

Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 12, No. 5, p. 119-128, 2018 http://www.innspub.net

OPEN ACCESS

Medicinal plants consumption in Darmai Valley, Swat District, Pakistan

Nazim Hassan¹, Mohy Ud Din², Faiz-Ul-Hassan^{3*}, Mohammad Nisar⁴, Aimal Khan⁷, Syed Sadaqat Shah¹, Sajjad Ahmed⁶, Saddam Hussain⁶, Waqif Khan¹, Ajmal Iqbal⁴, Haider Ali⁵

'Institute of Grassland Science and Key Laboratory of Vegetation Ecology, Northeast Normal University, Changchun, Jilin, China

²Department of Cardiology, Lady Reading Hospital, Peshawar, Pakistan

³Veterinary Research and Diagnostic Laboratory, Balogram, Swat, Pakistan

*Department of Botany, University of Malakand Chakdara Dir (L) Pakistan

⁵Department of Botany, Jahanzeb College, Swat, Pakistan

⁶Key Laboratory of Molecular Epigenetics, Ministry of Education, Northeast Normal University Changchun Jilin China

Institue of Genetics and Developmental Biology Chinese Acaddemy of Sciences, China

Article published on May 13, 2018

Key words: Traditional Knowledge, Ethno medicines, Informant consensus factor, Darmai valley, Pakistan.

Abstract

The main purpose of this study was to collect information on traditional uses of medicinal plant species used by the inhabitants of Darmai valley, District Swat, Pakistan. This is the first ethno botanical survey from the study area. A total of 62 informants were questioned through interviews and group debates. Overall 60 medicinal plant species from 39 families were studied. Family Asteraceae (10%) with 6 plant species was the most prominent family. Highest Informant consensus factor (0.86) was observed for gastrointestinal while lowest (0.7) for antiseptic and aphrodisiac. High fidelity level 94.11 % was noted for Berberis Lycium (Stomach disorder) and lowest 29.41 % for Caesalpinia decapetala as purgative. For preparation of ethno medicines the residents take whole plant (39%), leaves (21%), rhizome (10%), seeds (8%), flowers, fruits, cloves (5%) and shoots (3%). Herbal medicines were used as crushed and paste (25%), decoction (22%), raw (11%), oil and powder (5%), fried, heated, Infusion and Juice (2%). The ethno medicines (88%) were used orally followed by dermal (12%). Mostly herbs (67%) were in practice for the preparation of ethno medicines. Ethno medicines were taken (88%) orally. Plants with high use reports and High Fidelity level may be subjected to further comprehensive studies for new drug discovery.

*Corresponding Author: Faiz-Ul-Hassan ⊠ fhassan68@gmail.com

Introduction

Ethnobotany is the interdisciplinary field of science which covers all kind of dealings regarding people and plant species. Ethnobotanical studies not only file traditional understanding about medicinal plant species of a locality but can also support bioconservationists, and foresters for future planning (Hassan et al., 2017c). History about medicinal plant species remained an important part of ancient civilizations. Due to shortage of doctors in past the people used medicinal plants for the treatment of various health disorders due to less side effects and easily accessible(Carballo et al., 2002; Mann et al., 2008; Ikram et al., 2015). This old-style knowledge regarding medicinal plant species preserved for centuries which passed from generation to generation through trial and error base (Patwardhan et al., 2004).Because of high marketability, medicinal plant business will reach to 5 trillion dollars (US) by 2050 (Shinwari and Qaiser, 2011). According to diverse studies 442000 flowering plant species have already been known, out of these total 50000 are taken as medicines while 5000 plant species have been examined for chemical constituents. Because of high price poor people utilize medicinal plants to cure different health disorders throughout the globe (Mahmood et al., 2011, Mohamad et al., 2011, Shrivastava and Kanungo, 2013, Bibi etal., 2014). Even today twenty five percent herbal drugs are plant based which have been mentioned in modern pharmacopeia, whereas numerous synthetic drugs are contrived from plants isolates. Management and domestication of medicinal plants are in practice in many parts of the world (Mahmood et al., 2013). Medicinal plants have been underuse since prehistoric throughout the globe (Elisabetsky, 1990). Even today experienced and aged peoples take herbal medicine SAS modern medicinal company depend on ingredients acquired from plant species(Hassan et al., 2017c; Srithi et al., 2009).

In Pakistan about 600 to 700 medicinal plants have already been observed (Shinwari, 2010; Shinwari and Qaiser, 2011). Out of total 500 plant species are used in traditional healthcare practices while 350 species are traded at national and international markets for huge income (billions of dollars) (Ahmad, 2003). In hilly areas 84% population of Pakistan use plant species for the treatment of different health disorders (Qureshi et al.,2007). Because of its easy accessibility, cheap and less side-effect, medicinal plants are taken in different parts of Pakistan even English medicines are accessible (Hassan et al., 2017c) and other parts of the world (Shrivastava and Kanungo 2013). Ethnomedicinal significance of some medicinal plant of family Apiaceae and Euphorbiaceae have already been studied by (Ikram et al., 2015). The important medicinal flora in some parts of Mansehra have already been documented by (Shah and Khan, 2006), Kurram flora by (Gilani et al., 2003), Kotli flora by (Ajaibet al., 2010), Kalat by (Durrani and Hussain, 2005), Chitral by (Ali and Qaiser, 2009), Attock by (Noor and Kalsoom, 2011), Dir lower by (Hassan et al., 2017a).

With advancement in educational facilities and communication systems the local populations are being exposed to modernism, therefore up to some extent traditional knowledge has been interchanged with modern knowledge. The aim of the study was 1. To identify and file important medicinal flora of Darmai valley in District Swat, Pakistan; 2. To observe how inhabitants use medicinal plants for the treatment of different health disorders and; 3. To verify the fact of ethnobotany in the study area.

Material and methods

Study area

Darmai is lush green valley of district Swat which lies between Latitude 35°4'53.46"Longitude 72°26'54.8". The study area is enriched with very important flora and fauna. Darmai is bounded by lush green mountains (Akhtar et al., 2016). Darmai is an administrative unit, known as Union council, of Swat District situated in Khyber Pakhtunkhwa province of Pakistan. The landscape of the area is rocky with slopedstream beds. Commonly cultivated crops are maize and wheat. January and February are the

coldest while June and July are the warmest months of the year.

Ethnobotanical data collection, Identification and preservation

Ethnomedicinal data was collected through various protocols like, well organized questionnaire, interviews, field trips and group discussions from April 2009 to November 2009 following (Martin, 1995). A total of 62 local informants including male (54) and female (8) of different age class were interviewed in their local language Pashto for comprehensive data collection.

The locals were asked about local name of plant species, parts used, preparation, utilization, doze taken, recipes, and kinds of diseases treated with medicinal plant species following (Hassan et al., 2017a). Plant species were confirmed through plant list (www.theplantlist.org) and international plant name index (http://www.ipni.org), system (Stevens, 2012). The plant specimens were classified as herbs, shrubs, and trees(Hassan et al. 2017b).Plant identification was conducted through flora of Pakistan and local taxonomist Prof. Mehboob Ur Rehman, Chairman Department of Botany, AKL, College Matta, Swat Pakistan. Data was systematized in Excel spread sheet 2007 and summarized by graphical statistical methods like percentage.

Quantitative analysis of ethnobotanical information Informant consensus factor (ICF):Informant consensus factor is very useful to document consensus on uses of medicinal plant species for a specific disease (Canales et al., 2005). The ICF value can be considered high if a plant species is described by more informants and vice versa. The ICF can be calculated by the formula.

$$ICF = \frac{nur - nt}{nur - 1}$$

Where "nur" is the total number of used reports for each disease category and "nt" is the species number used in that category.

Fidelity level (FL): Fidelity level (FL) can be applied to choose a best fit medicinal plant species for the treatment of a specific disease (Musa et al., 2011). High FL value specifies high frequency of plant uses against a specific diseasewhile low value showsless usage against a specific disease. Fidelity level may be calculated by the formula

$$FL = \frac{Ip}{Iu} x100$$

Where "Ip" is the informants numberspecified the use of plant species for a particular disease category while"Iu" is the informants number cited the use for any other disease category.

Results and discussion

Demographic data

In survey 62 informants were interviewed for data collection. Out of total 54 (87.09%) including male and 8 (12.9%) female. Informants were classified into four main categories age wise, generally informants were between 60 to 70 years (30.65%). Informants (46.66%) were mostly illiterates and knowledgeable as compared to educated. Traditional healers (3.23%) had a good experience regarding herbal medicines(Table 1).

The study is in bargain with (Hassan et al. 2017c) who observedout of total informants, males were (70.14 %), (29.85%),illiterate female (34.32%), (13.43%) farmers (%37.31), hakeem and nomads (%5.97) and house wives (29.85%).

Taxonomic classification

A total of 60 medicinal plants from 39 families were observed and documented (Table. 2).

Family Percentage and Plant habit

Family Asteraceae(10%) with 6 plant species was the most prominent family, followed by Amaranthaceae (7%), with 4plant species, Lamiaceae, Alliaceae, Brassicaceae, Chenopodiaceae, (5%) with 3 species, Caesalpinaceae, Liliaceae, Papilionaceae, Poaceae (3%) while rest of families contribute only oneplant species.

Table 1. Different aspects of medicinal plant species used for various health disorders.

Botanical name	Family	Local name	Habit	Part use	Med. Uses	Herbal formulation		Dossage/ Day	V. number
Achillea millefolium L.	Asteraceae	Aqarqara	Herb	Leaves	Carminative	Crushed	Oral	Once	H.N.0037
Achyranthes aspera L.	Amaranthaceae	Buchkand	Herb	Whole plant	Antispasmodic	Paste	Oral	Thrice	H.N.0038
Acorus calamus L.	Araceae	Skha waja	Herb	Rhizome	Antispasmodic	Crushed	Oral	Thrice	H.N.0039
Adiantum capillus-veneris L.	Polypodiaceae	Sumbal	Herb	Whole plant	Expectorant	Paste	Oral	Once	H.N.0040
Aillanthus altissema S.	Simaroubaceae	Bakyana	Tree	Fruit	Dysenttery	Paste	Oral	Twice	H.N.0041
Ajuga bracteosa W.	Lamiaceae	Boti	Herb	Leaves	Dermititis	Decoction	Oral	Once	H.N.0042
Ajuga parviflora B.	Lamiaceae	Sra boti	Herb	Leaves	Dermititis	Decoction	Oral	Once	H.N.0043
Allium cepa L.	Alliaceae	Pyaz	Herb	Whole plant	Carminative	Raw	Oral	Once	H.N.0044
Allium griffthianum B.	Alliaceae	Ghra pyaz	Herb	Whole plant	Carminative	Raw	Oral	Once	H.N.0045
Allium sativam L.	Alliaceae	Oga	Herb	Cloves	antidiabetic	Fried	Oral	Twice	H.N.0046
Alisma plantago L.	Alismataceae	Jabai	Herb	Rhizome	Gastrointestinal	Crushed	Oral	Once	H.N.0047
Alnusnitida E.	Betulaceae	Geray	Tree	Leaves	Diuretic	Paste	Oral	Once	H.N.0048
Aloe barbadensis M.	Liliaceae	Kamala	Herb	Leaves	Gastrointestinal	Juice	Oral	Twice	H.N.0049
Althea rosea L.	Malvaceae	Gulekhaira	Herb	Flower	Anti- inflamatory	Crushed	Oral	Twice	H.N.0050
Amaranthus spinosus L.	Amaranthaceae	Chalwayi	Herb	Whole plant	Purgative	Paste	Oral	Twice	H.N.0051
Amaranthus caudatus L.	Amaranthaceae	Ganher	Herb	Whole plant	Diuretic	Paste	Oral	Twice	H.N.0052
Amaranthus virdis L.	Amaranthaceae	Ganher	Herb	Whole plant	Gastrointestinal	Paste	Oral	Once	H.N.0053
Apium graveolens L.	Apiaceae	Ajmood	Herb	Seeds	Tonic	Decoction	Oral	Once	H.N.0054
Arachis hypogaea L.	Papilionaceae	Mongpali	Herb	Seeds	Aphrodisiac	Raw	Oral	Twice	H.N.0055
Artemesia scoparia W.	Asteraceae	Tharkha	Herb	Whole plant	Purgative	Infusion	Oral	Twice	H.N.0056
Asparagus gracilis R.	Liliaceae	Tendoray	Shrub	Shoots	Diuretic	Paste	Oral	Once	H.N.0057
Avena sativa L.	Poaceae	Jamdaray	Herb	Whole plant	Laxative	Crushed	Oral	Twice	H.N.0058
Bauhinia variegata L.	Caesalpinaceae	Kachnar	Tree	Bark	Astringent	Crushed	Oral	Twice	H.N.0059
Berberis Lycium R.	Berberidaceae	Kwaray	Shrub	Bark	Gastrointestinal	Crushed	Oral	Once	H.N.0060
Brassica rapa L.	Brassicaceae	Tepar	Herb	Roots	Diuretic	Paste	Oral	Once	H.N.0061
Brassica campestris L.	Brassicaceae	sharsham	Herb	Seeds	Hair Tonic	Oil	Dermal	Once	H.N.0062
Caesalpinia decapetala R.	Caesalpinaceae	Jara	Shrub	Roots	Purgative	Crushed	Oral	Twice	H.N.0063
Canna indicaL.	Cannaceae	Tasbabotay	Herb	Rhizome	Gastrointestinal	Crushed	Oral	Once	H.N.0064
Cannabis sativa L.	Cannabinaceae	Bang	Herb	Leaves	Pain killer	Heated	Dermal	Twice	H.N.0065
Capsicum fruitescens L.	Solanaceae	Marchakay	Herb	Fruit	Stimulant	Raw	Oral	Once	H.N.0066
Carthamus oxycantha L.	Asteraceae	Kareza	Herb	Seeds	Itch	Oil	Dermal	Twice	H.N.0067
Cedrela serrata L.	Meliaceae	Tan	Tree	Bark	Antiseptic	Powder	Dermal	Twice	H.N.0068
Cedrus deodara R.	Pinaceae	Ranzra	Tree	Bark	Diuretic	oil	Oral	Once	H.N.0069
Chenopodium album L.	Chenopodiaceae	Sarmay	Herb	Whole plant	Anthelmintic	Paste	Oral	Twice	H.N.0070
$Chenopodium\ ambrosiodes\ L.$	Chenopodiaceae	Benakai	Herb	Whole plant	Anthelmintic	Paste	Oral	Twice	H.N.0071
Chenopodium botrys L.	Chenopodiaceae	Kharawa	Herb	Whole plant	Antispasmodic	Decoction	Oral	Thrice	H.N.0072
cichorium intybus L.	Asteraceae	Han	Herb	Leaves	Antiasthmatic	Paste	Oral	Twice	H.N.0073
Colchicum luteum B.	Colchicaceae	Soranjan	Herb	Corms	Aphrodisiac	Crushed	Oral	Once	H.N.0074
Colebebrookia oppositifolia S.	Lamiaceae	Shkardana	Shrub	Leaves	Antiseptic	Crushed	Dermal	Twice	H.N.0075
Conyza canadensis L.	Asteraceae	Palet	Herb	Whole plant	Diuretic	Decoction	Oral	Twice	H.N.0076
Crocus sativas L.	Iridaceae	Zafran	Herb	Flowers	Aphrodisiac	Crushed	Oral	Once	H.N.0077

Cucurbita maxima D.	Cucurbtaceae	Kado	Herb	Fruit	Diuretic	Paste	Oral	Twice	H.N.0078
Curcuma longa L.	Zingiberaceae	Haldi	Herb	Rhizome	Antiseptic	Powder	Dermal	Twice	H.N.0079
Cymbpogon citratus D.	Poaceae	Lemon grass	Herb	Leaves	Tonic	Decoction	Oral	Once	H.N.0080
Daphne mucronata R.	Thymeleaceae	Leghonay	Shrub	Fruit	Purgative	Paste	Oral	Once	H.N.0081
Fumaria indica H.	Fumariaceae	Papra	Herb	Whole plant	Anthelmintic	Decoction	Oral	Once	H.N.0082
Gymnosporia royleana W.	Celastraceae	Spin azghay	Shrub	Seeds	Pain killer	Crushed	Oral	Twice	H.N.0083
Indigofera heterantha W.	Papilionaceae	Ghwareja	Shrub	Whole plant	Antiasthmatic	Decoction	Oral	Twice	H.N.0084
Ipomeae purpurea L.	Convolvulaceae	Prewata	Herb	Roots	Purgative	Decoction	Oral	Twice	H.N.0085
Juglans regia L.	Juglandaceae	Ghooz	Tree	Fruit	Aphrodisiac	Raw	oral	Once	H.N.0086
Lepidium sativam L.	Brassicaceae	Halam	Herb	Seeds	Stimulant	Raw	Oral	Once	H.N.0087
Olea ferruginea R.	Oleaceae	Khona	Tree	Leaves	Mouth ulcers	Raw	Oral	Twice	H.N.0088
Platanus orientalis L.	Plantanaceae	Chinar	tree	Bark	Dysenttery	Decoction	Oral	Thrice	H.N.0089
Rubus sanctus S.	Rosaceae	Bagana	Shrub	Fruit	Dysenttery	Paste	Oral	Twice	H.N.0090
Rubus fruiticosus A.	Rosaceae	Karwara	Shrub	Leaves	Tonic	Decoction	Oral	Once	H.N.0091
Salvadora persica L.	Salvadoraceae	Miswak	tree	Leaves	Purgative	Decoction	Oral	Twice	H.N.0092
Taraxacum officinale W.	Asteraceae	Budabudai	Herb	Roots	Diuretic	Crushed	Oral	Once	H.N.0093
Urticadioca L.	Urticaceae	Sezonkay	Herb	Leaves	Diuretic	Decoction	Oral	Twice	H.N.0094
Zanthoxylum armatum D.	Rutcaeae	Dambara	Shrub	Fruit	Tonic	Crushed	Oral	Once	H.N.0095
Zizypus sativa G.	Rhamnaceae	Markhanai	Tree	Bark	Antiseptic	Powder	Dermal	Twice	H.N.0096

The large number of plant species described from family Asteraceae is in agreement with (Umair et al., 2017) and family Lamiaceae with (Hassan et al. 2017c),where residentsusedmostly plant species belongs to family Asteraceae and Lamiaceae. It may be due to its widespread distribution and high medicinal uses. Out of total habit wise, (67%) were herbs, is in line with (Ahmad et al., 2014) who observed (58%) herbs for preparation of herbal medicines. Shrubs were observed (16%) and trees (17%)(Fig.1.).Our judgments are in bargain with (Rehman et al., 2017). The frequentuse of herbs was due to easy collection and fruitful results, which is in line with(Uniyal et al., 2006; Khan et al., 2014).

Table 2.ICF values of frequently used medicinal plants as remedy in Darmai district, Swat Pakistan.

Disease	NT	NUR	ICF	
Anthelmintic	5	29	0.85	
Antiseptic	4	11	0.7	
Antispasmodic	5	18	0.76	
Aphrodisiac	4	11	0.7	
Carminative	7	23	0.72	
Dermatitis	6	20	0.73	
Diuretic	9	37	0.77	
Dysentery	4	17	0.81	
Gastrointestinal	7	46	0.86	
Purgative	6	33	0.84	
Tonic	5	22	0.8	
Pain Killer	3	12	0.81	

Note: "NUR" is the number of used reports "NT" species number "ICF" Informant consensus factor.

Table 3. Fidelity level (FL) value of medicinal plants reported for given diseases.

Plant	Disease	LP	LU	FL
Chenopodium album L.	Anthelmintic	14	17	82.35
Curcuma longa L.	Antiseptic	9	12	75
Acorus calamus L.	Antispasmodic	7	14	50
Juglans regia L.	Aphrodisiac	13	19	68.42
Allium cepa L.	Carminative	13	25	52
Ajuga bracteosa W.	Dermatitis	10	21	47.61
Taraxacum officinale W.	Diuretic	11	18	61.11
Aillanthus altissema S.	Dysentery	5	16	31.25
Berberis Lycium R.	Gastrointestinal	16	17	94.11
Caesalpinia decapetala R.	Purgative	5	17	29.41
Cymbpogon citratus D.	Tonic	13	26	50
Cannabis sativa L.	Pain Killer	15	24	62.6

Part used, preparation and application

For the preparation of herbal medicines the residents take whole plant (39%), leaves (21%), rhizome (10%), seeds (8%), flowers, fruits, cloves (5%) and shoots (3%) (Fig.2) Our findings are in is agreement with (Hassan et al., 2017a, Randrianarivony et al., 2017)where the local healers take whole Plant (53.84%) as herbal medicines.

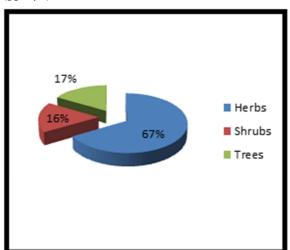


Fig. 1. Habit of medicinal plant species.

For the preparation of herbal medicines the inhabitants use crushed and paste (25%),decoction (22%), raw (11%), oil and powder (5%) while Fried, Heated, Infusion and Juice (2%) (Fig.3). The results are in line with (Eshete et al., 2016) where mostly herbal medicines are taken in crushed and paste form.It may be due to make it easily digestible and

more effective. Ethno medicines are taken with additive like salt, sugar and milk as plant based medicines are bitter and unpleasant some time.



Fig. 2. Part used for preparation of ethno medicine.

The ethno medicines (88%) were used orally followed by dermal (12%). Our findings are in close agreement with (Hassan et al., 2017b, Ssegawa and Kasenene, 2007; Namukobe et al., 2011) who also found that, mostly herbal medicines were taken orally(Fig.4).

Informant consensus factor (ICF) and Fidelity level (FL)

Informant consensus factor can be applied to select best fit plant species for pharmacological and phytochemical analysis (Giday et al., 2007). For Informant consensus factor (ICF) calculation,

diseases were classified into different disease categories based on use reports. Highest number of use reports (46) were observed for gastrointestinal and lowest (04) for aphrodisiac, antiseptic and dysentery (Table 2). Highest Informant consensus factor (0.86) was observed for gastrointestinal while lowest (0.7) for aphrodisiac.

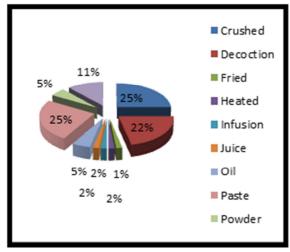


Fig. 3. Methods for preparation of ethno medicines.

In current study, majority plants were used as gastrointestinal (46) and Anthelmintic (29), which may be due to unpurified drinking water, bad hygiene and effective use of herbal medicines. Our study is in connection with (Zahoor et al., 2017) who also observed high Informant consensus factor, ICF (0.89) for gastrointestinal disorders.

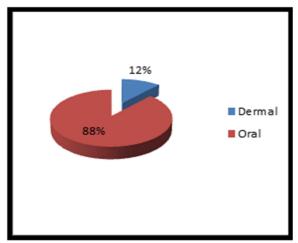


Fig. 4. Mode of application of ethno medicines.

Fidelity level shows the percentage of informants appealing the use of certain plant species for same main purpose (Bibi et al., 2014). Fidelity level has already been observed for different disorders i.e diabetic disorders as Achyranthes aspera by (Ahmad and Habib, 2014), antimalarial by (Wangpan et al., 2016), purgative by (Shinwari et al., 2006) and pain killer by (Chevallier, 1998). Fidelity level (FL) of high valued medicinal plants was noted from 94.11 to 29.41 (Table 3). High fidelity level 94.11 % was noted for Berberis Lycium .(Stomach disorder)andlowest 29.41 % for Caesalpinia decapetala as purgative.Our study is in line with (Hassan et al., 2017a) who also observed 92% fidelity level for Berberis LyciumR.as anti-diarrheal.

Conclusion

The people of the localityespecially aged and experienced people use medicinal plant species for the treatment of different diseases even though English medicines are accessible. Harvesting of medicinal plant for different purpose was observed common in the study area.

The citizens were observed uneducated about sustainable use, conservation and preservation of medicinal plant species. The inhabitants were ready to transfer traditional knowledge to researchers. The plant species with high use reports, especially high Fidelity level (94.11)should be further subjected for phytochemical investigations. Further assessment, attentiveness and wise use of plant resources are highly recommended.

Acknowledgement

The authors are very thankful to Prof. Mehboob Ur Rehman Chairman, Department of Botany, Government Afzal Khan Lala, Postgraduate College, Matta Swat, for Plant identification and to the people of the study area for teamwork and sharing their traditional knowledge.

References

Ahirwar R. Diversity of Ethnomedicinal Plants in Boridand Forest of District Korea, Chhattisgarh,

India. American Journal of Plant Sciences, 6, 413-425.

Ahmad H. 2003. Capacity building for cultivation and sustainable harvesting of medicinal and aromatic plants. In Proceeding of international workshop on conservation and sustainable uses of medicinal and aromatic plants in Pakistan, WWF Pakistan. Edited by Ahmad H, Khan AA.2003:31-36...

Ahmad K, Habib S. 2014. Indigenous Knowledge of Some Medicinal Plants of Himalaya Region, Dawarian Village, Neelum Valley, Azad Jammu and Kashmir, Pakistan. Universal Journal of Plant Science **2,**40-47.

Ahmad M, Sultana S, Hadi SF, Hadda T ben, Rashid S, Zafar M, Khan MA, Khan MPZ, Yaseen G. 2014. An ethnobotanical study of medicinal plants in high mountainous region of Chail valley (District Swat-Pakistan. Journal Ethnobiology and Ethnomedicine 10.

Ajaib M, Khan Z, Khan N. 2010. Ethnobotanical studies on useful shrubs of district Kotli, Azad Jammu & Kashmir, Pakistan. Pak. J. Bot 42, 1407-1415.

Akhtar N, Saeed K, Khan A. 2016. Fish Fauna of River Darmai Upper Swat Khyber Pakhtunkhwa Pakistan. J. Appl. Environ. Biol. Sci., 6,132-136.

Ali H, Qaiser M. 2009. The ethnobotany of chitral valley, Pakistan with particular reference to medicinal plants. Pakistan Journal of Botany (Pakistan) 41, 2009-2041.

Bibi T, Ahmad M, Bakhsh Tareen R, Mohammad Tareen N, Jabeen R, Rehman S-U, Sultana S, Zafar M, Yaseen G. 2014. Ethnobotany of medicinal plants in district Mastung of Balochistan province-Pakistan. Journal of Ethnopharmacology 157,79-89.

Canales M, Hernández T, Caballero J, Romo de Vivar A, Avila G, Duran A, Lira R. 2005. Informant consensus factor and antibacterial activity

of the medicinal plants used by the people of San Rafael Coxcatlán, Puebla, México. Journal of Ethnopharmacology 97, 429-439.

Carballo J, Hernandez I, Perez P, Garcia G. 2002. A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotechnology 2, 17.

Chevallier A. 1998. Materia Medica. Middlesex University, USA...

Durrani M, Hussain F. 2005. Ethnoecological profile of plants of Harboi rangeland, Kalat, Pakistan. International Journal of Biology and Biotechnology 2, 15-22.

Elisabetsky. 1990. Plants used as analgesics by Amazonian cabocols. International Journal of Crude Drug Research 28, 309-320.

Eshete M, Kelbessa E, Dalle G. 2016. Ethnobotanical study of medicinal plants in Guji Agro-pastoralists, Blue Hora District of Borana Zone, Oromia Region, Ethiopia. Journal of Medicinal Plants Studies 4, 170-184.

Giday M, Teklehaymanot T, Animut A, Mekonnen Y. 2007. Medicinal plants of the Shinasha, Agew-awi and Amhara peoples in northwest Ethiopia. Journal of Ethnopharmacology **110,**516-525.

Gilani SS, Abbas SQ, Shinwari ZK, Hussain F, Nirgis K. 2003. Ethnobotanical Studies of Kurram Agency, Pakistan Through Rural Community Participation. Pakistan Journal of Biological Sciences **6,**1368-1375.

Hassan N, Nisar M, Kakar S, Hassan F, Zhiwei Z, Nong L, Khan M, Shuaib M, Wang D. 2017a. Determination of Informant Consensus Factor of Medicinal Plants Used as Therapy in District Dir Lower Pakistan. Journal of Medicinal Plants Studies **5**, 183–188.

Hassan N, Wang D, Shuaib M, Zhiwei Z, Nisar M, Ahmad W, Ahmad S, Khan A. 2017b. Identification and ethnobotanical survey of profitable medicinal plants used as remedy in Sangina Pakistan. International Journal of Herbal Medicine 5,117–123.

Hassan N, Wang D, Zhiwei Z, Nisar M, Zhu Y. 2017c. Determination and analysis of informant consensus factor of medicinal plant species used as remedy in Northern Pakistan. Journal of Biodiversity and Environmental Sciences 11,117-133.

Ikram AU, Zahra NB, Shinwari ZK, Qaiser M. 2015. Ethnomedicinal review of folklore medicinal plants belonging to family apiaceae of pakistan. Pakistan Journal of Botany 47, 1007-1014.

Khan I, Abdelsalam NM, Fouad H, Tariq A, Ullah R, Adnan M. 2014. Application of Ethnobotanical Indices on the Use of Traditional Medicines against Common Diseases. Evidence-Based Complementary and Alternative Medicine 2014: e635371.

Mahmood A, Malik RN, Shinwari ZK. 2013. Indigenous knowledge of medicinal plants from Gujranwala district, Pakistan. Journal of Ethnopharmacology 148, 714-723.

Mahmood A, Mahmood A, Shaheen H, Qureshi R, Sangi Y, Gilani S. 2011. Ethno medicinal survey of plants from district Bhim ber Azad Jammu and Kashmir, Pakistan. Journal of Medicinal Plants Research 5(2), 348-2360.

Mann A, Amupitan JO, Oyewale AO, Okogun JI, Ibrahim K, Oladosu P, Lawson L, Olajide I, Nnamdi A. 2008. Evaluation of in vitro anti mycobacterial activity of Nigerian plants used for treatment of respiratory diseases. African Journal of Biotechnology 7.

Martin G. 1995. Ethnobotany: A Method Manual. Chapman and Hall, London.

Mohamad S, Zin NM, Wahab HA, Ibrahim P, Sulaiman SF, Zahariluddin ASM, Noor SSM. 2011. Antituberculosis potential ofsome ethnobotanically selected Malaysian plants. Journal of Ethnopharmacology 133,1021-1026.

Musa M, Abdelrasool F, Elsheikh E, Lubna A, Abdel L, Mahmoud Sakina Ethnobotanical study of medicinal plants in the Blue Nile State, South-eastern Sudan. Journal of Medicinal Plants Research 5, 4287–4297.

JM, Namukobe J, Kasenene Kiremire BT. Byamukama R, Kamatenesi-Mugisha M, Krief S, Dumontet V, Kabasa JD. 2011. Traditional plants used for medicinal purposes by local communities around the Northern sector of Kibale National Park, Uganda. Journal of Ethno pharmacology 136, 236-245.

Noor MJ, Kalsoom U. 2011. Ethnobotanical studies of selected plant species Of ratwal village, district attock, pakistan. Pakistan Journal of Botany 43, 781-786.

Patwardhan B, Vaidya ADB, Chorghade M. 2004. Ayurveda and natural products drug discovery. Curr Sci 86.

Qureshi A, Gufran M, Gilani S, Sultana K, Ashraf M. 2007. Ethnobotanical studies of selected medicinal plants of Sudhan Gali and Ganga chotti hills district Bagh, Azad Kashmir. Pakistan Journal of Botany (Pakistan) 39, 2275-2283.

Randrianarivony TN, Ramarosandratana AV, Andriamihajarivo TH, Rakotoarivony F, Jeannoda VH, Randrianasolo A, Bussmann RW. 2017. The most used medicinal plants by communities Mahaboboka, Amboronabo, Mikoboka, Southwestern Madagascar. Journal of Ethno biology and Ethno medicine 13,19.

Rehman MN, Ahmad M, Sultana S, Zafar M, Edwards S. 2017. Relative popularity level of medicinal plants in Talagang, Punjab Province, Pakistan. Revista Brasileira de Farmacognosia.

Shah GM, Khan MA. 2006. Check List of Medicinal Plants of Siran Valley Mansehra-Pakistan. Ethnobotanical Leaflets 10, 63-71.

Shinwari Z, Watanabe T, Rehman M, Yoshikawa T. 2006. A Pictoral Guide to Medicinal Plants of Pakistan. ISBN:969-8870-00-8.

Shinwari ZK. 2010. Medicinal plants research in Pakistan. Journal of Medicinal Plants Research 4, 161-176.

Shinwari ZK, Qaiser M. 2011. Efforts on conservation and sustainable use of Medicinal plants of Pakistan. Pak. J. Bot 43.

Shrivastava S, VK. Kanungo 2013. Ethnobotanical survey of surguja district with special reference to plants used by uraon tribe in treatment of respiratory diseases. International Journal of Herbal Medicine 1,131-134.

Srithi K, Balslev H, Wangpakapattanawong P, Srisanga P, Trisonthi C. 2009. Medicinal plant knowledge and its erosion among the Mien (Yao) in northern Thailand. Journal of Ethnopharmacology **123,**335-342.

Ssegawa P, Kasenene JM. 2007. Medicinal plant diversity and uses in the Sango bay area, Southern Uganda. Journal of Ethnopharmacology 113, 21-540.

Stevens P. 2012. (2001 onwards) Angiosperm Phylogeny Website Version 12.

Umair M, Altaf M, Abbasi AM. 2017. An ethnobotanical survey of indigenous medicinal plants in Hafizabad district, Punjab-Pakistan. PLoS ONE 12.

Uniyal SK, Singh K, Jamwal P, Lal B. 2006. Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. Journal of Ethno biology and Ethno medicine 2,14.

Wangpan T, Chetry L, Tsering J, Taka T, Tangjang S. 2016. Anti-Malarial Plants of Jonai, India: an Ethnobotanical Approach. Not Sci Bio 8, 27-32.

Zahoor M, Yousaf Z, Aqsa T, Haroon M, Saleh N, Aftab A, Javed S, Qadeer M, Ramazan H. 2017. An ethnopharmacological evaluation Navapind and Shahpur Virkanin district Sheikupura, Pakistan for their herbal medicines. Journal of Ethno biology and Ethno medicine 13,1-26.