Count and location determination of Nile Tilapia (Oreochromis niloticus) using convolutional neural network and CLAHE

Paper Details

Research Paper 03/07/2023
Views (1290)
current_issue_feature_image
publication_file

Count and location determination of Nile Tilapia (Oreochromis niloticus) using convolutional neural network and CLAHE

Ben Saminiano, Arnel Fajardo, Ruji Medina
J. Biodiv. & Environ. Sci. 23(1), 1-6, July 2023.
Copyright Statement: Copyright 2023; The Author(s).
License: CC BY-NC 4.0

Abstract

Fish counting in aquaculture is an important task in fish population estimation. However, it is very challenging because of the diversity of backgrounds, uncertainty of fish motion, and obstruction between objects. To solve this problem, a model using Convolutional Neural Network (CNN) and Contrast Limited Adaptive Histogram Equalization (CLAHE) is proposed to provide an advanced and efficient counting method for aquaculture. The methodology involved image acquisition, CNN implementation, and evaluation. First, images were manually annotated from video frames. Then, a CNN was trained on the training dataset to detect the tilapia and determine its location. Lastly, the performance of the method was evaluated and compared with other assessment methods. The results show that the study gained 95%, 87%, and 91% for precision, recall, and F1-score, respectively. Further, the mean average precision at 0.5 resulted in 94.21%; thus, the study can detect and locate the fish in a tank and be integrated into a feeding management system.

Bureau of Fisheries and Aquatic Resources. 2022. The Philippine Tilapia Industry Roadmap (2022-2025).

Conrady CR, Er Ş, Attwood CG, Roberson LA, de Vos L. 2022. Automated detection and classification of southern African Roman seabream using mask R-CNN. Ecological Informatics 69, 101593.

Jose JA, Kumar CS, Sureshkumar S. 2022. Tuna classification using super learner ensemble of region-based CNN-grouped 2D-LBP models. Information Processing in Agriculture 9(1), 68–79.

Li D, Miao Z, Peng F, Wang L, Hao Y, Wang Z, Chen T, Li H, Zheng Y. 2020. Automatic counting methods in aquaculture: A review.

Lumauag R, Nava M. 2019. Fish tracking and counting using image processing. 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, HNICEM 2018, 1-4. https://doi.org /10.1109/HNICEM.2018.8666369

Mandal R, Connolly RM, Schlacher TA, Stantic B. 2018. Assessing fish abundance from underwater video using deep neural networks. In Proceedings of the International Joint Conference on Neural Networks (Vols. 2018-July). https://doi.org/10.1109 /IJCNN.2018.8489482

Mishra A, Gupta M, Sharma P. 2018. Enhancement of Underwater Images using Improved CLAHE. 2018 International Conference on Advanced Computation and Telecommunication, ICACAT 5, 1-6. https://doi.org/10.1109/ICACAT.2018.8933665

Muksit AAl, Hasan F, Hasan Bhuiyan Emon MF, Haque MR, Anwary AR, Shatabda S. 2022. YOLO-Fish: A robust fish detection model to detect fish in realistic underwater environment. Ecological Informatics 72, 101847. https://doi.org/10.1016 /J.ECOINF.2022.101847

PCAARRD. 2023. (n.d.). Tilapia – Industry Strategic Science and Technology Plans (ISPs) Platform. Retrieved June 24, 2023, from  https://ispweb. pcaarrd. dost.gov.ph/tilapia-2/

Redmon J, Farhadi A. 2018. YOLOv3: An incremental improvement. ArXiv.

Saminiano B. 2020. Feeding Behavior Classification of Nile Tilapia (Oreochromis niloticus) using Convolutional Neural Network. International Journal of Advanced Trends in Computer Science and Engineering 9(1.1 S I), 259–263. https://doi.org /10.30534/ijatcse/2020/4691.12020

Wang H, Zhang S, Zhao S, Wang Q, Li D, Zhao R. 2022. Real-time detection and tracking of fish abnormal behavior based on improved YOLOV5 and SiamRPN++. Computers and Electronics in Agriculture 192, 106512. https://doi.org/10.1016 /J.COMPAG.2021.106512

Yu C, Fan X, Hu Z, Xia X, Zhao Y, Li R, Bai Y. 2020. Segmentation and measurement scheme for fish morphological features based on Mask R-CNN. Information Processing in Agriculture 7(4), 523–534. https://doi.org/10.1016/J.INPA.2020.01.002

Related Articles

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.