-551(4)

Kulkarni GT, Sharma VN, Agrawal S. 2012. Antimicrobial and Anti-inflammatory Activities of Bark of Four Plant Species from Indian Origin. WebmedCentral Pharmaceutical Sciences 3(10), WMC002010.

LI-NA XU. 2012. Mechanisms involved in the cytotoxic effects of berberine on human colon cancer HCT-8 cells. BIOCELL 36(3), 113-120

Wells JA et al. 1993. The molecular basis for growth hormone-receptor interactions. Recent progress in hormone Research 48:253-75

