Foraging and pollination behavior of *Apis mellifera adansonii* Latreille (Hymenoptera, Apidae) on *Brachiari brizantha* (Hochst. Ex A. Rich.) Stapf. 1919 flowers at Dang (Ngaoundere-Cameroon)

Moïse Adamou*, Fernand-Nestor Tchuenguem Fohouo

Department of Biological Sciences, Faculty of Science, University of Ngaoundere

Article published on June 16, 2014

Key words: *Brachiaria brizantha, Apis mellifera adansonii*, flowers, pollen, pollination, yield.

Abstract

To evaluate the *Apis mellifera adansonii* Latreille (Hymenoptera: Apidae) impact on fruit and seed yields of *Brachiaria brizantha* H. (1919) (Poaceae), *A. m. adansonii* workers foraging and pollinating activities were studied in Ngaoundéré. From September to October 2010 and from September to October 2011, the experiments were carried out on 240 and 440 inflorescences divided in three lots: two lots differentiated according to the presence or absence of protection regarding *A. m. adansonii* and other insects visits; the third protected and uncovered when flowers were open, to allow insect visits. Worker's seasonal rhythm of activity, its foraging behavior on flowers, its pollination efficiency, the fructification rate and the percentage of normal seeds were evaluated. Results show that *A. m. adansonii* foraged on *B. Brizantha* flowers throughout the whole blooming period. This bee intensely and preferably harvested pollen. The greatest mean number of individuals foraging simultaneously on 1000 flowers was 10 in 2010 and 625 in 2011. The mean duration of a visit per spikelet was 5.77 ± 5.08 sec in 2010 and 4.94 ± 3.44 sec in 2011. The mean foraging speed was 4.55 flowers/min in 2010 and 6.86 flowers/min in 2011. The fructification rate and the percentage of normal seeds of unprotected inflorescences were significantly higher than those of inflorescences protected from insects. Through its pollination efficiency, *A. m. adansonii* provoked a significant increment of the fructification rate by 37.70 % in 2010 and 34.75 % in 2011, as well as the percentage of normal seeds by 3.39 % in 2010 and 6.82 % % in 2011. The installation or conservation of *A. m. adansonii* nests close to *B. brizantha* fields could be recommended to increase seeds and fruits production in the region.

Corresponding Author: Moïse Adamou
adamou.moise@yahoo.fr
Introduction

Brachiaria brizantha is a genus of grasses originating from savannas of eastern Africa. These grasses are widely used as livestock forage. This genus includes 97 species, which can be found in tropical and subtropical climates, mostly in Africa and America. These grasses are monocots in the family *Poaceae* (John et al., 1988; Miles et al., 1996; Peters et al., 2003). *B. brizantha* is the most widely used tropical grass in Central and South America, about 40 million ha in Brazil alone (Boddey et al., 2004). *Brachiaria* are annual or perennial grasses, most lacking rhizomes (Watson and Dallwitz, 2008).

B. brizantha is the single most important foraging grass for pastures in the tropics (Sun and Geoff, 1996; Dias-Filho and Moacyr, 2002). *B. brizantha* have impacted the economy of various countries found in the tropics because of its ability to grow in infertile soil with high acidity (Dias-Filho and Moacyr, 2002; Burke et al., 2003). In the America’s, Brazil represents the leading user and producer of *Brachiaria* seeds (Boddey et al., 2004).

Lightly grazed, *B. brizantha* provides good ground cover and weed control. Under light grazing, many twining legumes will persist in the sward. Creeping legumes such as *Arachis* spp. and *Desmodium heterocarpon* subsp. *ovalifolium* will combine well under more intense grazing. There has also been research done showing that *Brachiaria* could inhibit nitrification of soils (Dias-Filho and Moacyr, 2002; Burke et al., 2003). This could be an amazing find since this it’s the most widely grown grass in South America on the same land as cattle. The cattle can eat this highly nutritious grass and it helps to keep down nitrous oxide levels in the atmosphere (Thomas and Grof, 1986; Dias-Filho and Moacyr, 2002).

Before this study, literature is scant on the relationships between the honey bee and many plant species in Cameroon. Nevertheless, in this country, owing to increasing demand for hive products such as honey and pollen, beekeeping needs to be developed. Highest quantities of pollen marketed in Cameroon came from the Adamawa region which has a climate particularly favourable to the proliferation of bees (Inades, 2000a). Despite this attribute, the region is equally concerned by the problem of low beekeeping production (Inades, 2000b).

Bees in particular usually increase the fruit and seed yields of many plants species, through pollinisation of flowers during foraging (Keller and Waller, 2002; Fluri and Frick, 2005; Sabbahi et al., 2005; Klein et al., 2007; Tchuenguem Fohouo et al., 2009; Kingha, 2012).

The main objective of this research undertaken in Ngaoundere in 2010 and 2011 was to contribute to the knowledge of the relationships between honey bees and *B. brizantha*. This knowledge is essential for an efficient management of these plants. For each plant species, specific objectives were: (1) the registration of the activity of *Apis. mellifera. adansonii* on *B. brizantha* flowers; (2) the evaluation of the apicole value of this plant; (3) the evaluation of the impact of flowering insects on pollination, on fruits and seeds yields of this Poaceae, and (4) the estimation of the pollination efficiency of *A. m. adansonii* on *B. brizantha*.

Materials and methods

Study site and biological material

The experiment was carried out twice, from September to October 2010 and from September to October 2011, and then, from September to October 2011 and from September to October 2011 at Dang, a village of Ngoundere in the Adamawa Region of Cameroon. This Region belongs to the high altitude guinean savannah agro-ecological zone. The climate is characterized by two seasons: a rainy season (April-October) and a dry season (November - March). The annual rain fall is about 1500 mm. The mean annual
temperature is 22°C, while the mean annual relative humidity is 70%. Plants chosen for observations were located at three km away in diameter, centered on a Kenyan top-bar hive inhabited by an *Apis mellifera adansonii* Latreille (Hymenoptera: Apidae). This hive is located at 7°24.949’N, 13°32.870’E and 1093 m above sea level. The number of honeybee colonies located in this area varied from 51 in September 2010 to 64 in October 2011. The vegetation was represented by ornamental hedge and native plants of the savannah and gallery forests.

Methods

Determination of the of Brachiaria brizantha mating system

October 9th, 2010, 240 *B. brizantha* flowers at bud stage were labeled among which 120 were left unattended (treatment 1) and 120 were protected using gauze bags net to prevent insect visitors (Roubik, 1995) (treatment 2). October 12th, 2011, 240 flowers of *B. brizantha* with flowers at bud stage were labelled among which 120 were left unattended (treatment 3) and 120 were protected using gauze bags (treatment 4).

In both years, ten days after shading of the last labelled flowers, the number of fruits was assessed in each treatment. The podding index was then calculated as described by Tchuenguem Fohouo et al. (2001): \(\text{Pi} = \frac{F2}{F1} \) Where \(F2 \) is the number of fruits formed and \(F1 \) the number of viable flowers initially set.

The allogamy rate (Alr) from which derives the autogamy rate (Atr) was expressed as the difference in podding indexes between treatment X (unprotected flowers) and treatment Y (protected flowers) (Demarly, 1977).

\[\text{Alr} = \left(\frac{\text{PiX} - \text{PiY}}{\text{PiX}} \right) \times 100 \]

\[\text{Atr} = 100 - \text{Alr} \]

Estimation of the frequency of Apis. mellifera. adansonii visiting flowers of Brachiaria brizantha

From 2nd to 3rd September 2010, 60 quadrats of 1 m² of flowering *B. brizantha* were made. Out of these plants, 440 inflorescences with flowers at the bud stage were labelled among which 120 were left unattended (treatment 1) and 120 bagged (treatment 2) to prevent visitors. On September 3rd, 2011, 440 inflorescences of *B. brizantha* with flowers at the bud stage were labelled among which 200 were left for unlimited visits (treatment 3). The frequency of *A. m. adansonii* in the flowers of *B. brizantha* was determined based on observations on inflorescences of treatment 1 and treatment 3, every day, from September 4th to October 4th 2010 and from September 4th to October 4th 2011, at 6 – 7h, 7 – 8h, 8 – 9h, 9 – 10h. In a transect walks along all labelled inflorescences treatment 1 and treatment 3, the identity of all insects visiting *B. brizantha* was recorded. Specimens of all insect taxa were caught with insect net and conserved in 70% ethanol for subsequent taxonomy determination. All insects encountered on flowers were registered and the cumulated results expressed in number of visits to determine the relative frequency of *A. m. adansonii* in the anthophilous entomofauna of *B. brizantha*.

In addition to the determination of the floral insects’ frequency, direct observations of the foraging activity on flowers were made on insect pollinator fauna in the experimental field. The floral products (pollen) harvested by *A. m. adansonii* during each floral visit were recorded based on its foraging behavior. Pollen gatherers scratched the anthers with their mandibles or legs. In the morning of each sampling day, the number of opened flowers carried by each labelled inflorescence was counted.

During the same days, as for the frequency of visits, the duration of individual flower visits was recorded (using a stopwatch) for the following time frames: 6 – 7h, 7 – 8h, 8 – 9h, 9 – 10h.

Moreover, the number of pollinating visits during which the bee came into contact with the stigma, the
abundance of foragers or the highest number of individuals foraging simultaneously on a flower or on 1000 flowers: Tchuenguem et al. (2004) and the foraging speed as the number of flower visited by a bee per min as described by Jacob-Remacle (1989); Tchuenguem (2005) were measured. The disruption of the activity of foragers by competitors or predators and the attractiveness exerted by other plant species on A. m. adansonii were also assessed.

During each daily investigations period, a mobile thermo-hygrometer was used to register the temperature and the relative humidity in the experimental site.

Evaluation of the effect of Apis. mellifera. adansonii and other insects on Brachiaria brizantha yields
This evaluation was based on the impact of flowering insects on pollination, the impact of pollination on fructification of B. brizantha, and the comparison of yields (fructification rate, mean number of seed per fruit and percentage of normal seeds) of treatment X (unlimited Inflorescences) and treatment Y (bagged inflorescences). The fructification rate due to the influence of foraging insects (Fri) was calculated by the formula: Fri = \{([FrX - FrY] / FrX) x 100\} where FrX and FrY were the fructification rate in treatment X and treatment Y. The fructification rate of a treatment (Fr) is Fr = \{(F2/F1) x 100\}, where F2 is the number of fruits formed and F1 the number of viable flowers initially set. At maturity, fruits were harvested from each treatment and the number of seeds counted. The mean number of seeds per fruit and the percentage of normal seeds per fruit were then calculated for each treatment. The impact of flowering insects on seed yields was evaluated using the same method as mentioned above for fructification rate (Tchuenguem et al., 2004).

Data analysis
Data were analyzed using descriptive statistics, student’s t-test for the comparison of means between two samples, correlation coefficient (r) for the study of the association between two variables, chi-square (X²) for the comparison of percentages using SPSS statistical software and Microsoft Excel programs.

Results
Brachiaria brizantha mating system
120 flowers were studied in each of the treatments 1 respectively in 2010 and 2011. In 2010, the podding index was 0.60 for treatment 1 and 0.35 for treatment 2 while in 2011, it was instead 0.55 for treatment 1 and 0.37 for treatment 2. Hence, the allogamy rate (Alr) and the autogamy rate (Atr) were respectively 41.67% and 58.33% in 2010 against 32.73% and was 67.27% in 2011. (Table1) It appears from those results that B. brizantha variety used for our experiment had a mixed mating system: allogamous and autogamous, with the predominance of autogamy over allogamy.
Table 1. *Brachiaria brizantha* yields in different Treatments.

<table>
<thead>
<tr>
<th>Studied</th>
<th>Treatments</th>
<th>Nfs</th>
<th>Npf</th>
<th>Fr</th>
<th>Nsf</th>
<th>Nns</th>
<th>Pns</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>1 (Ff)</td>
<td>3163</td>
<td>1899</td>
<td>60.04</td>
<td>1899</td>
<td>1868</td>
<td>98.36</td>
</tr>
<tr>
<td></td>
<td>2 (Pf)</td>
<td>2929</td>
<td>1035</td>
<td>35.34</td>
<td>1035</td>
<td>933</td>
<td>90.14</td>
</tr>
<tr>
<td>2011</td>
<td>3 (Ff)</td>
<td>2684</td>
<td>1469</td>
<td>54.73</td>
<td>1469</td>
<td>1422</td>
<td>96.80</td>
</tr>
<tr>
<td></td>
<td>4 (Pf)</td>
<td>2838</td>
<td>1037</td>
<td>36.54</td>
<td>1037</td>
<td>952</td>
<td>91.80</td>
</tr>
<tr>
<td>2010</td>
<td>5 (Fv. A. m. adansonii)</td>
<td>3519</td>
<td>1906</td>
<td>54.16</td>
<td>1906</td>
<td>1844</td>
<td>96.74</td>
</tr>
<tr>
<td>2011</td>
<td>6 (Fv. A. m. adansonii)</td>
<td>3659</td>
<td>1887</td>
<td>51.57</td>
<td>1887</td>
<td>1835</td>
<td>97.24</td>
</tr>
</tbody>
</table>

Ff: free flower, Pf: protected flowers, Fvx: flowers visited exclusively by *A. m. adansonii*, Nfs: number of flowers studied, Npf: number of fruit formed, Fr: fructification rate, Nsf: number of seeds formed, Nns: number of normal seeds, Pns: percentage of normal seeds.

Frequency of *Apis mellifera. adansonii* in the floral entomofauna of *Brachiaria brizantha*

In table 2, showing the 3647 and 3692 visits of 3 and 4 insect species recorded on runner bean flower, respectively in 2010 and 2011, *A. m. adansonii* was the most represented insect with 3490 visits (95.69%) and 3462 visits (93.78%), respectively in 2010 and 2011.

Table 2. Diversity of floral insects on *Brachiaria brizantha* inflorescences in 2010 and 2011, number and percentage of visits of different insects.

<table>
<thead>
<tr>
<th>Insects</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>p (%)</td>
<td>n</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apidae</td>
<td>Apis mellifera adansonii</td>
<td>3490</td>
</tr>
<tr>
<td>Halictidae</td>
<td>Lasiglossum sp.</td>
<td>100</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>Lipotriches notabilis</td>
<td>57</td>
</tr>
<tr>
<td>Laggidae</td>
<td>Lagria villosa</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n: number of visits on 120 inflorescences in 30 days, n: number of visits on 120 inflorescences in 30 days, p1 and p2: percentages of visits, p1 = (n1 / 2677) \times 100, p2 = (n2 / 3647) \times 100; comparison of percentages of *A. m. adansonii* visits for two years: \(X^2 = 51.43; p < 0.001\)

Fig. 1. Daily distribution of *A. m. adansonii* visits on 120 *Brachiaria brizantha* flowers over 30 days in 2010 (A) and in 2011 (B).
Activity of *Apis. mellifera. adansonii* on *Brachiaria brizantha* flowers

Floral products harvested: From our field observations, *A. m. adansonii* workers were found to collect pollen on *B. brizantha* flowers. Pollen collection was intensive and regular. From 3490 visits recorded in 2010, 3490 (100.00%) were devoted to exclusive pollen harvest; whereas in 2011, from 3716 visits recorded, 3716 (100.00%) were devoted to exclusive pollen harvest. (Fig. 2) Pollen was harvested all scheduled time frame long.

![Flower of B. brizantha plant showing A. m. adansonii collecting pollen on opened flowers](image)

Fig. 2. Flower of *B. brizantha* plant showing *A. m. adansonii* collecting pollen on opened flowers

Rhythm of visits according to the flowering stages

Visit was most numerous on the experiment plot when the number of inflorescences carrying opened flowers was highest (Figs. 3 C and D). Furthermore, a positive and very highly significant correlation was found between the number of *B. brizantha* opened flowers and the number of *A. m. adansonii* visits in 2010 ($r = 0.89; df = 20; P < 0.001$) as well as in 2011 ($r = 0.84; df = 19; P < 0.001$).

![Seasonal distribution of the number of Brachiaria brizantha opened flowers and the number of A. m. adansonii visits in 2010 (C) and 2011 (D).](image)

Figs. 3. Seasonal distribution of the number of *Brachiaria brizantha* opened flowers and the number of *A. m. adansonii* visits in 2010 (C) and 2011 (D).

Daily rhythm of visits

A. m. adansonii foraged on *B. brizantha* flowers throughout the whole daily blooming period, with a peak of activity situated between 8 and 9 am (table 4). Climatic conditions influenced the activity of *A. m. adansonii* in the field of *B. brizantha* (table 4). In 2010, the correlation was positive and not significant ($r = 0.41; ddl = 3; P < 0.05$) between the number of *A. m. adansonii* visits on *B. brizantha* flowers and the temperature, while it was positive and not significant ($r = 0.30; ddl = 3; P < 0.05$) between the number of visits and relative humidity. In 2011, the correlation was negative and not significant ($r = -0.03; ddl = 3; P < 0.05$) between the number of *A. m. adansonii* visits on *B. brizantha* flowers and the temperature, while it was positive and not significant ($r = 0.10; ddl = 3; P < 0.05$) between the number of visits and relative humidity (Figs. 4 E and F).
Table 3. Seasonal distribution of the number of *Brachiaria brizantha* opened flowers (f) and the number of *A. m. adansonii* visits (v) in 2010 and 2011.

<table>
<thead>
<tr>
<th>Year</th>
<th>Day</th>
<th>4 sp</th>
<th>5 sp</th>
<th>6 sp</th>
<th>7 sp</th>
<th>8 sp</th>
<th>9 sp</th>
<th>10 sp</th>
<th>11 sp</th>
<th>12 sp</th>
<th>13 sp</th>
<th>14 sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>f</td>
<td>74</td>
<td>102</td>
<td>176</td>
<td>287</td>
<td>399</td>
<td>722</td>
<td>522</td>
<td>803</td>
<td>1245</td>
<td>840</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>129</td>
<td>116</td>
<td>133</td>
<td>139</td>
<td>191</td>
<td>327</td>
<td>274</td>
<td>373</td>
<td>518</td>
<td>559</td>
<td>247</td>
</tr>
<tr>
<td>2011</td>
<td>f</td>
<td>30</td>
<td>90</td>
<td>200</td>
<td>277</td>
<td>370</td>
<td>710</td>
<td>402</td>
<td>680</td>
<td>890</td>
<td>840</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>100</td>
<td>129</td>
<td>153</td>
<td>202</td>
<td>202</td>
<td>374</td>
<td>277</td>
<td>365</td>
<td>525</td>
<td>362</td>
<td>248</td>
</tr>
</tbody>
</table>

sp: septembre; statistical analysis: For 2010: \(r = 0.89 \) (df = 20; \(p < 0.001 \)); for 2011: \(r = 0.84 \) (df = 19; \(p < 0.001 \))

Table 4. Daily distribution of *A. m. adansonii* visits on *Brachiaria brizantha* inflorescences over 30 days in 2010 and 30 days 2011 respectively, mean temperature and mean humidity of the study site.

<table>
<thead>
<tr>
<th>Year</th>
<th>Parameter registered</th>
<th>6 - 7</th>
<th>7 - 8</th>
<th>8 - 9</th>
<th>9 - 10</th>
<th>10 - 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Number of visits</td>
<td>5</td>
<td>1274</td>
<td>2181</td>
<td>294</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Percentage of visits (%)</td>
<td>0.14</td>
<td>33.93</td>
<td>58.10</td>
<td>7.83</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Temperature (°C)</td>
<td>23.26</td>
<td>24.10</td>
<td>24.64</td>
<td>25.0</td>
<td>24.60</td>
</tr>
<tr>
<td></td>
<td>Hygrometry (%)</td>
<td>81.33</td>
<td>78.17</td>
<td>74.73</td>
<td>73.40</td>
<td>64.50</td>
</tr>
<tr>
<td>2011</td>
<td>Number of visits</td>
<td>0</td>
<td>1255</td>
<td>2169</td>
<td>292</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Percentage of visits (%)</td>
<td>0</td>
<td>33.77</td>
<td>58.36</td>
<td>7.87</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Temperature (°C)</td>
<td>22.55</td>
<td>23.85</td>
<td>26.15</td>
<td>28.7</td>
<td>28.85</td>
</tr>
<tr>
<td></td>
<td>Hygrometry (%)</td>
<td>82.92</td>
<td>79.32</td>
<td>76.63</td>
<td>73.4</td>
<td>69.67</td>
</tr>
</tbody>
</table>

2010 for temperature and hygrometry, each figure represents the means of 34 observations. 2011: for temperature and hygrometry, each figure represents the means of 40 observations.

Fig. 4. Daily distribution of *A. m. adansonii* visits on 120 *Brachiaria brizantha* flowers over 30 days in 2010 (E) and in 2011 (F), mean temperature and mean humidity of the study site.
Abundance of *Apis. mellifera. adansonii*

In 2010, the highest mean number of *A. m. adansonii* simultaneous in activity was 1 per flower ($n = 1655; s = 0$) and 96.69 per 1000 flowers ($n = 354; s = 80.23; maxi = 625$). In 2011, the corresponding numbers were 1 ($n = 1632; s = 0$) and 98 ($n = 341; s = 81.39; maxi = 444.4$). The difference between the mean number of foragers per 1000 flowers in 2010 and 2011 is highly significant ($t = 4.68; P < 0.001$).

Duration of visits per flower

In 2010, the mean duration of a visit was 4.94 seconds ($n = 3754; s = 3.44$), with a maximum of 36 sec for pollen collection. In 2011, the corresponding numbers were 5.00 sec ($n = 3716; s = 3.45$) with a maximum of 36 sec for pollen harvest. The difference between the duration of the visit to harvest pollen in 2010 and 2011 is highly significant ($t = 63.84; P < 10^{-9}$).

Foraging speed of *Apis. mellifera. adansonii* on *Brachiaria brizantha* flowers

On the experimental plot of *B. brizantha*, *A. m. adansonii* visited between 2 and 22 flowers/min in 2010 and between 2 and 22 flowers/min in 2011. The mean foraging speed was 6.86 flowers/min ($n = 196; s = 3.03$) in 2010 and 7.00 flowers/min ($n = 178; s = 3.03$) in 2011. The difference between these two means is highly significant ($t = 2.85; P < 0.001$).

Influence of neighboring flora

During the observation period, flowers of many other plant species growing near *B. brizantha* were visited by *A. m. adansonii*, for nectar (ne) and/or pollen (po). Amongst these plants were *Mimosa pudica* (Fabaceae; po), *Senna javanica* (Fabaceae; ne and po), *Ctenium newtonii* (Poaceae, po); *Psidium guajava* (Myrtaceae; po); *Tithonia d. diversifolia* (Asteraceae; ne and po); *Mimosa invisa* (Mimosaceae; po) and *Callistemon rigidus* (Myrtaceae; ne and po). During one foraging trip, an individual bee foraging on *B. brizantha* was not observed moving from *B. brizantha* to the neighboring plant and vice versa.

During *B. brizantha* flowering periods, a well elaborated activity of *A. m. adansonii* as well as other bee species was registered on its flowers. In particular, there was a high density of bee workers on that plant, very good pollen harvest and workers faithfulness to its flowers. These data point out the very good attractiveness of *B. brizantha* floral products to *A. m. adansonii*. It appears from those data that our studied plant species could be classified in one category of apicole plants: highly polleniferous plant species.

Impact of *Apis. mellifera. adansonii* and others anthophilous insects’ activity on pollination and on the fruit and seed yields of *Brachiaria brizantha*

During pollen harvest on *B. brizantha*, foraging insect always check flowers and regularly contacted anthers and stigma. The flowering insect increased the pollination possibility of *B. brizantha*. The comparison of the fructification rate (*Table 1*) shown that the differences observed are highly significant between treatments 1 and 2 ($X^2 = 125.28; df = 1; P < 0.001$) and treatments 3 and 4 ($X^2 = 113.87; df = 1; P < 0.001$). The difference between the treatments 1 and 3 was not significant ($X^2 = 0.93; df = 1; P > 0.05$).

Consequently, in 2010, the fructification rate of unprotected inflorescences (treatment 1) was higher than that for protected inflorescences (treatment 2); whereas in 2011, the fructification rate of the unprotected inflorescences (treatment 3) was higher than that of protected inflorescences (treatment 4).

The comparison of the percentage of normal seeds (*Table 1*) showed that the observed differences was highly significant between treatments 1 and 2 ($X^2 = 36.84; df = 1; P < 0.001$) and treatments 3 and 4 ($X^2 = 10.37; df = 1; P < 0.01$). The difference between treatments 1 and 2 was not significant ($X^2 = 2.88; df = 1; P > 0.05$).

Hence, in 2010, the percentage of normal seeds of exposed inflorescences (treatment 1) was higher than that of protected inflorescences (treatment 2); similarly, in 2011, the percentage of normal seeds of
exposed inflorescences (treatment 3) was higher than that of protected inflorescences (treatment 4).

The percentage of the fructification rate due to the action of flowering insects were 41.15 % in 2010 and 33.24 % in 2011. For all of the inflorescences studied, the percentage of the fructification rate attributed to the influence of insects was 37.20 %.

The percentages of the number seeds production due to the action of insects were 8.35 % in 2010 and 5.17 % in 2011. For all of the inflorescences studied, the percentage of the normal seeds attributable to influence of insects was 6.76 %.

Pollination efficiency of Apis. mellifera. adansonii on Brachiaria brizantha

On all visited flowers, A. m. adansonii contacted anthers and carried pollen. With this pollen, worker bees flew frequently from flower to flowers. A. m. adansonii came into contact with visited flowers during 100% of visits. Thus this bee highly increased the pollination possibilities of B. brizantha flowers.

The comparison of the fructification rate (Table 1) showed that the differences observed were highly significant between the treatments 2 and 5 ($X^2 = 22.36; df = 1; P < 0.001$) and treatments 4 and 6 ($X^2 = 246.51; df = 1; P < 0.001$). The difference between the treatments 5 and 6 was significant ($X^2 = 7.35; df = 1; P < 0.05$).

Therefore, in 2010, the fructification rate of flowers protected and visited exclusively by A. m. adansonii (treatment 5) was higher than that of flowers protected during their opening period (treatment 2); similarly, in 2011, the fructification rate of flowers protected and visited exclusively by A. m. adansonii (treatment 6) was higher than that of flowers protected during their opening period (treatment 4).

The comparison of the percentages of normal seeds (Table 1) has shown that the differences were highly significant between treatments 2 and 5 ($X^2 = 1600.13; df = 1; P < 0.001$) and treatments 4 and 6 ($X^2 = 7.47; df = 1; P < 0.001$). The difference between treatments 5 and 6 was not significant ($X^2 = 0.71; df = 1; P > 0.05$).

Consequently, in 2010, the percentage of normal seeds of flowers protected and visited exclusively by A. m. adansonii (treatment 5) was higher than that flowers protected during their opening period (treatment 2); in 2011, the percentage of normal seeds of flowers protected and visited exclusively by A. m. adansonii (treatment 6) was higher than that of flowers protected during their opening period (treatment 4).

The percentage of the fructification rate due to A. m. adansonii activity was 30.92% in 2010 and 29.15% in 2011. For all the flowers studied, the percentage of fructification rate attributed to the influence of A. m. adansonii was 30.04 %.

The percentage of the normal seeds due to A. m. adansonii was 6.82 % in 2010 and 5.60% in 2011. For all the flowers studied, the percentage of the number of seeds per pod attributable to influence of A. m. adansonii was 6.21%.

In short, the influence of A. m. adansonii on fruit and seeds yields was positive and higher significant.

Discussion

Activity of Apis. mellifera. adansonii on Brachiaria brizantha flowers

Results obtained from these studies indicated that bee A. m. adansonii was the main floral insect frequent on B. brizantha. during the observation periods. The significant difference between the visit frequencies of A. m. adansonii and those of other insects can be explained by the strategies adopted by this bee that consist of the recruiting of a great number of workers for the exploitation of an interesting nutritional source (von Frisch, 1969; Louveaux, 1984; Schneider and Hall, 1997; Goodman, 2003; Kajobe, 2006). Consequently, there may be a limitation of the number of visits of other insect species due to the
occupation of the majority of open flowers by A. m. adansonii workers.

The significant difference between the percentages of A. m. adansonii visit for the two years of study could be explained by the presence of the nest of this insect near the experimental plot in 2011.

An activity peak of A. m. adansonii has been observed on B. brizantha inflorescences in the morning. This peak could be linked of the period to highest availability of the pollen on B. brizantha flowers.

The high abundance of A. m. adansonii foragers on 1000 flowers and the positive and significant correlation between the number of B. brizantha flowers bloom and number of A. m. adansonii visits, underscore the attractiveness of B. brizantha pollen with respect to this bee. The attractiveness for B. brizantha pollen could be partially explained by its high production compared to range of 15 - 75 % in which fail most of the plant species (Proctor et al., 1996).

The significant difference observed between the duration of pollen harvest visits could be explained by the accessibility of each of these floral products. Pollen is produced by the anthers, which are situated on the top of the stamen and are thus easily accessible to A. m. adansonii (Heslop-Harrison and Heslop-Harrisson, 1983).

The fact that an individual bee exploiting B. brizantha plot was not observed visiting another plant species indicates that A. m. adansonii shows flowers constancy for the flowers of this plant species.

Impact of Apis mellifera adansonii activity on the pollination and yields of Brachiaria brizantha

During the collection of pollen on each flower, A. m. adansonii workers regularly come into contact with the stigma. They could thus provoke auto-pollination by applying pollen of one flower on its own stigma.

The same results were found in southwestern Brazil on Couepia uiti flowers (Paulino-Neto, 2007), in Dang-Ngaoundéré Anona senegalensis, Croton macrostachyus, Psorospermum febrifugum and Syzygium guineense var. guineense flowers (Tchuenguem et al., 2008), Phaseolus vulgaris (Kingha et al., 2012), Callistemon rigidus (Fameni Tope et al., 2012), in South Africa on Cyrtanthus breviflorus flowers (Glenda et al., 2010); in Ngaoundéré on Ximenia americana flowers (Djonwangwe et al., 2011), in Yaoundé on Phaseolus coccineus flowers (Pando et al., 2011) and in Maroua (Douinia and Fohouo, 2014; Douka and Fohouo, 2014; Tchuenguem and Douinia, 2014).

Apis mellifera adansonii foragers were also able to carry pollen with their furs, legs and mouth accessories. They could consequently carry the pollen from a flower of one plant to stigma of another flower of the same plant (geitonogamie) or to that of another plant (xénogamie). This last form of pollination is as probable as allogamy exist in B. brizantha (Williams and Free, 1975; Kendal and Smith, 1976; Koltowski, 2004; present study).

The intervention of A. m. adansonii in the pollination of B. brizantha is seemingly more real than its density per 1000 flowers and its foraging visits are high. Moreover, its daily period of intense activity which is situated in the morning hours coincides with the optimal receptive period of the stigma of B. brizantha (William and Free, 1975).

The positive and significant contribution of A. m. adansonii in the fruit and seeds yields of B. brizantha is justified by the action of this worker bee on pollination. Our results agreed with those obtained in Great Britain (Kendall and Smith, 1976) and United State of America (Ibarra-Perez et al., 1999) which showed that Phaseolus coccineus flowers produce less seeds per pod in the absence of insect pollinators.

The numeric contribution of A. m. adansonii to the yields of B. brizantha through its pollination efficiency was significantly higher than that of all insects on the exposed flowers. This shows on one hand that A. m. adansonii is one of the principal
insect pollinators of *B. brizantha* and on the other hand that many insect that visit *B. brizantha* flowers benefits from this Poaceae, but did not have any influence on pollination and yields of the plant species. This result confirmed other findings reported by Pando *et al.*, 2011, Fameni *et al.*, 2012; Kingha *et al.*, 2012; Dounia and Tchuenguem, 2014 and Mazi *et al.*, 2013, 2014) with *A. m. adansonii* bee specie. The weight of *A. m. adansonii* played a positive role: when collecting pollen, *A. m. adansonii* shook flowers; this movement could facilitate the liberation of pollen by anthers, for the optimal occupation of the stigma.

Conclusion

Apis mellifera adansonii is the most important pollinator of *B. brizantha* at Dang (Ngaoundere), providing yield benefits to this host plant. The comparison of fruits and seeds set of unprotected inflorescences with that of inflorescences visited exclusively by *A. m. adansonii* underscores the value of this bee in increasing fruit and seed yields as well as seed quality. The study thus shows investment management of *A. m. adansonii* interns of nest provision at proximity of *B. brizantha* field is worthy while for growers.

Acknowledgements

We would like to be grateful to the University of Ngaoundere for providing us the experimental field within the campus. We thank P. M. Mapongmetsem for the identification of plant species.

References

Boddey RM, Macedo R, Tarré RM, Ferreira E, de Oliveira OC, Rezende C de P, Cantarutti RB, Pereira JM, Alves BJR, Urquiaga S. 2004. Nitrogen cycling in Brachiaria pastures: the key to understanding the process of pasture decline. Agriculture, Ecosystems & Environment **103**, 389-403

