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  Abstract 

 

Induced Pluripotent Stem Cells (iPSCs) are stem cells that are reprogrammed genetically from somatic cells to 

exhibit pluripotent characteristics. The generation of iPSCs from somatic cells demonstrated that adult 

mammalian cells can be reprogrammed to a pluripotent state by the enforced expression of a few embryonic 

transcription factors. Pluripotent stem cells possess the unique property of differentiating into all other cell 

types. The discovery iPSCs in 2006 has led new avenues and dimension in clinical medicine. In addition, iPSC 

technology has provided researchers with a unique tool to derive disease-specific stem cells for the study and 

possible treatment of degenerative disorders with autologous cells. These models can also be used to study the 

safety and efficacy of known drugs or potential drug candidates for a particular diseased condition, limiting the 

need for animal studies and considerably reducing the time and money required to develop new drugs. Recently, 

functional neurons, cardiomyocytes, pancreatic islet cells, hepatocytes and retinal cells have been derived from 

human iPSCs, thus re-confirming the pluripotency and differentiation capacity of these cells. These findings 

further open up the possibility of using iPSCs in cell replacement therapy for various degenerative disorders. 

iPSC are also uprising to develop personalized treatment, vaccination system, toxicological and pharmacological 

screening those are very important sector related to Medical Biotechnology. 
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Introduction 

Simply, Medical Biotechnology is such kind of 

technology that has revolutionized Medical Science. It 

is a rapidly emerging technology for improvement of 

health and nutrition (Biancotti et al., 2010). It uses 

biological agents, including GMOs, to get medical 

products and services. Important areas of medical 

biotechnology include pharmaceutical products, 

vaccines, diagnostic techniques such as PCR and 

monoclonal antibodies, transgenic animals, 

microarray, nano-medicine, bioinformatics, 

pluripotent cells for development of any type of adult 

tissue, antisense technology and gene therapy (Chang 

et al., 2010). Among all of them development of 

pluripotent cells and their application in drug 

development, disease remodeling, cell therapy etc. 

(DeKelver et al., 2010) is the most recent concern for 

researchers. Embryonic stem cells are unspecialized 

or undifferentiated cells (Ferrante et al., 2009) that 

can divide indefinitely in culture and can develop into 

specialized or differentiated cells (Guo et al., 2009). 

First few days later of fertilization of an ovum, stem 

cells convert into totipotent, that is, they have the 

potential to become a complete organism, such as a 

human being. Generally four days later, the totipotent 

cells form blastocyst becomes a little more 

specialized. pluripotent cells (Hagerman et al., 2002), 

that have a more restricted potential, make up the 

outer layer of the blastocyst and give rise to the 

placenta and other tissues required to sustain fetal 

development. A second type of pluripotent cells form 

the so-called inner cell mass of the blastocyst and will 

give rise to most of the tissues in the body (Hussein et 

al.,  2011). These embryonic pluripotent cells are the 

stem cells of interest to science and medicine. 

Actually pluripotent cells cannot generate a complete 

organism, but in normal development they do 

produce specialized, or multipotent, stem cells in the 

fetus or adult animal which produce the differentiated 

cells that make up the different components of the 

body (Jackson et al., 2001). So we can say, 

pluripotency is the capability of a cell to give rise to all 

supplementary cell types. Actually blastocyst is the 

source of such kind of cells. It is essential to implant 

these cells in embryo for their persistence (Maitra et 

al., 2005). It is also possible to develop disease-

specific iPSCs which are most likely to revolutionize 

research in respect to the pathophysiology of most 

debilitating diseases, as these can be mimicked ex 

vivo in the laboratory. These models can also be used 

to study the safety and efficacy of known drugs or 

potential drug candidates for a particular diseased 

condition, limiting the need for animal studies and 

considerably reducing the time and money required 

to develop new drugs. (Yamanaka et al., 2009) World 

famous scientists have been involved in this sector for 

last decades. Human iPS cell derivation previously 

required vectors that integrate into the genome, 

which can create mutations and limit the utility of the 

cells in both research and clinical applications (Hall et 

al., 2009). Now it is possible the derivation of human 

iPS cells with the use of non integrating episomal 

vectors. Ethical and technical concerns are important 

obstacle to generate pluripotent cells (Pick et al., 

2009). This objective gained even more importance 

when ethical and other technical concerns, such as 

tumor formation and immune rejection, severely 

restricted research with human embryonic stem cells 

(hESCs) (Aoki et al.,2010). Previous attempts at 

somatic cell nuclear transfer (cloning) and fusion of 

somatic cells with embryonic cells was marred by 

various ethical and methodological complications) 

(Anokye et al., 2011), which precluded their use as a 

routine research tool. However, it is clear that success 

in reprogramming adult cell lines could lead to cell 

lines which could emerge as excellent research tools 

to understand diseases and to test potential drug 

treatments (Aoi et al., 2008). Also, the possibility of 

using cells to repair damaged organs would be 

available (Virginia, 2011) and the cell lines would be 

immune to rejection as they would be derived from 

the patient him/herself (Das et al., 2010). In this 

work historical background, the development of 

iPSCs by different methods and their biological 

characteristics, their prospective applications in 

medical biotechnology, some practical challenges as 

well as future perspective related to this technology 

and how they can be averted for the betterment of 

human life were reviewed. The overall work plan is 

given in Fig. 1.   
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Historical background 

Discovery of induced pluripotent stem cell was not a 

single day task. Many researchers were concerned to 

establish effectively such class of cells. At first they 

had to demonstrate that vastly differentiated cells 

preserve the same genetic information as early 

embryonic cells and then they developed a number of 

techniques to derive culture as well as study 

pluripotent cell lines. Actually the demonstration of 

John B. Gurdon , in 1962, about the capability of 

generating a fully functional tadpole from a nucleus of 

a differentiated frog intestine epithelial cell, was the 

first scientific achievement  in this field. This 

discovery devastated the belief that cellular 

differentiation could only be a unidirectional 

procedure. After a long time study researchers 

observed that in fact transcription factors are key 

determinants of cell fate and the expression of that 

kind of factor can switch one mature cell type into 

another. At last in 2012, Dr. John B Gurdon and Dr. 

Shinya Yamanaka awarded Nobel Prize in Physiology 

for the discovery that “Mature, differentiated cells can 

be reprogrammed to a pluripotent stem cell state”. 

The important research works related to development 

of induces pluripotent cells are listed at Table1. 

 

Table 1. A list of iPSCs related research work. 

Year of 
Discovery 

                                     Research Work                    Reference 

1950 Establishment of the technique of Stem cell nuclear 
transplantation. 

Briggs and King, 1952 

1962 Differentiated amphibian cells indeed retain the genetic 
information to support the generation of cloned frogs. 

Gurdon, 1962 

1972 Establishment of immortal pluripotent cell lines from 
teratocarcinomas, tumors of germ cell origin. 

Brinster, 1974 

1976 Hybrid cells acquired biochemical and developmental 
properties of ECCs and extinguished features of the 
somatic fusion partner. 

Miller,1976; Ruddle ,1977 
 

1980 Derivation of embryonic stem cells (ESCs) from the inner 
cell mass (ICM) of mouse blastocysts. 

Evans and Kaufman, 1981; 
Martin 1981 

1986 Formation of myofibers in fibroblast cell lines transduced 
with retroviral vectors expressing the skeletal muscle 
factor MyoD. 

Davis et al. 1987 

1990 Capability of producing entirely ESC-derived animals 
after injection into tetraploid blastocysts.  

Nagy et al. 1990 

2006 Induction of pluripotent stem cells from embryoinic and 
adult fibroblast cultures by defined factors. 

Takahashi and yamanak, 2006 

2007 Generation of germline- competent induced pluripotent 
cells. 

Okita et al., 2007 

2008 Generation of mouse induced pluripotent cells without 
viral infection. 

Stadtfeld et al., 2008 

2009 Generation of induced pluripotent cells from patients 
with type 1diabetes 

Maehr et al., 2009 

2009 Modeling pathogenesis and treatment of familial 
dysautomnia using patient specific iPSCs. 

Lee et al., 2009 

2011 Somatic coding mutations in human induced pluripotent 
stem cells. 

Gore A et al., 2011 

2012 “Mature, differentiated cells can be reprogrammed to a 
pluripotent stem cell state. 

Nobel Prize in Physiology, 2012 

Induced pluripotent stem cells (iPSCs) 

It is such kind of pluripotent stem cell that is 

artificially derived from a somatic cell via inducing an 

expression of specific gene (Araki et al., 2010). 

Actually it is similar to embryonic (EM) cell but it has 

the capability to generate several cells in the body 

(Takahashi and Yamanaka, 2006). To develop iPCs, 

first of all embryonic stem cells are isolated from the 

inner cell mass (Bao et al., 2009) of any model 

organism including mouse, monkey, pig, marmoset 

and human blastocysts. Then those cells may be 

prolonged in culture while retaining the capacity to 

construct all cells in the body (Brambrink et al., 

2008). The only one distinguishing is that they retain 
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epigenetic memory from the source tissue (Draper et 

al, 2006). The existing obstacle with iPSC lies is their 

low efficiency of derivation (Feldman et al, 2006) and 

the heterogeneity of the obtained colonies (Ghosh et 

al., 2010). The morphological appearance, 

proliferation rate, the reactivation of endogenous 

pluripotency genes followed by silencing of 

transgenes used for reprogramming (Hajkova et al., 

2008), and the ability to form teratomas are a 

number of of the fundamental criteria for the 

assortment of a ‘‘excellent quality’’ iPSC (Han et al., 

2008). Direct reprogramming of human somatic cells 

into pluripotency is very essential to generate patient-

specific iPSCs for disease modeling (Kim et al., 2009) 

and cellular replacement therapies (Marion et al., 

2009). However it is difficult due to efficiency and 

safety issues associated with generation of human 

iPSCs (Stadtfeld et al., 2010). To date, not all of the 

cell type are not effective for human iPSCs 

development. Fibroblasts, keratinocytes and neural 

cell are the best choice due to their wide availability, 

easy isolation and stable genetic characteristics 

(Eminli et al. 2008). In addition to, iPSCs have also 

been derived from other somatic cell populations 

including stomach, liver cells (Aoi et al. 2008), 

melanocytes (Utikal et al. 2009), as well as from 

genetically labeled pancreatic b cells (Lin  et al., 

2009) and terminally differentiated lymphocytes 

(Oswald et al., 2000).  

 

Major genes and transcription factor for stimulation 

iPSC 

In August 2006, Takahashi and Yamanaka 

investigated that Oct-3/4, SOX2, c-Myc, and Klf4 

genes are essential for the production of iPSC 

(Takahashi and Yamanaka, 2006). These genes had 

been identified as particularly important in 

embryonic stem cells (ESCs) (Santiago et al., 2008), 

and used retroviruses to transduce mouse fibroblasts 

with a selection of those genes (Yu et al., 2009). Since 

two of the four genes used (namely, c-Myc and KLF4) 

are oncogenic (Zalfa et al., 2003) , and 20% of the 

chimeric mice developed cance (Zhou et al., 2004), 

then another research groups from Harvard, MIT, 

and the University of California, Los Angeles, showed 

successful reprogramming of mouse fibroblasts into 

iPS cells and able to produce  viable chimera by using  

Nanog and LIN28 which are important genes in ESCs 

involved DNA methylation patterns (Tokumoto et al., 

2010). The findings of them indicated that Nanog is a 

major determinant (Urbach et al., 2010) of cellular 

pluripotency. In another study, Takahashi and 

Yamanaka again that one can create iPSCs yet without 

c-Myc (Shi et al., 2008). The process takes longer and 

is not as efficient, but the resulting chimeras didn't 

develop cancer (Winkler et al., 2010). They also 

reported that Nanog and LIN28 was unnecessary for 

induction to generate iPS cells (Seandel et al., 2007). 

Embryonic cell specific microRNA molecules 

including miR-291, miR-294 and miR-295 increase 

the effectiveness of induced pluripotency by acting 

downstream of c-Myc (Tahiliani et al., 2009). On the 

other hand, transcription factors help to establish and 

maintain cellular individuality during development by 

driving the expression of cell type-specific genes while 

suppressing lineage inappropriate genes (Pfannkuche 

et al., 2010). The role of transcription factors was first 

demonstrated by the formation of myofibers in 

fibroblast cell lines transduced with retroviral vectors 

expressing the skeletal muscle factor MyoD (Davis et 

al., 1987). Subsequently, Graf and colleague (Xie et 

al., 2004; Laiosa et al., 2006) investigated that 

primary B and T cells could be converted efficiently 

into functional macrophages upon over expression of 

the myeloid transcription factor C/EBPa (Zhao et al., 

2004). More recently, researchers have identified sets 

of transcription factors that induce the conversion of 

pancreatic acinar cells into insulin-producing b cells 

by overexpressing the pancreatic factors MafA, Pdx1, 

and Ngn3 (Zhou et al. 2008); the conversion of 

fibroblasts into neurons by the activation of the 

neural factors Ascl1, Brn2, and Myt1l (Vierbuchen et 

al. 2010); and the conversion of fibroblasts into 

cardiomyocytes by the cardiac factors Gata4, Mef2c, 

and Tbx5 (Ieda et al., 2010).  

 

Different approaches of integration 

A number of different approaches have been 

established to transfer reprogramming factors into 

somatic cells (Zou et al., 2009), which have an effect 

http://en.wikipedia.org/wiki/Myc
http://en.wikipedia.org/wiki/Klf4
http://en.wikipedia.org/wiki/Oncogenic
http://en.wikipedia.org/wiki/Nanog
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on the efficiency of reprogramming and the 

superiority of resultant iPSCs (Vaziri et al., 2010). 

First of all virus mediated integration uses 

adenovirus to transport the requisite four 

transcription factors into the DNA of skin and liver 

cells of mice (Tokuzawa et al., 2003). The adenovirus 

is unique from other vectors like viruses and 

retroviruses because it does not incorporate any of its 

own genes into the targeted host and avoid the 

potential for insertional mutagenesis (Bruck et al., 

2007). Another popular approach is plasmid, 

minicircle and transposon mediated integration 

(Okita et al., 2008). Two plasmid vectors are used 

successfully to reprogram mouse cells (Sutcliff et al., 

1992). The first plasmid expressed c-Myc, while the 

second expressed the other three factors (Oct4, Klf4, 

and Sox2) (Wilmut et al., 1997). But it has risk of 

insertional mutagenesis Thomson et al., 1998). 

Transposon system is better than retroviral approach 

due to its higher effeiciency (Bilic et al., 2012). 

Protein mediated approach is cumbersome and 

requires recombinant protein expression and 

purification expertise, and reprograms albeit at very 

low frequencies (Song et al., 2010). It can avoid DNA 

integration concerns as well as providing better 

control over the concentration, timing and sequence 

of transcription factor stimulation. Another research 

group demonstrated that polyarginine peptide 

conjugation can deliver recombinant protein 

reprogramming factor (RF) cargoes into cells and 

reprogramme somatic cells into iPSCs (Zhou et al., 

2009). However, the protein-based approach requires 

a significant amount of protein for the 

reprogramming process (Mali et al., 2010). IVT RNA 

transduction uses single-stranded RNA biotypes that 

trigger innate antiviral defense pathways such as 

interferon and NF-κB-dependent pathways (Varas et 

al., 2009). In vitro transcribed RNA, containing 

stabilizing modifications such as 5-methylguanosine 

capping (Aasen et al., 2008). It is more efficient than 

viral transduction (Xu et al., 2009) and has the extra 

advantage of not altering the somatic genome (Polo et 

al., 2010). In adding up small molecule mediated 

approach is used to replace genes with small 

molecules to assist in reprogramming (Silva et al., 

2006). It has moderate efficiency. Vector related 

approaches have some obstacles (Lengner et al., 

2010). Vectors can produce insertional mutations that 

may interfere with the normal function of iPS cell 

derivatives, and residual transgene expression can 

influence differentiation into specific lineages (Niclis 

et al.,  2009) or even result in tumorigenesis (Buecker 

et al.,  2010) .  To overcome those limitations, Vector 

free integration has arisen as the latest approach 

(Perrier et al., 2004). Basically there are two 

approaches to remove trasgenes from iPSC cells such 

as Cre/LoxP recombination that is involved to excise 

integrated transgene (Giorgetti et al.,  2009)   as well 

as PiggyBac trasposons that has not yet been reported 

(Ohi et al.,  2011). Although removing of multiple 

transposons is labor intensive (Inoue et al., 2011). 

  

Development of iPSC 

We know that dedifferentiation is the reversion 

process of differentiation. Differentiation is such kind 

of process by which a single stem cell is differentiated 

into somatic cell (Sipione et al., 2002). On the other 

hand somatic cell is converted into stem cell due to 

dedifferentiation (Maherali et al., 2008). Basically 

there are several ways to reprogram somatic cells into 

stem cells. First, it can be done by transplantation of 

nuclei taken from somatic cells into a fertilized egg or 

oocyt from which the nucleus is removed prior (Eggan 

et al., 2001). Second, modification of somatic cells, 

inducing its transformation into a stem cell using the 

genetic material encoding reprogramming protein 

factors, recombinant proteins, microRNA, and low-

molecular biologically active substances (Irwin et al., 

2001). Third, Fusion of somatic cells with pluripotent 

stem cells (Ogonuki et al., 2002). Actually the 

fundamental biology of iPSC development is 

theoretically uncomplicated and efficient. However, 

the authentic methodology consists of a number of 

steps, each of which is technically challenging, in due 

course making it tiresome and requiring sophisticated 

scientific skills as well as laboratory facilities 

(Huangfu et al., 2008 )  After a long research now 

only four essential transcription factors are used for 

reprogramming in transforming different cell 

types(Kunisato et al., 2009).. Although c-Myc (a 

http://en.wikipedia.org/wiki/Transposon
http://en.wikipedia.org/wiki/Induced_pluripotent_stem_cell
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proto-oncogene) was found to induce tumors in mice 

and hence was excluded from the reprogramming 

basket, albeit at the cost of the efficiency of the 

process (Cowan et al., 2005). This subtle modification 

has also rendered the process more time consuming, 

since c-Myc plays a significant role in augmenting the 

rate of dissemination of the somatic cells, thereby 

making them more amenable to reprogramming. The 

transmission of these transcription factors was a 

carried out using nucleic acid-based delivery of the 

programming factors. Due to some limitations of 

vector mediated methods, non-integrating methods 

are becoming popular day by day (Lei et al., 1996). 

Generation of iPSCs free of vector and transgene 

sequences using non integrating episomal vectors was 

shown (Yu et al., 2009). (Park et al., 2008)  Actually, 

viral and plasmid DNA incorporation into 

chromosomes can lead to the disruption of gene 

transcription and even malignant transformation 

(Kawamura et al., 2009). Reprogramming should be 

attempted with transient gene expression to generate 

iPSCs for human therapy. Although adenoviral 

vectors have been used to construct mouse iPSCs 

without viral integration, followed by successful 

creation of human iPSCs from embryonic fibroblasts 

(Kleinsmith et al., 2008), using adenoviral vectors 

expressing c-Myc, Klf4, Oct4 and Sox2 (Zhou et al., 

2009). To date, iPSCs have been successfully 

generated using lentiviruses, retroviruses, 

adenoviruses, plasmids, transposons and 

recombinant proteins (Kim et al., 2010). A schematic 

diagram for development of iPSCs is shown in Figure 

2 (Modified from Virginia et al., 2011). 

 

Fig. 1. Overview of research work. 

 

iPSCs and Medical Biotechnology Treatment of 

genetic disorder 

It was impossible to treat the patients of genetic 

disorder. The study of treatment of genetic disorder is 

limited by the accessibility of the affected tissues 

(Verlinsky et al., 2005), as well as the inability to 

grow the relevant cell types in culture for extended 

periods of time (Liao et al., 2009). But the iPSC 

technology opens a new era for such kind of 

treatment.  

 

Fig. 2. Development of iPSc (Modified from Virginia 

et al., 2011). 
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Type 1 diabetes (T1D) 

Actually it is the result of an autoimmune disease 

caused by destruction of pancreatic β cells (Lin et al., 

2001).  To date the molecular and cellular reasons 

behind this disease remain unclear top the 

researchers (Zhang et al., 2009). Nevertheless 

pluripotent stem cells generated from patients with 

T1D would be very useful for understanding the 

disease modeling (Maehr et al., 2009). Maehr et al. 

published strong report in 2009 showing generation 

of iPSCs from patients with T1D (Maehr et al., 2009). 

Adult fibroblasts from T1D patients were efficiently 

reprogrammed to iPSCs(Koch et al., 2009) using 

three transcription factors, OCT4, SOX2 and KLF4 

(Deng et al., 2009). Such kind of disease-specific 

stem cells recommend an unprecedented prospect to 

run through both habitual and pathological human 

tissue formation in vitro (Nichols et al., 2009), in this 

manner enabling disease exploration and drug 

development (Tateishi et al., 2008).  

 

Fig. 3. Drug development based on the iPSC 

technology (Modified from Maherali and 

Hochedlinger, 2008). 

 

Spinal muscular atrophy (SMA) 

SMA is one kind of autosomal recessive childhood 

disease that caused by a decline in levels of the 

survival of motor neuron (SMN) protein due to 

mutations in the SMN1 gene (Lefebvre et al., 1995) as 

well as it is the most common cause of death by a 

heritable disease in infants (Coovert et al., 1997). A 

group of scientists created two iPSC lines one from a 

patient with SMA and the other from an unaffected 

relative and differentiated them into motor neurons 

(Chambers et al., 2004). They used two compounds, 

valproic acid and tobramy-cin that actually played 

role to increase the number of SMN-rich structures 

(called gems) in the patient derived iPSCs (Avila et 

al., 2007). In this study motor neuron numbers were 

reduced, particularly in the cells consequent from 

patients with SMA, signifying for the first time that 

the process of reprogramming and directed differ-

entiation faithfully captured and recapitulated the 

disease phenotype (Marica et al., 2011). These iPS 

cells initially generated a similar number of motor 

neurons as their control cell counterparts, but over 

time cell body size was reduced and they underwent 

substantial degeneration (Okita et al., 2007). It 

should be mentioned that SMA has four subtypes 

designated as type-1, 2, 3, 4 that are classified by 

disease severity (Mattis et al., 2009)  and age of 

onset, with type 1 being the most severe (Zhou et al., 

2008) and type 4 being the least severe (Desponts et 

al., 2010). 

 

Rett Syndrome 

Rett syndrome is an X-linked disorder that is a part of 

the larger group of autism spectrum disorders as well 

as caused by mutations in methyl-CpG-binding 

protein 2 (MECP2) (Okada et al., 2008)  that is 

involved in DNA methylation (Amir et al., 2000). 

Such kind of protein actually regulates an array of 

different gene. It was investigated that most patients 

are female, as male fetuses or neonates with Rett’s 

syndrome die (Ko et al., 2009), respectively, before or 

soon after birth due to the pattern of X-chromosome 

inactivation (Marchetto et al., 2010). A research 

group generated iPSCs derived from healthy controls 

and patients with Rett syndrome were differentiated 

into glutamatergic and GABA (γ-aminobutyric acid)-

ergic neurons (Onorati et al., 2010). That group 

observed no changes in neurogenesis (Maekawa et al., 

2011), they were able to measure a substantial 

reduction in synapse number as well as a reduction in 
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the number of spines the small protrusions in 

neuronal processes where glutamatergic synapses are 

formed while a concentrated number of spines have 

formerly been experiential in the post-mortem brains 

of patients with Rett syndrome (Marica et al., 2011).  

 

Parkinson’s disease 

It is another kind of genetic (neurodegenerative) 

disorder that is caused by the progressive loss of 

midbrain dopaminergic neurons (Wichterle et al., 

2002). Like all of the genetic disorder it was 

impossible to cure from this disease. But recently 

several researches are going on by the use of iPSC 

technology (Barberi et al., 2003). Many genes have 

been directly associated with Parkinson’s disease 

(PARK2, SNCA, UCHL1, LRRK2, PARK7, PINK1, 

GBA, and SNCAIP) while more than 85% of 

Parkinson’s disease cases give the impression to be 

irregular (Yamashita et al., 2006). Seibler et al. 

derived dopaminergic neurons from patients with 

mutations in the gene encoding PTEN-induced 

putative kinase 1(Cooper et al., 2008), a surface 

mitochondrial membrane protein that is whispered to 

normalize the mitochondrial translocation of the E3 

ubiquitin protein ligase parkin that is also associated 

with familial Parkinson’s disease.Generation of iPS 

cells from patients with Parkinson’s disease has been 

described in three reports (Dawson et al., 2007). It 

was shown that iPS cells with a mutation in PINK1 

were differentiated into dopaminergic neurons. 

Amusingly these phenotypes were all inverted after in 

excess of expression of wildtype PINK1 (Soldner et 

al., 2009). 

 

Huntington’s disease 

It is a common autosomal dominant 

neurodegenerative disease which is caused by 

expanded CAG repeats in exon 1 of Huntingtin (HTT 

protein) (Roses et al., 1994). It is a disorder related to 

ageing (Cepeda et al., 2003). Such kind of expantion 

is caused by mutation on histone deacetylase (had-3) 

that generates Huntingtin polyglutamine toxicity 

which is actually responsible for neurodegeneration 

(Varani et al., 2003). First of all Park et al., generated 

iPS cells from a patient with Huntington’s disease 

displaying 72 CAG repeats (Seo et al., 2004). These 

cells have been used to produce striatal neurons 

subject to cellular damage characteristic of the 

disease ( Xie et al., 2004), such as mutant huntingtin 

aggregation (Yan et al., 2005)  and decreasing 

concentrations (Shelbourne et al., 2007) of glutamate 

transporters (Trettel et al., 2008 ; Miller et al., 2008). 

 

Fragile X syndrome 

It is an X-linked dominant disorder (Hinton et al., 

1991) that is caused by expansion of a tri nucleotide 

sequence (Rousseau et al., 1992) repeat of more than 

200 CGG repeats in the 5´ UTR that silences FMR1 

(Siomi et al., 1993) and ultimately leads to 

developmental changes within the cerebral cortex 

(Verkerk et al., 1991) as a result causes mental 

retardation (Churchill et al., 2004). The developed 

iPS cells continued to silence the expanded copy of 

FMR1 (Crawford et al., 2001), which would not be 

expected if the cells were pushed back to an 

embryonic state where the gene would normally be 

expressed (Castren et al., 2005). However, the FXS 

iPS cells still represent an exciting model to further 

analysis of this disorder (Bechara et al., 2009). 

 

Hutchinson-Gilford progeria syndrome (HGPS)  

It is an autosomal dominant disorder that is a result 

of a mutation in the lamin A (LMNA) gene(Wang et 

al., 2006) which leads to a truncated and farnesylated 

form of LMNA called progerin (Wilson et al., 2009). 

Patients carrying mutations in LMNA show signs of 

early ageing (Winkler et al., 2010) and often die in 

their early teens as a result of myocardial infarction or 

stroke. Several tissues such as mesenchymal lineage 

cell, vascular smooth muscle cells (VSMCs) are 

ravaged by such kind of disorder (Martinez et al., 

2010). Zhang et al. developed iPSCs from patients 

with HGPS carrying different mutations in LMNA 

(Zhang et al., 2009) while iPSCs developed from their 

parents were used as controls as well as differentiated 

(Wu et al., 2010)  these cells into five lineages: 

fibroblasts, endothelial cells, neural progenitor cells, 

VSMCs and mesenchymal stem cells (Marcia et al., 

2011). 

 



 

48 Saha and Emran 

 

Int. J. Biosci. 2013 

Down’s syndrome 

It is one kind of disorder that is caused by trisomy of 

chromosome 21(Bahn et al., 2002). iPS model of a 

Down’s syndrome was generated (Osafune et al., 

2008) and did enable continuous replay of cortical 

development (Osakada et al., 2008). The creation of 

iPS cell lines to enable investigation of similar defects, 

such as trisomy in other chromosomes, would also be 

of interest (Bhattacharyya et al., 2009; Matsui et al., 

2010). 

 

Long QT syndrome (LQTS) 

It is an inherited congenital disorder (Matsui et al., 

1992) that is characterized by delayed repolarization 

of the cardiomyocyte action potential and a prolonged 

QT interval (A measure of the time between the start 

of the Q wave and the end of the T wave in the 

electrical cycle of the heart) in electrocardiograms 

(Wakayama et al., 2001). Actually the genetic 

mutations associated with LQTS has hindered 

attempts to develop protective drugs for this 

condition (Wakayama et al., 2006), as well as 

attempts to screen preclinical drug candidates to 

eliminate those drugs that promote arrhythmia (Kim 

et al., 2010). Some renowned scientists were 

triumphant to derive iPSCs from patients with LQTS 

as well as differentiated them into cardiomyocytes 

and documented phenotypes that are pinpointing of 

LQTS (Page et al., 2009). Among themat first Moretti 

et al. developed iPSCs from family members of 

affected by type 1 LQTS who was actually a carrier of 

the corresponding mutation in the gene encoding 

potassium voltage-gated channel subfamily KQT 

member 1(Pasi et al., 2011) . Cardiomyocytes derived 

from these iPSCs exhibited prolonged action 

potentials and defective potassium channel properties 

(Marica et al., 2011).  

 

Amyotrophic lateral sclerosis (ALS) 

It is one kind of genetic disease caused by the death of 

upper and lower motor neurons, which leads to 

paralysis and subsequent atrophy of the muscles 

(Meissner et al., 2007). It was investigated that 

several genes including SOD1, DPP6, ITPR2, and 

TARDBP are involved to ALS generally presents 

between (Mauritz et al., 2008). An ALS iPS cell model 

showed the multigenic nature of this disease. Dimos 

et al experimentally generated iPS cells from a skin 

sample taken from an elderly patient with familial 

ALS displaying a mutation in SOD1 (Viswanathan et 

al., 2008). The number of motor neurons generated 

from the ALS iPS and control cell lines were not 

reported in this study that will be very helpful for 

further study.  

 

Drug development 

The drug development process initiates with the 

patient samples collection for the generation of 

induced pluripotent stem cells (iPSCs) (Utikal et al., 

2009)  , followed by directed differentiation of these 

cells into cells that have a crucial role in the disease. 

The characteristic of the technology that makes it 

valuable for drug discovery is the capacity to 

recapitulate crucial aspects of the disease for drug 

screening (Vierbuchen et al., 2010). A schematic 

diagram of the iPSC production process is shown in 

Figure 3. (Modified from Maherali and Hochedlinger, 

2008) 

 

iPSCs in cell therapy 

There are several kinds of obstacles in the process of 

organ transplantation especially in the case of non 

related individuals (Mayer et al., 2000). Besides it 

may have severe side impact for life long treatment 

using several highly powerful drugs. Inspite of having 

limitation to use human embryos for donor issues, it 

has chance to open a new era to use iPSCs inorder to 

serve as custom-tailored replacement cells in a 

therapeutic setting. At first Zhao and his colleagues 

experimentally showed that teratomas derived from 

some syngeneic iPSCs elicit an immune response 

from the host animal (Xu et al., 2008). Another group 

of scientists used the method of gene targeting in 

order to correct the mutation in iPSCs those were 

collected from sickle cell anemia model 

animal(Mikkelsen et al., 2008). When these cells 

were transplanted into an irradiated mouse that 

caused a reversal of the defected phenotypes. In 

2008, Wering et al., demonstrated that 

transplantation of iPSC derived Dopaminergic 
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neurons into a mouse that was affected by 

Parkinson’s disease, was sufficient to restore neuronal 

function. A related approach was demonstrated with 

human patients with Fanconi's anemia (Tsubooka et 

al., 2009). In this case, the mutant gene was replaced 

using lentiviral vectors prior to reprogramming of the 

patient’s fibroblasts and keratinocytes, as the genetic 

instability of the mutant fibroblasts made them 

nonpermissive for iPSC generation. Significantly, 

these iPSCs could be differentiated into 

hematopoietic progenitors as efficiently as ESCs 

(Yang et al., 2009) and wild-type iPSCs and capable 

to maintain the disease-free phenotype in vitro 

(Melton et al., 2010). 

 

Personalized treatment 

Hopefully it will be the most effective use of iPS cells. 

Actually personalized drug is such kind of drug that 

will only develop for single individual as well as 

depends on the genetic information of him or herself. 

There are some obstacles to reprogram in order to 

generate iPSC. When it would be possible to generate 

iPSC from individual then that could be used to 

screen drug for them (Mikkola et al., 2002). Though 

theoretically it is possible but in practically it has to 

face some difficulty. The ancestral human disease is 

habitually associated to distinct mutations in 

individual genes (Caspi et al., 2008). Accurate 

correction of this genetic fault in patient-derived stem 

cells and iPSCs is a significant difficulty to the 

extensive purpose of tailored cell-based therapy. It 

has investigated that Zinc finger nuclease (ZFN) 

technology has emerged as a highly resourceful 

innovative tool for accurate eukaryotic gene editing 

directly at the endogenous genomic locus (Blelloch et 

al., 2008). At first Collin and Lako applied the ZFNs 

to genome editing in human iPSCs that ensured 

positive signal for cell-based therapy (Meyer et al., 

2009). Individual patient-derived iPSCs are providing 

new opportunities to modeling human disease in 

vitro (Mayshar et al., 2010). Another researcher 

group used ZFN-based genomic editing to generate 

isogenic sets of human disease and control 

pluripotent stem cells that differ solely in the α-

synuclein gene (Ebert et al., 2008). If it is possible to 

develop personalized drug successfully, all of the side 

effects associated with drug will be lessen (Young et 

al., 2011). 

 

iPSCs in toxicological and pharmacological 

screening 

Recently iPSC has emerged as an awaiting implement 

for pharmacological and toxicology screening 

(Moehle et al., 2007). We know that adverse drug 

reactions represent a major confront for 

pharmaceutical industries, hospitals and drug 

regulators as well as are major contributors to the 

high cost of drug development (Tsuji et al., 2010). In 

addition to currently utilized toxicology assay has 

several type problems based on established cell lines, 

primary explanted somatic cells and laboratory 

animals (Mollamohammadi et al., 2009) .The 

development of predictive human cellular systems 

that complement current toxicity tests in animals and 

primary cells are therefore vital. Stem cells utilized for 

toxicology screening can be of adult, fetal or 

embryonic origin (Ying et al., 2008). However, the 

capacity of human embryonic stem cells (hESC) to be 

propagated within in vitro culture covers a distinct 

advantage over primary cultures of fetal and adult 

stem cells as hESC lines are hypothetically immortal. 

Yu et al. and Takahashi et al. demonstrated (Yu et al. 

2007) a new opportunity for toxicology assay 

development that is free of ethical and moral 

controversy. But there are some barriers to utilize 

iPSC for toxicology screening assays. First of all it is 

unknown how the epigenetic state of reprogrammed 

iPSC actually compares with hESC derived from 

‘normal’ human blastocyst-stage embryos (Di et al., 

2008). There is a chance that restrained divergences 

in the epigenetic programming of iPSC. The second 

major barrier is that the derivation of iPSC entails 

permanent genetic modification to somatic cells 

(Wernig et al., 2008), due to the use of viral 

transduction of recombinant DNA (Markoulaki et al., 

2009). Hopefully, today or tomorrow the use of iPSCs 

to personalize drug development may prove to be 

powerful resources of plummeting drug toxicity, 

stratifying patient response and reducing late-stage 
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clinical failures (Lapillonne et al., 2010; Marica et al., 

2011). 

 

Vaccination 

The recent study on cell based vaccination using 

transplantation of iPSC-derived memory B cells (Li et 

al., 2009) has initiated a new era for vaccination. Li et 

al., first induced somatic cells to form iPSCs and 

expanded (Monzo et al., 2006). Next the cells were 

genetically or chemically promoted to an immune cell 

fate, followed by in vitro antigen-presenting and -

processing procedures to produce memory B cells 

(Judson et al., 2009) that could secrete functional 

antibodies to different pathogens. Finally these cells 

were transplanted back into a human (Li et al., 2009). 

This study provided a positive signal to develop 

vaccine via iPSCs (Tao et al., 2010; Tchieu et al., 

2010). 

 

Challenges and future perspectives 

Despite the fact that iPSCs offer unparalleled 

potential for Medical Biotechnology including disease 

research, drug screening, toxicology, regenerative 

medicine, vaccination etc., and this technology will be 

fittest when researchers will have capability to 

overcome all of the challenges or barriers related to 

the methodology (Yoshida et al., 2009). First of all, 

theoretically iPSC can give rise to all somatic cell 

types (Hou et al.,2006) , but practically, in vitro 

differentiation protocols to date have been developed 

for only some specific cell types (Rai et al., 2008; 

Schenke et al., 2008). In many experiment, 

insufficiency of differentiation have been producing 

cultures with various type of cells for last decades that 

is vital challenge to the researchers of the field related 

to iPSC technology. Second, it is not possible yet to 

develop an active cryopreservation method that 

ensure support in storage and transplantation (Kaji et 

al., 2009; Taura et al., 2009). Third, not only 

integrating viruses induces potential mutations, 

ultimately tumours in the case of therapeutic 

applications, but also undifferentiated iPSCs 

themselves would be tumorigenic as donor cell grafts 

would be contaminated by pluripotent 

undifferentiated cells (Fusaki et al., 2009; Guenther 

et al., 2010). Fourth, the safety concern is another 

major constraint for transplanting cells into human 

patient (Klapstein et al., 2001; Pereira et al., 2010). 

Fifth, maximum patient-specific iPSCs have been 

generated with integrating vectors, which could 

disrupt endogenous genes during cell therapy (Jia et 

al., 2010). Sixth, inefficient targeting approaches may 

cause karyotypic abnormalities due to extensive 

culturing n the case of diseases requiring gene 

targeting in order to repair mutant alleles (Ellis et al., 

2010). Seventh, reprogramming is particularly 

challenging as the genome-wide epigenetic code must 

be reformatted to that of the target cell type in order 

to fully reprogram a cell (Morizane et al., 2009). 

Finally, patient specific iPSCs needs to be derivated 

from diseased tissue portions (i.e. hepatocyte within 

liver cancer) rather than the tissues which do not 

carry any pathogenetic events (i.e. skin fibroblasts for 

liver cancer) (Bussmann et al., 2009). In near future 

possible it can be possible to use iPSC technology in 

order to treat other diseases. Researcher also 

demonstrated that iPSC has high telomerase activity 

that is linked to ageing. So we hope, one day it will be 

used as a tool for ageing research as well as for 

Medical Biotechnology.  

 

Conclusion 

iPSCs have supreme potentiality for Medical 

Biotechnology including disease research, drug 

screening, toxicology and regenerative medicine etc. 

though the process of reprogramming is ineffective 

and often deficient. But it is a matter of wonder that 

this technology is hurriedly emerging day by day due 

to the importance of demands. The innovation of 

iPSCs has also predisposed the attention of 

researchers as the activation of only a few 

transcription factors can transform cell fate by simple 

steps. We envisage that such kind of technology will 

be able to overcome all of the challenges behind 

efficient implementation as well as will lead to new 

insights into various kind of illness in favor of Medical 

Biotechnology. 

 

 

 

http://en.wikipedia.org/wiki/Telomerase
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