Diet of largemouth Bass reared in earthen ponds in polyculture system with Nile Tilapia and Chinese carps in a semi-arid environment at Deroua Fisheries Station (Fkih Ben Saleh, Morocco)

Paper Details

Research Paper 01/04/2017
Views (590)
current_issue_feature_image
publication_file

Diet of largemouth Bass reared in earthen ponds in polyculture system with Nile Tilapia and Chinese carps in a semi-arid environment at Deroua Fisheries Station (Fkih Ben Saleh, Morocco)

Anour Ouizgane, Sanaa Farid, Mohemed Droussi, Mustapha Hasnaoui
J. Biodiv. & Environ. Sci. 10(4), 150-155, April 2017.
Copyright Statement: Copyright 2017; The Author(s).
License: CC BY-NC 4.0

Abstract

Diet is an important part of the biology of the largemouth Bass (Micropterus salmoides. Lacépède, 1802). The behavior and interactions that occur in a fish population in an aquatic environment are the basis of any fish management action to be taken. In this work the largemouth Bass’s diet, reared in polyculture with Nile tilapia, Chinese carps, common carp, blue gill and mosquito fish was studied in fish ponds at Deroua fisheries station (Ben Fquih Salah- Morocco) between June and December 2013. One Hundred largemouth Bass with a total length between 16 and 42 cm were captured, dissected and their stomach contents analyzed. The results showed that largemouth Bass’s diet consists of six categories of prey with varying occurrence indices: Tilapia (66.1%), insects (25%), Mosquito fish (3.9%), Blue gill (2.8%), Common Carp (1.1%) and mollusks (1.1%). It was found that largemouth Bass ‘stend to consume prey of small sizes and weight even if its size allows it to swallow larger preys.

Cochran PA, Adelman IR. 1982. Seasonal aspects of daily ration of largemouth bass, Micropterus salmoides, with an evaluation of gastric evacuation rates. Environmental Biology of Fishes 7(3), 265-275.

Emberger L. 1930. Sur une formule climatique applicable en géographie botanique. Comptesrendues Académie Sciences, Paris 191, 389-390.

Flouhr C, Mary N. 2010. Etude du caractere invasif de quelques especes animales et vegetales introduites dans les milieux dulçaquicoles en nouvelle caledonie. N° 2007 IB 02 September 2010 – rapport final B_1.

Godinho FN, Ferreira MT, Cortes RV. 1997. The environmental basis of diet variation in pumpkinseed sunfish, Lepomis gibbosus, and largemouth bass, Micropterus salmoides, along an Iberian river basin. Environmental Biology of Fishes 50, 105-115.

Heidinger RC. 1976. Synopsis of biological data on the largemouth bass Micropterus salmoides (Lacépède) 1802. Synopsis 115, 1-85p.

Hickley P, North R, Muchiri SM, Harper DM. 1994. The diet of largemouth bass, Micropterus salmoides, in Lake Naivasha, Kenya. Journal of Fish Biology 44, 607-619.

Hodgson JR, Hansen EM. 2005. Note: Terrestrial prey items in the diet of largemouth bass, Micropterus salmoides, in a small north temperate lake. Journal of Freshwater Ecology 20(4), 793-794.

Lazard J, Oswald M. 1995. Association silure africain-tilapia: polyculture ou contrôle de la reproduction? Aquat. Living Rr~our., 1995 11, 455-463.

Marinelli A, Scalici M, Gibertini G. 2007. Diet and reproduction of largemouth bass in a recently introduced population, lake bracciano (central italy). BFPP/Bull. Fr. Pêche Piscic (2007) 385, 53-68.

Rodriguez-Sánchez V, Encina L, Rodríguez-Ruiz A, Sánchez-Carmona R. 2009. Largemouth bass, Micropterus salmoides, growth and reproduction in Primera de Palos’ lake (Huelva, Spain). Folia Zool 58(4), 436-446.

William A, Wurts, Allen Davis, Edwin H, Robinson. 1985. polyculture of largemouth bass (Micropterus salmoides) with blue tilapia (Oreochromis aurea): using tilapia progeny as forage. Presentation at: The annual meeting of the U.S. Chapter of the World Aquaculture Society, Hilton Head, SC. Abstract p. 56,  1993. (Unpublished Manuscript). http://www2.ca.uky.edu/wkrec/BassTilapia/Polyculture.htm.

Related Articles

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.

Determinants of tree resource consumption around Mont Sangbé national park in western Côte d’Ivoire

Kouamé Christophe Koffi, Serge Cherry Piba, Kouakou Hilaire Bohoussou, Naomie Ouffoue, Alex Beda, J. Biodiv. & Environ. Sci. 27(1), 71-81, July 2025.