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Abstract 

Photosynthesis is one of the most incomparable and meticulous metabolic processes that maximize the use of 

available light, carbon and nitrogen and minimizes the destructive effects of surplus light. Indeed, 

photosynthesis comprises of two major reactions that occur in separate parts in the chloroplast. The light 

reactions take place in the thylakoid membrane which generates ATP and NADPH while dark reactions (so called 

Calvin–Benson cycle) exploit these ATP and NADPH to reduce carbon CO2 (carbon-di-oxide) to carbohydrates 

(CH2O) in the stroma of chloroplast. In plants various carbon fixation mechanisms are evolved naturally such as, 

less efficient C3 carbon fixation having photorespiration, more efficient C4 carbon fixation having cellular CO2 

pumping system for avoiding photorespiration and CAM (Crassulacean acid metabolism) carbon fixation for 

escaping transpiration during day. Besides plant proceeds different alternative sinks for carbon fixation under 

surplus light. Chlorophyll fluorescence is one of the most influential and advanced technique for studying 

photosystems health but on the other hand photo inhibition and ROS (reactive oxygen species) generation are 

unfortunate for photosystems during various stresses. However, photo inhibition and ROS generation are 

obligatory during stresses whereas chloroplastic antioxidants are accountable for ROS regulation in plant cells. 

These insight between fundamental and advance information on photosynthesis assist to switch less efficient C3 

rice to highly efficient C4 rice development to feed the ever-increasing population in the globe. Therefore, this 

article reviews fundamental aspects of photosynthetic machineries, underlying physiological, biochemical and 

molecular mechanisms and highlighted the modern scientific achievements on C4 rice development. 
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Introduction 

Photosynthesis is a sequential biological progress 

through which plants convert light energy into 

chemical energy in the form of sugars, which is 

readily absorbed to operate various cellular functions 

(Rabinowitch, 1956; Gest, 2002). Photosynthesis 

occurs likely in several photoautotrophs (El-Sharkawy 

and Hesketh, 1965) through absorbing light energy 

by reaction centers (RCs) (Rabinowitch, 1956; 

Whitmarsh, 1999).  

 

In plants, RCs are sited in the chloroplasts which are 

abundant in leaves, while in cyanobacteria they are 

localized in the plasmamembrane (Joyard et al., 1991; 

Tavano and Donohue, 2006; Flores, 2008) therefore 

the prime organ of photosynthesis in plants is leaves 

(Reyes-Prieto et al., 2007) that expose the maximum 

probable area to light (Hamlyn G. Jones, 1992). Each 

cell in the green tissue of leaves contains around 100 

chloroplasts which are accountable for photosynthetic 

reactions (Reyes-Prieto et al., 2007; Johnson, 2017). 

The fundamental reaction of photosynthesis is, 

 

 

It consists of two major reactions; (i) light reaction 

where assimilatory energy is produced and (ii) dark 

reaction where assimilatory energy is consumed for 

reduction of carbon in producing carbohydrates. 

Photosynthesis is important for feeding the creatures 

but its efficiency greatly varies with C3, C4 and CAM 

(Crassulacean acid metabolism) plants. 

Photorespiration in C3 plants causes around 25% 

carbon loss while absence of this ham-fisted process 

in C4 and CAM there is no carbon loss occur. 

Nowadays scientists are trying to overcome 

photorespiration by introducing a maize-like (C4) 

photosynthetic pathway in C3 plants specially in rice 

which is anticipated to increase around 50% 

photosynthetic efficiency. So, it is foremost and 

crucial to have a clear sense about these enter 

processes. Therefore, this current flurry of work aims 

to present a well understanding about photosynthesis 

process and how to overcome carbon loss by fixing 

maize-like photosynthetic pathway.  

 

Fundamentals of photosynthesis  

Life is almost incredible without photosynthesis as it 

bestows O2 to breathe and reduces mischievous CO2 

for food (CH2O) through solar energy (Rabinowitch, 

1956; Calvin, 1989; Whitmarsh, 1999). In this 

process, O2 derives from H2O (Hill 1939) and 

chlorophyll primarily delivers electron (e-) to yield 

NADPH and ATP in presence of light (light reaction) 

(Raven et al., 2005; Ziehe et al., 2018; Onge, 2018) to 

meet up the demand for CO2 assimilation in dark 

reaction (Calvin-Benson cycle) (Calvin and Benson, 

1948; Bassham et al., 1950; Badger and Price, 2003).  

 

 

Fig. 1. (a and b) Fundamental mechanisms (light 

and dark reactions) of photosynthesis. 

 

Light reaction  

Photosynthesis initiates with light reaction that takes 

place in the thylakoid membrane of chloroplast 

(Mullineaux, 1999; Tavano and Donohue, 2006; 

Ziehe et al., 2018). Light reaction involves two light 

activated reactions, (a) photo-excitation of 

chlorophyll (Whatley and Allen, 1954; Green and 

Durnford, 1996; Allen and Forsberg, 2001; Chitnis, 

2001) and (b) Photolysis of water or water oxidation 

that generates H+, e- and O2 (Hill, 1939; Grossman et 

al.,1995; Green and Durnford, 1996; Blankenship and 

Hartman, 1998; Asada, 1999; Tommos and Babcock, 

1999; Haldrup et al., 2001; Allen and Forsberg, 2001; 

Blankenship, 2002) (Fig. 2). 
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As these reactions depend on light, these are familiar 

as light reaction in which chlorophyll is primary and 

water is secondary electron donor (Campbell et al., 

2006; Onge, 2018). 

 

Fig. 2. An outline of light reaction. 

 

Photo-excitation of chlorophyll  

Once chlorophyll molecule (P680 in photosystem II 

and P700 in photosystem I) gets solar energy it 

becomes energy rich and excited (*Chl) (Whatley and 

Allen, 1954; Allen and Forsberg, 2001) which ejects 

one electron and becomes oxidized with a positive 

charge that known as ionized or prtonated 

chlorophyll (Chl+) (Grossman et al., 1995; Green and 

Durnford, 1996; Barber et al., 1999; Allen and 

Forsberg, 2001; Chitnis, 2001; Adams et al., 2005).  

 

The *Chl ease back to Chl+ by four pathways: (1) 

emitting energy in the form of heat via violaxanthin-

antheraxanthin-zeaxanthin (VAZ pathway) or 

xanthophylls cycle which is recognized as non-

photochemical quenching (NPQ) or thermal heat 

dissipation. (Yamamoto et al., 1962; Bilger and 

Bjorkman, 1990; Niyogi et al., 1998, Niyogi, 1999, 

2000); (2) in the form fluorescence light (F) (Adams 

et al., 1990; Maxwell and Johnson, 2000; Rosenqvist 

and van Kooten, 2003; Earl and Ennahli, 2004; 

Baker, 2008); (3) photochemistry i.e. transmitting 

the energy across Photosystem II (PSII), the 

photosynthetic electron transport chain (PETC), and 

Photosystem I (PSI), resulting in the reduction of 

NADP+ to NADPH (Grossman et al., 1995; Fryer et 

al., 1998; Allen and Forsberg, 2001; Ziehe et al., 

2018; Onge, 2018) and (4) shifting energy to 

molecular oxygen to form singlet oxygen (1O2*) 

(Krieger-Liszkay, 2005; Krieger-Liszkay et al., 2008; 

Stephen et al., 2010; Takagi et al., 2016b). 

 

Fig. 3. Fates of excited Chlorophyll. 

 

Non-photochemical quenching (NPQ)/Heat dissipation 

Heat dissipation occurs through xanthophyll cycle or 

VAZ pathway that comprises of violaxanthin, 

antheraxanthin, and zeaxanthin pigments (Müller et 

al., 2001; Müller et al., 2002; Horton and Ruban, 

2005; Cazzaniga et al., 2016). In moderate light 

conditions, violaxanthin is the most abundant pigment, 

whereas under high light, violaxanthin de-epoxidase 

and converts into zeaxanthin via antheraxanthin (an 

intermediate pigment), by this process plants 

eliminated more than 75% of absorbed photons 

(Yamamoto et al., 1962; Bilger and Bjorkman, 1990; 

Pfündel and Bilger, 1994; Demming-Adams et al., 

1996; Demming-Adams et al., 1998; Niyogi et al., 1998, 

Niyogi, 2000; Horton and Ruban, 2005). 

  

 

Fig 4 VAZ/Xanthophyll cycle. 

 

Chlorophyll fluorescence 

The excited chlorophyll dissipates its energy through 

four fates i.e. photochemical quenching or charge 

separation (photosynthesis), non-photochemical 

quenching (NPQ), generating 1O2*, and chlorophyll 

fluorescence (Yamamoto et al., 1962; Adams et al., 

1990; Bilger and Bjorkman, 1990; Grossman et al., 

1995; Niyogi et al., 1998; Fryer et al., 1998; Asada, 

1999; Niyogi, 2000; Maxwell and Johnson, 2000; 

Allen and Forsberg, 2001; Rosenqvist and van 

Kooten, 2003; Earl and Ennahli, 2004; Krieger-

Liszkay, 2005; Baker, 2008; Stephen et al., 2010; 

Ziehe et al., 2018; Onge, 2018). 
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These processes compete with each other, i.e., an 

augment in the efficiency of one will result in a 

decrease of the others. By measuring the fluorescence, 

photochemical quenching (qP) and non-

photochemical quenching (NPQ) can be calculated 

(Murchie and Lawson, 2013; Terletskaya et al., 2018; 

Guidi et al., 2019; Terletskaya et al., 2020). Indeed, 

chlorophyll fluorescence gives a rapid and non-

destructive means of studying plants’ photosynthetic 

performance (Adams et al., 1990; Krause and Weis, 

1991; Maxwell and Johnson, 2000; Baker, 2008; 

Bussotti et al., 2020). Normally it is done with a pulse 

amplitude modulated (PAM) fluorometer. Usually the 

sample plants need to dark adjusted for at least 10-15 

minutes prior to reading. This dark adjustment allows 

all the electrons in PSII passes through to the end of 

the electron chain, rendering all of the reaction 

centers open (QA). Upon revealing to light, QA 

receives an electron and becomes QA
- thus the 

reaction center is termed to be ‘closed’ which leads to 

maximize fluorescence yield (Adams et al., 1990; 

Maxwell and Johnson, 2000; Rosenqvist and van 

Kooten, 2003; Earl and Ennahli 2004; Baker, 2008). 

 
As chlorophyll fluorescence is a fluent way for photo-

biological research, the most useful parameters are 

crucial to discuss. Such as, 

 

F0: Minimum fluorescence level in a dark adjusted 

leaf where photochemical quenching, qP=1 and non-

photochemical quenching, qN=0. In this case, PSII 

reaction center is open (QA) for taking electron from 

pheophytin. 

 

Fm: Maximum fluorescence level where qP=0 and 

qN=0. Here, the reaction center of PSII is closed (QA
-) 

for taking electron from pheophytin. 

 

Fv: Variable fluorescence designated by Fm-F0; 

maximum variable Chl fluorescence occurs when all 

non-photochemical processes are at minimum. 

 

Fv/Fm: Quantum efficiency (ΦPSII) or potential 

quantum yield of PSII in a dark adapted leaf.  

Fv/Fm is a key measuring tool for photosystems health 

determination. Typical the values of Fv/Fm for most 

plant species ranges from 0.78–0.87 and values drop 

than that will be seen when the plants are subjected to 

stress. (Kitajima and Butler, 1975; Bjorkman and 

Demmig, 1987; Adams et al., 1990; Johnson et al., 

1993; Adams and Demmig-Adams, 2004).  

 

For example, an elevated Fv/Fm value of 0.854 

suggests that the photosytems are running at 85.4% 

proficiency and indicates everything inside PSII is 

operating properly and specifically. On the other hand 

low Fv/Fm value of 0.628 suggests that the 

photosytems are running at 62.8% proficiency 

demonstrating the photosystems are most likely 

stressed and/or damaged.  

 

Photolysis of water or water oxidation 

Upon exposure to light photolysis of water takes place 

in the lumen of thylakoid membrane through water 

oxidation complex (WOC) and generates H+, e- and O2 

(Fig. 2) (Hill, 1939; Joliot et al., 1969; Kok et al., 

1970; Blankenship and Hartman, 1998; Asada, 1999; 

Allen and Forsberg, 2001; Blankenship, 2002; 

Pushkar et al., 2008).  

 

The O2 expels to the environment and ATP synthase 

pumps H+ from lumen to stroma in order to generate 

ATP which is known as photophosphorylation 

(Arnon, 1956; Hoganson and Babcock, 1997; Haraux 

and Kouchkovsky, 1998; Stock et al., 1999). Finally, 

the electron (e-) is terminated to NADPH travelling 

through the direction H2O---PSII---PQ---Cytchrome 

b6f---PC---PSI (Allen and Forsberg, 2001; 

Blankenship, 2002; Pushkar et al., 2008). Here, the 

ATP and NADPH are collectively known as 

assimilatory power (Karplus et al., 1991; Raven et al., 

2005; Ziehe et al., 2018; Onge, 2018). 

 

Photophosphorylation 

ATP forms due to a hydrogen ion (H+) gradient across 

the thylakoid membrane (Mitchell, 1966). Indeed, the 

energy that begins the synthesis of ATP derives from 

the ‘osmosis’ of protons through thylakoid membrane 

from lumen to stroma (Whatley and Allen, 1954; 

Arnon, 1956; Hoganson and Babcock, 1997; Haraux 

and Kouchkovsky, 1998; Stock et al., 1999).  
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There are two types of photophosphorylation; (i) 

Non-cyclic and (ii) Cylic photo phsphorylation.  

 

Non-cyclic photophsphorylation/linear electron 

transport pathway 

Non-cyclic photophsphorylation involves linear electron 

movement i.e. electron derives from H2O and ends to 

NADPH via PSII---PQ---Cytchrome b6f---PC---PSI 

which looks like a ‘Z-fashion’ of electron flow. During 

PETC, H+ is pumped from lumen to stroma and 

generates ATP (Whatley and Allen, 1954; Arnon, 1956; 

Fajer et al., 1977; Hoganson and Babcock, 1997; Haraux 

and Kouchkovsky, 1998; Asada, 1999; Stock et al., 1999; 

Haldrup et al., 2001; Allen and Forsberg, 2001; 

Blankenship, 2002; Takagi et al., 2017a; Takagi and 

Miyake, 2018).  

 

 

Fig 5 Z-Scheme/Z fashion/non-cyclic electron flow. 

 
Cyclic photophsphorylation 

Here electron moves cyclically through PSI---

Cytochrome b6f complex---PC---PSI i.e. the initial 

electron donor and final electron acceptor is PSI 

(Asada, 1999; Allen and Forsberg, 2001; Blankenship, 

2002; Pushkar et al., 2008; Munekage et al., 2016). 

In case of cyclic electron flow around PSI, the reduced 

ferredoxin (Fdred) transfers electron to plastoquinone 

(PQ) pool which is known as electron shuttling. Later 

on, when PQ shifts electron to Cyt b6f complex, two 

protons (H+) from stroma are added to PQ and 

becomes PQH2. Here, Q cycle is accountable for 

transfering protons from stroma to lumen. However, 

a lack of PQ can impede the operation of the Q-cycle 

(Mitchell, 1966) and suppress electron transport in 

Cytb6f complex. Finally, the luminal protons are 

pumped to stroma and generate ATP (Whatley and 

Allen, 1954; Arnon, 1956; Hoganson and Babcock, 

1997; Stock et al., 1999). Cyclic photophosphorylation 

has crucial role on photosynthesis (Suorsa, 2015).  

 

Normally, photosynthesis requires 3ATP/2NADPH 

ratio whereas the linear electron flow is capable to 

support only 2.57ATP/2NADPH, offers the Q-cycle 

(Cyclic photophosphorylation) mandatorily runs in 

chloroplasts (Rich and Bendall, 1981; Rich, 1988; 

Sacksteder et al., 2000) which covers at least 17% 

proton deficiency. 

 

 

Fig. 6. Cyclic photophosphorylation.
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Photoinhibition  

Photo inhibition is light-induced injury of oxygen 

evolution, electron-transport activity of PSII thus in 

photosynthetic capacity of plant, algae or 

cyanobacteria (Aro et al., 1993, 1993; Baker, 1996; 

Murata et al., 2007; Murata et al., 2012). Among the 

two photosystems, PSII is more sensitive to light 

which is termed as light-induced damage of PSII 

(Kok, 1956; Jegerschoeld et al., 1990; Aro et al., 1993; 

Adams et al., 2005). 

 

Acceptor side photoinhibition 

Strong light lowers the plastoquinone (PQ) pool, 

which leads to protonation and double reduction of 

the QA electron acceptor of Photosystem II, 

consequently QA do not function in electron transport 

system. The double reduction of the PQ acceptor (QA
2-

) leads to the formation of primary radical pair 

P680+Pheo-, subsequently the formation of P680 in 

the triplet excited state, which reacts with O2 to form 

the highly toxic singlet oxygen (1O2) (Jung and Kim, 

1990; Krieger-Liszkay et al., 2008) causing acceptor-

side inhibition of PSII electron transport 

(Jegerschoeld et al., 1990; Vass et al., 1992; Aro et al., 

1993; Tyystjärvi and Aro, 1996; Tyystjärvi, 2008). 

 

Donor side photoinhibition 

Water donates electron to P680+ to produce P680 

(So-called donor side). Photo damage to PSII occurs 

by two successive steps: (i) light-dependent 

destruction of the Mn cluster of the oxygen-evolving 

complex which comprises of 4 Mn, one Ca and one Cl 

atom (Tyystjärvi and Aro, 1996; Sauer and 

Yachandra, 2004) and (ii) inactivation of the PSII 

RCs by light (Ohnishi et al., 2005). Water gives 

electron to highly-oxidizing P680+ (Hill, 1939) but 

inhibition of electron donation to the P680 RCs 

expands the lifetime of P680+, which is believed to 

cause donor-side inhibition, deactivation of PSII 

electron transport system and polypeptide damage of 

D1 protein (Callahan et al., 1986; Hakala et al., 2005; 

Ohnishi et al., 2005). Therefore, on the electron 

donor side of PSII, photo-oxidized P680 (P680+) 

oxidizes H2O with the evolution of O2 through the 

help of the oxygen-evolving complex (Tyystjärvi, 

2008; Nathan and Wolfgang, 2015). In addition, the 

low pH in the lumen of thylakoid membrane suppresses 

the electron transport from H2O to P680 in PSII 

(Krieger-Liszkay, 2005). Thus, the long-lived P680+ 

deactivates WOC seriously. This photoinhibited PSII 

RCs are continuously restored via degradation and 

synthesis of the D1 protein within several hours 

(Yokthongwattana and Melis, 2008; Kok, 1956) (Fig. 7). 

 

 

Fig. 7. Rebuilt the photosynthetic reaction center of 

PSII via degradation and synthesis of the D1 protein. 

 

Photo inhibition to PSI occurs when the supply of 

electrons from PSII exceeds its capacity (Tikkanen 

and Grebe, 2018; Shimakawa and Miyake, 2018) that 

makes a dysfunction in the [4Fe–4S] clusters on the 

acceptor side of PSI (Mehler, 1951; Satoh, 1970; Inoue 

et al., 1986; Asada, 2006; Sonoike, 2011; Rutherford 

et al., 2012). PSI photo inhibition scarcely happens in 

comparison with PSII photo inhibition because PSI is 

less frequently damaged due to a very effective photo 

protection mechanism (ROS detoxification system) 

which can avert photo inhibition (Gururani et al., 

2015). But in contrast to PSII, the damaged PSI takes 

a long time (days or weeks) to completely recover 

(Zivcak et al., 2015b). Therefore, PSI photo inhibition 

is a lethal for oxygenic photoautotrophs.  

 

Photo protection  

Plants are fortified with diversified photo protective 

approaches to prevent photo inhibition (Anderson et 

al., 1997; Adams et al., 2005; Jung and Niyogi, 2008; 

Bailey and Grossman, 2008; Johnson et al., 2011.). 

First of all, plants can protect themselves from excess 

light by avoiding absorption of the light. Plants use 

varied photo receptors to detect the light intensity, 

direction and duration that have capability to shift 

chloroplasts within the cell (chloroplast avoidance) 

and reduce antenna size (antenna size reduction) 
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from the surplus light thus reducing the detrimental 

consequences (Galvão and Fankhauser, 2015). 

Second, plants can lessen the amount of absorbed 

energy by thermal dissipation (NPQ) through 

xanthophyll cycle or VAZ pathway (Horton and 

Ruban, 2005; Müller et al., 2001). Third, plants 

transfer electrons through alternative pathways 

(other than CO2) to alleviate excitation pressure 

(Asada, 1999; Ort, 2001). Fourth, plants have 

antioxidants (Table 1) defense system to detoxify ROS 

(Bartley and Scolnik, 1995; Smirnoff, 2000; Zheng et 

al., 2019; Tahjib-Ul-Arif et al., 2020) and fifth, plants 

produce a diversity of secondary metabolites 

favorable for their survival and protection from excess 

light (Zheng et al., 2019).  

 

Dark reaction 

Light is not obligatory for the accomplishment of dark 

reaction. The NADPH and ATP which are generated 

by light reaction consumed at dark reaction to reduce 

CO2 to CH2O via a series of biochemical reactions 

such as (i) carboxylation, during which CO2 is allied 

to ribulose 1,5 bisphosphate; (ii) reduction, during 

which carbohydrate is formed with the cost of the 

photo chemically derived ATP and NADPH; and (iii) 

regeneration, which re-forms ribulose1,5-

bisphosphate as further CO2 receiver (Calvin and 

Benson, 1948; Bassham et al., 1950). 

  

 

Fig. 8. Dark reaction or Calvin cycle or C3 cycle. 

 

C3 photosynthesis and photorespiration 

Competitive inhibition of carboxylase activity of 

RuBisCO leads to enhance its oxygenase activity (Fig. 

9), which is known as photorespiration (Sharkey, 

1988; Chen and Spreitzer, 1992; Griffiths, 2006; 

Leegood, 2007; Jones et al., 2013). Actually, 

photorespiration reduces the efficiency of CO2 

assimilation and thus yield of C3 plants such as rice, 

wheat, soybean, potato etc. In C3 plants, both the C3 

(Photosynthetic Carbon Reduction) and C2 

(Photosynthetic Carbon Oxidation) cycle occurs in 

mesophyll cells during day time. Inhibition of 

carboxylase activity of RuBisCO generates 1 molecule 

of phosphoglycolate (PG=2C; the C2 cycle) and 1 

molecule of PGA (3C) (Igamberdiev, 2015). This 

chloroplastic PG converts to glyoxylate by oxidation 

in peroxisomes and finally it converts into glycine 

(Wingler et al., 1999; Eisenhut et al., 2008; South et 

al., 2019). In mitochondria, 2 molecule of glycine (2 x 

2C) is converted to 1 molecule of serine (3C) by 

liberating CO2 and NH3 (Sharkey, 1988; 

Rachmilevitch et al., 2004). By this process 25% 

assimilatory carbons are lost and consequently 

remarkable yield loss observe in C3 plants (Griffiths, 

2006; Leegood, 2007; Jones et al., 2013). 

 

 

Fig. 9. Competitive inhibition of CO2 fixation and 

photorespiration. 

 

The photo respiratory NH3 is lethal for plants and it 

essentials to be detoxified or re-assimilated for plant’s 

survival (Rachmilevitch et al., 2004). In plants 

glutamine synthetase-glutamate synthase (GS-GOGAT) 

mediated cycle (Fig. 10) is accountable for the 

detoxification or re-assimilation of photo respiratory 

NH3 (Miflin and Lea, 1976; Hossain et al., 2012). 

  

 

Fig. 10. Re-assimilation of photorespiratory NH3 by 

GS-GOGAT cycle. 
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C4 Photosynthesis 

Photorespiration occurs when plants take O2 and 

release CO2 instead of taking CO2 and releasing O2 

(Sharkey, 1988; Griffiths, 2006; Jones et al., 2013). 

To escape photorespiration, C4 plants (maize, millet, 

sugarcane, sorghum) evolve a special CO2 fixation 

mechanism (von Caemmerer and Furbank, 2003; 

Sage, 2004; von Caemmerer et al., 2017; Schluter and 

Weber, 2020). In C4 plants RuBisCO activity occurs in 

bundle sheath cells instead of mesophyll cells which 

are familiar as Kranz anatomy (Ehleringer et al., 1991; 

Sage and Sage, 2009; Hermida Carrera et al., 2016; 

Bellasio and Lundgren, 2016) (Fig. 11a and b). 

Therefore, RuBisCO continuously gets high 

concentrated or metabolic CO2 that ensures its 

carboxylase activity, therefore higher yield. 

Alternatively oxygenase activity of RuBisCO is 

suppressed so there is negligible or no 

photorespiration in C4 plants (von Caemmerer and 

Furbank, 2003). That is why, C4 species are more 

efficient at carbon assimilation than C3 species, and in 

addition they present high water use efficiency, better 

nitrogen use efficiency, extreme temperature 

tolerance and increased yield (Evans et al., 2008; 

Hibberd et al., 2008; Kellogg, 2013; Bellasio, 2017). 

 

 

Fig. 11. (a) Kranz anatomy in C4 plants and (b) 

mechanism to avoid photorespiration in C4 plants. 

Crassulacean acid metabolism (CAM) Photosynthesis 

An exceptional pathway for carbon reduction is 

evolved in arid plants which are known as CAM 

(Bonner and Bonner, 1948; Ting, 1985; Bastide et al., 

1993; Cushman, 2001). CAM plant opens its stomata 

at night and closes during day. This adjustment helps 

the CAM plants to conserve moisture during the day 

time (Chu et al., 1990; Ranson and Thomas, 1960; 

Lüttge, 2004; Forseth, 2010). At night, CAM plants 

take CO2 through open stomata and fix CO2 the 

similar way as C4 plants do but they store the malic 

acid (malate) in vacuole (Fioretto and Alfani, 1988; 

Keeley, 1998; Keeley and Rundel, 2003; Martin et al., 

2005;). During day time, CAM plants use that malate 

as their source of CO2 for Calvin cycle (Bonner and 

Bonner, 1948; Guralnick and Jackson, 2001; Lüttge, 

2004; Forseth, 2010; Hultine et al., 2019).  

  

 

Fig. 12. Mechanism for avoiding transpiration in 

CAM plants. 

 

Competition among the alternative sinks during 

carbon reaction 

Photosynthetic carbon metabolism provides the 

foremost sink for NADPH and ATP produced in light 

reaction (Tommos and Babcock, 1999; Asada, 1999, 

2000; Haldrup et al., 2001; Allen and Forsberg, 2001; 

Blankenship, 2002; Raven et al., 2005; Ziehe et al., 

2018; Onge, 2018). On the other hand CO2 is the 

major sink for electrons mainly in the linear electron 

transport system (Calvin and Benson, 1948; Bassham 

et al., 1950; Badger and Price, 2003). But, this route 

is highly competitive since there are some alternative 

acceptors/routes of electron. Generally, in plants 

there are three major alternative routes of electron 

such as (i) Mehler-type O2 reduction at the acceptor 

side of PSI, followed by ascorbate peroxidase reaction 
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(pseudocyclic electron transport/water–water cycle) 

(Mehler, 1951; Fryer et al., 1998; Asada, 1999, 2000; 

Clarke and Johnson, 2001; Polash et al., 2019); (ii) 

nitrite reduction which might consume up to about 

one tenth of the number of quanta used in 

photosynthetic C-metabolism (Guerrero et al., 1981; 

Robinson, 1988, 1990); and (iii) the ‘malate valve’ 

that plays an significant role as a poising mechanism 

to adjust the ATP/NADPH ratio in the stroma 

(Ebbighausen et al., 1987; Heineke et al., 1991; 

Fridlyand et al., 1998; Scheibe et al., 2005; Selinski 

and Scheibe, 2019). 

 

 

 

Fig. 13. (a) Mehler-type O2 reduction at PSI, 

followed by (b) ascorbate-gultathion cycle, (c) nitrite 

reduction and (d) malate valve.  

 

Chloroplastic Antioxidants 

Chloroplast is one of the most potential generators of 

Reactive Oxygen Species (ROS), such as O2
•–, H2O2, 

•OH and 1O2 (Asada, 2000; Muller et al., 2001; Jung 

and Niyogi, 2008). To minimize oxidative damage 

carried out by ROS, chloroplast is naturally equipped 

with antioxidant defense systems.  

 

Table 1. Role of chloroplastic antioxidants to reduce the oxidative damage carried out by ROS. 

SL Antioxidant Roles References 

1 Catotenoides i. Light harvesting via singlet state energy transfer 
ii. Photo protection via the quenching of chlorophyll (3Chl) 
triplet states 
iii. Singlet oxygen scavenging 
iv. Excess energy dissipation 
v. Structure stabilization 

Frank and Cogdell, 1993; Frank and 
Cogdell, 1996: Baroli and Niyogi, 
2000; Cazzaniga et al., 2016 

2 Tocopherols i. Scavenge singlet oxygen (1O2) Fryer, 1992; Niyogi, 1999; Munne-
Bosch and Alegre, 2002; Foyer et al., 
2008  

3 Ascorbate-
peroxidase (APXs) 

i. It can remove ROS directly by acting as a cofactor of 
ascorbate peroxidases in the elimination of H2O2  

ii. It also acts as a cofactor of violaxanthin de-epoxidase in 
the xanthophyll cycle 

Smirnoff, 2000, Conklin, 2001; 
Muller-Moule et al., 2002; Tahjib-Ul-
Arif et al., 2019 

4 Superoxide 
dismutase (SOD) 

i. SOD commences the process of ROS detoxification by 
converting super oxide to hydrogen peroxide 

Alscher et al., 2002, Jalali-e-Emam 
et al., 2011; Sohag et al., 2020  

5 Catalase (CAT) i. CAT converts hydrogen peroxide into oxygen and water to 
remove the peroxide in plants  

Tahjib-Ul-Arif et al., 2019; Tahjib-Ul-
Arif et al., 2020  

6 Glutathion i. in the absence of an enzyme, glutathione is able to interact 
rapidly with free radicals such as superoxide and the 
hydroxyl radical 
 

Alscher, 1989; Noctor and Foyer, 
1998; Polle, 2001; Foyer et al., 2005 

7 Anthocyanin i. Photo protection  
ii. ROS detoxificarion 

Zheng et al., 2019 
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Fig. 14. Antioxidant regulation in chloroplast for the 

detoxification of ROS. 

 
C4 rice development through modification of 

photosynthesis  

The C4 rice consortium is attempting to fix a maize-like 

photosynthetic pathway to overcome its yield barrier 

and to introduce “climate-smart” rice which will yield 

more under rising temperature and decreasing water 

availability (Rizal et al., 2012; von Caemmerer et al., 

2012; Bellasio, 2017; Wang et al., 2017; Ermakova et 

al., 2020). ‘C4’characters into rice is anticipated to 

increase around 50% photosynthetic efficiency, 

improve nitrogen and water use efficiency (von 

Caemmerer et al., 2012; Bellasio and Farquhar, 2019).  

 
Evolutionary change 

C3 species + anatomical change + biochemical change 

+ fine tuning = C4 species 

 
Anatomical Change 

Development of Kranz anatomy 

Improve the number and size of chloroplast in bundle 

sheath cells of rice leaf (Matsuoka et al., 1994; 

Nomura et al., 2005; Wang et al., 2013; Wang et al., 

2016; Reeves et al., 2017; Sedelnikova et al., 2018; 

Lin et al., 2020). 

 
Alternation of metabolism 

In addition to the core C4 enzymes viz. CA, PEPC, 

PPDK, NADP-MDH and NADP-ME, C4 pathway also 

needs enclosure of metabolite transporters for 

oxaloacetate, malate, triosephosphate and pyruvate to 

give increased transport capacity for the C4 cycle 

intermediates so that the Calvin cycle can role 

efficiently (Chen et al., 2001; Weber and von. 

Caemmerer, 2010; Danila et al., 2018). 

 
Biochemical Change 

Single-cell model or mesophyll cells only 

Decreasing in expression of CA in chloroplast and 

GDC (glycine decarboxylase) assist to reduce 

photorespiration. It is predicted that single cell C4 

system could be faster to install in C3 plants (Miyao et 

al., 2011). To introduce single cell C4–like pathway, 

mesophyll cells is made to capture and release CO2 in 

the manner that takes place in Hydrilla verticillata 

(Ku et al., 1999; Fukayama et al., 2001; Tsuchida et 

al., 2001; Taniguchi et al., 2008).  

 

Sage and Sage, (2009) revealed that chlorenchyma 

structure in rice and related Oryza species has 

adaptation to scavenge photo-respired CO2 and to 

enhance the diffusive conductance of CO2.  

 

Double-cell model 

Double cell model involves the alteration in 

mesophyll cells by (i) decreasing the activity of Calvin 

cycle and photorespiration, (ii) demoting the 

expression of RuBisCO and GDC (iii) stimulating the 

expression of CA, PEPC in cytosol and PPDK, NADP-

MDH in chloroplast and in Bundle sheath cells by (i) 

introducing of Calvin cycle activity, (ii) stimulating 

the expression of RuBisCO, GDC, PEP-CK, NADP-ME 

(Monson and Rawsthorne, 2000; Häusler et al., 

2002; Danila et al., 2018). 

 

Metabolic Engineering and Omic approach for C4 

rice development 

It implies development of mechanism that fruitfully 

capture the photo-respired CO2 to the site of 

photosynthesis by transferring the Escherichia coli 

glycolate catabolic pathway to chloroplasts in which 

glycolate in chloroplast expects to convert glycerate 

directly (Matsuoka et al., 2001; Kebeish et al., 2007; 

Furbank et al., 2009). However, it could be a question 

that does the use of bacterial gene is apt for C4 rice 

engineering. Characterization of specific transporters 

such as OMT1 (2-oxoglutarate/malate transporter), 

DiT2 (dicarboxylate transporter 2), PPT1 

(PEP/phosphate transporter), MEP (mesophyll 

envelop protein), TPT (triose-phosphate phosphate 

translocator) through proteomics in maize bundle 

sheath and mesophyll cells and then transfer into rice 

variety will assist in C4 rice development (Hibberd et 

al., 2008; Hudson et al., 2013; Lyu et al., 2020, 

Zamani-Nour et al., 2020). 
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Conclusion 

The low yield of C3 plants are partly related to an 

alteration in the nitrogen supply especially through 

the grain filling period, early senescence of leaves and 

inherent inadequacy of C3 photosynthesis. Therefore, 

introductions of C4 traits into C3 rice will break the 

current stagnation by boosting up the photosynthetic 

proficiency along with increasing nitrogen and water 

use efficiency. Hence, evolving the C4 pathway into a 

C3 rice plant needs perfect understanding on the 

fundamental aspects of photosynthetic machinery 

and its regulation for efficient manipulation of 

anatomical, physiological and biochemical traits.  
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