

International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print), 2222-5234 (Online) http://www.innspub.net Vol. 21, No. 5, p. 100-136, 2022

OPEN ACCESS

Ethnobotanical study of medicinal plants traditionally used in the treatment of sexual dysfunctions in Benin

Ismaël Akossibe Batcho^{*1}, Eben-Ezer Baba Kayodé Ewédjè¹, Richard Menson Somanin¹, Paul Ezin Ogan¹, Hounnankpon Yédomonhan², Aristide Cossi Adomou²

¹Laboratory of Botany, Applied Plant Ecology and Forest Genetics, Ecole Nationale Supérieure des Biosciences et Biotechnologies Appliquées ENSBBA-Dassa-Zoumé, BP 14, Dassa-Zoumé, Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques UNSTIM-Abomey, Benin

²Laboratory of Botany and Plant Ecology, Department of Plant Biology, Faculté des Sciences et Techniques, Université d'Abomey-Calavi (UAC), 01 BP 4521 Cotonou, Benin

Key words: Aphrodisiac plants, Erectile dysfunction, Endogenous knowledge, Sexual dysfunction, Benin

http://dx.doi.org/10.12692/ijb/21.5.100-136 Article published on November 10, 2022

Abstract

Sexual dysfunction or sexual disorder is a serious medical condition that affects both men and women. It has a strong impact on the patient's life quality and can threaten the stability of the couple's relationship. However, side effects of synthetic molecules, poverty and illiteracy give a new impetus to natural products, such as traditional herbs, that produce aphrodisiac effects for sexual enhancement. This study was carried out to document medicinal plants and recipes used against sexual dysfunctions in Benin. Data were collected using ethnobotanical and market surveys from 272 informants followed by observations. A total of 148 aphrodisiac plant species belonging to 133 genera from 64 plant families were recorded. Aphrodisiac plant species were mainly herbs (31.08%) and tree (27.70%) mostly represented by Fabaceae (13.51%). 64 of them have previously been evaluated scientifically while 37 aphrodisiac plants were reported for the first time. 33 plant species were the most commonly used. Aphrodisiac plant parts root (31.92%) and leaves (20.19%) were mostly used for 324 recipes to treat seven (7) ailments of which the common was sexual weakness (86.40%). The maceration (38.72%), powder (29.79%) and oral route (92.92%) were the main galenic forms and the main mode of administration, respectively. The findings will serve as a reference for the selection of plants for further pharmacological, toxicological, and phytochemical investigations in developing new plant-based drugs used for the treatment of sexual dysfunctions.

* Corresponding Author: Ismaël Akossibe Batcho 🖂 ismaelbatcho@gmail.com

Introduction

It is now well-recognized that sexual health is important to overall health and well-being (Kassier et al., 2013). The Global Better Sex Survey (GBSS) reports the sexual needs and desires of men and women worldwide (Mulhal et al., 2008). For both, satisfaction with different aspects of sex is important and strongly associated with satisfaction of general health, relationships and other aspects of wellbeing (Dean et al., 2013). Thus, sexual dysfunction or sexual disorder is a serious medical condition that affects both men and women and can be caused by physiological or psychological factors (Ajao et al., 2019). According to Gupta et al., (2019), there are three basic types of sexual dysfunction; disorders of desire which takes the form of inadequate sexual desire (libido) in both sexes, disorders of excitement (or arousal) in men (impotence) and disorders of orgasm includes difficulty achieving orgasm in both men and women but more common among men.

Erectile dysfunction (ED) is still a major problem in many couples around the world in general and in sub-Saharan Africa in particular; it represents a serious problem of public health (Ipona *et al.,* 2018). Worldwide, an estimated 150 million men suffer from ED (Togola *et al.,* 2020).

This is expected to double by 2025 and the majority of cases will be recorded in the African population (Yovwin et al., 2015). ED affects potentially men who tend to be 50 years old (Ipona et al., 2018). Young men also have high prevalence rates for maintaining or developing sexual dysfunction over time (Akre et al., 2014). For women, low or absent sexual desire is the most common sexual disorder and its prevalence peaks during midlife (Kingsberg and Woodard, 2015). Many treatments with synthetic molecules are currently available to alleviate these disorders, but they create serious undesirable side effects. For example, acute secondary effects of sildenafil (Viagra), a first-line pharmacotherapy for erectile dysfunction (ED), include headache, heartburn, skin flush, and vision changes (Karaarslan, 2020; Demoze et al., 2021).

In addition, factors such as poverty and illiteracy still militate against the availability and accessibility of conventional medical services (Wood *et al.*, 2011). As a result, individuals turn to natural products, such as traditional herbs, that produce aphrodisiac effects for sexual enhancement (Abudayyak *et al.*, 2015). The term aphrodisiac is derived from Greek mythology, where Aphrodite was the goddess of love and beauty (Babu *et al.*, 2017). An aphrodisiac is described as any substance (food or drug) that arouses the sexual instinct, induces venereal desire and increases pleasure and performance (Malviya *et al.*, 2011).

There is no older therapy and effective than medicinal plants to improve human sexuality (Strasbourg, 2008). Medicinal plants have historically proven their value as a source of molecules with therapeutic potential, and nowadays still represent an important pool for the identification of novel drug leads (Atanasov *et al., 2015*).

It is therefore necessary to undertake investigations on the use of natural aphrodisiacs.

Benin Republic is rich in around 2807 plant species (Akoègninou *et al.*, 2006); however, to date, a few was documented as possessing aphrodisiac properties (Gbankoto *et al.*, 2015; Gbesso *et al.*, 2016). No scientific studies are focusing on ancestral knowledge of aphrodisiac plants although used by all classes of age.

The present study aimed at filling this gap and documenting endogenous knowledge relating to the flora and recipes of plants used as aphrodisiacs in Benin.

Materials and methods

Study area

The study was conducted in the Republic of Benin, located in West Africa between $6^{\circ}15'-12^{\circ}25'N$ and $0^{\circ}40-3^{\circ}55'E$ (Fig. 1). It covers a total area of 114,763 km2 with a population estimated at 10,008,749 inhabitants (INSAE, 2016). The climate of Benin is hot and humid (Ahokpossi, 2018).

Fig. 1. Location of the survey sites.

The southern part of the country has a subequatorial climate with two rain seasons and two dry seasons. Annual mean temperature ranges from 26 to 28° C and annual rainfall varies between 800 to 1400 mm (Yabi and Afouda, 2012). The northern section is characterized by a truly Sudanian climate with a unimodal rainfall regime. The mean annual rainfall is less than 1000 mm and the temperature mean is 27.5°C (Gnanglè *et al.*, 2011). Central Benin is characterized by a Sudano-Guinean climate with unimodal rainfall from May to October, and an annual total rainfall varying between 900 and 1100 mm (Gnanglè *et al.*, 2011). The vegetation mainly

consists of savannahs, grasslands, farmlands, and fallows intermingled with small islands of closed forest (semi-deciduous forest and swamp forest) and the patchwork of woodlands (Adomou, 2005).

They are the source of aphrodisiac plants for people. The main ethnic groups are: Adja and related, Fon and related, Yoruba and related, Bariba and related, Dendi and related, Otamari and related, Yoa Lokpa and related and Peulh and related (INSAE, 2017). Human activities are mainly agriculture and trade. Others such as farming, market gardening fishing, crafts and tourism are also done.

Sampling

Sites surveyed were chosen based on the major sociolinguistic groups in each district and the presence of particular people such as traditional healers, polygamists (considered as the main users of aphrodisiac plants), herb sellers, hunters and farmers who had more experience with aphrodisiac plants. Considering these two fundamental criteria, sixty-one (61) villages and eighteen (18) markets were selected in the three climatic zones after the exploratory survey. The sample size of the informants in each climatic zone was determined according to the formula of Dagnelie (Dagnelie, 1998): $\mathbf{n} = U_{1-\alpha_{/2}}^2 \times p(1-p)/d^2$ where, n is the sample size of surveyed people considered in each region; $U_{1-a_{1/2}}^2$ is the value of the normal random variable for a probability value of $\alpha = 0.05$, $U_{1-\alpha_{1/2}} = 1.96$; p is the proportion of people who knew and already had used at least one aphrodisiac plant and d is the expected error margin of any parameter to be computed from the survey, which was fixed at 0.08. Under those assumptions, the sample size (n) is equal to 57; 165 and 50 informants respectively in Guinean, Sudano-Guinean and Sudanian zones. Thus, a total of 272 informants were surveyed throughout the study area. The "snowball" method (Johnston and Sabin, 2010) was used to identify the majority of people surveyed per village. However, people were reticence and that lead to a bit number of informants in some villages. Sellers of medicinal herbs surveyed in markets were selected based on two criteria which are the greatest number of medicinal plant parts sold (Ambé et al., 2015) and the presence of aphrodisiac plant parts in their display.

Ethnobotanical data collection

Data were collected using ethnobotanical and market surveys followed by direct observations of aphrodisiac plants in their habitat. Individual interviews technique using a questionnaire was applied (Albuquerque *et al.*, 2014). In each village, interviews were conducted with the help of a local translator at the informant's house. Firstly, permission was obtained from local authorities. Data collection included socio-demographic characteristics (social attributes, age, gender, ethnic group, religion, main activity, marital status, etc.), perception of informants on aphrodisiac plants in general (local designations and their meaning, gender which use them, sexual dysfunctions treated and causes) and aphrodisiac recipes (vernacular names of plants, parts used, associated ingredients, diseases treated, mode of remedy preparation and administration). Market data were related to aphrodisiac plants sold (inventory, used, preparation parts methods, and posology). Through the market survey, the interview was followed by aphrodisiac plant parts purchasing that are placed in a herbarium.

Plant identification

After interviews, preliminary identification of the plants was done in the field with help of traditional healers, hunters or medicinal plants collectors, combining the use of botanical books such as "Flore du Bénin" (De Souza, 2008), "Les nouveaux ordres (Utilités des des Angiospermes espèces)" (Akoègninou et al., 2011), "Flore Analytique du Bénin" (Akoègninou et al., 2011), and "Guide des adventices d'Afrique de l'Ouest" (Akobundu and Agyakwa, 1989). Afterward, herbarium specimens were prepared and photographs were taken to confirm identification at the Laboratory of Botany, Applied Plant Ecology and Forest Genetics (ENSBBA of Dassa-Zoumé) and in the National Herbarium of Benin (University of Abomey-Calavi).

Data analysis

Plant diversity and citation

Ethnobotanical and market survey data were analyzed through descriptive statistical as frequency and mean (±sd). Results are presented through tables and figures. The diversity of aphrodisiac plants used was appreciated based on the species richness. Thus, Shannon-Weaver Diversity Index (Dajoz, 1985) was determined to assess the specific diversity level of these plants in the study area. Its formula is: $H' = -\sum (ni/N) \log_2 (ni/N)$ with ni = number of aphrodisiac plants identified in zone i and N = total number of aphrodisiac plants recorded throughout the study area. The plant families importance value (FIV) was calculated for each family, using the formula

$FIV = \frac{FC(Family)}{N} \times 100$

where FC is the number of informants mentioning the family, N is the total number of informants involved in the study (Napagoda *et al.*, 2018). We applied the Relative Frequency of Citation (RFC) according to Pardo de Santayana, (2008) to evaluate the importance of each species. RFC (%) = $\frac{FG}{N} \times 100$ with FC: number of people having quoted the species; and N: total number of interviewed people.

We explored the similarity of plant knowledge among climatic zones using Jaccard Similarity Index (Jaccard, 1908) as:

 $SJ = N_{XY} / [(N_X + N_Y) - N_{XY}]$ with N_x = number of species present in zone x, N_y =number of species present in zone y and N_{xy} the number of species shared by the two zones. This allowed us to calculate the similarity rate between two climatic zones (SJ x 100).

Informants' agreement on aphrodisiac plants recipes used

The Informant Consensus Factor (ICF) was calculated for each sexual dysfunction treated to identify the agreement level of informants on the reported cures; ICF = Nuc - Ns/Nuc - 1 with Nuc as the number of use citations in each category and Ns the number of species (Houéhanou et al., 2016). Moreover, the Fidelity Level (FL) (Houéhanou et al., 2016) were also determined to assess fidelity allocated to the use of each species in sexual disorders treatment. FL=Fc/Ft × 100 where Fc is the frequency of species citation for a particular ailment and Ft is the total number of species citations.

Commonly used species selecting

Priority aphrodisiac plants were selected based on the values of frequency species citation (FC) and the contribution of each plant in the formulation of the recipes (Cpr). An aphrodisiac plant is considered as a priority if it has been cited at least by ten (10) informants and involved in five (05) recipes at least (FC \geq 10 and Cpr \geq 1.55).

The Cpr was calculated by the formula: $Cpr = \frac{Nr}{Nt} \times 100$

where *Nr* is the number of recipes implicating the plant and *Nt* the total number of recipes.

Credible recipes selecting

The recipes frequency (Fr) value allowed the identification of credible recipes for each sexual dysfunction treated. So, credible recipes are those with the highest Fr value. It is calculated by the following formula: $Fr = \frac{N cr}{N} \times 100$ where Ncr is the number of one recipe citations treating a given sexual dysfunction and N the total number of all the recipes citations treating this disorder.

Effects of demographic factors on knowledge of informants

The effect of gender, age, occupation, marital status, education level and climatic zone on the number of aphrodisiac plants cited was evaluated using t-test, Wilcoxon test, one-way ANOVA test and Kruskal-Wallis test depending on the distribution of the data set. Statistical tests were carried out in the R statistical software, version 2.2.1 (http://www.Rproject.org/)

Ecological data processing

Ethnobotanical data were completed followed by ecological information such as the growth form of each aphrodisiac plant (herb, climber, shrub, or tree) and their status (cultivated, agrosystem, or Spontaneous) in the Benin area.

Results and discussions

Socioeconomic Background of the respondents

The socioeconomic profile of the respondents is provided in Table 1. A total of 272 people were interviewed. Most of them were men (88.60%) aged 30-59 years (65.07%). They belong to 22 ethnic

groups with the predominance of Idaatcha (14.71% of respondents), Mahi (14.34% of respondents), Bariba (11.76% of respondents), Fon (11.76% of respondents) and Nago (6.25% of respondents). Respondents were mostly traditional healers (35.66% of respondents) and farmers (25% of respondents) who live mainly with two (02) wives at least (56.43% of respondents).

Diversity of aphrodisiac plant species used in the Republic of Benin

Informants reported a total of 148 aphrodisiac plant species belonging to 133 genera from 64 plant families (Table 2). This recorded is very high and important as revealed by the Shannon-Weaver Diversity Index value (H'=1.39 bits; 0.5 <H' <4.5) and also when compared to those obtained by similar studies in neighboring countries such as the Democratic Republic of Congo (40 species, Ipona *et* *al.*, 2018), Mali (16 species, Togola *et al.*, 2020), Nigeria (24 species, Faleyimu and Oso, 2012), Morocco (118 species, Talaa, 2009) and Uganda (33 species, Kamatenesi-Mugisha, and Oryem-Origa, 2005). The high diversity of aphrodisiac plants recorded confirms the importance of endogenous knowledge for human health care and suggests that the flora of the study area is rich in aphrodisiac plant species. Of the 148 reported plant species, 122, 74 and 65 were cited in Sudano-Guinean, Sudanian and Guinean climatic zone respectively.

The similarity index was relatively high between Sudano-Guinean and Sudanian zone (SJ=43.07%) and between Sudano-Guinean and Guinean zones (SJ=40.60%) while it was 37.62% between climatic zones Sudanian and Guinean.

Parameter	Characteristics	Number	Percentage (%)	
Gender	Male	241	88.60	
	Female	31	11.40	
	Total	272	100	
Age	20-29	31	11.40	
	30-59	177	65.07	
	≥60	64	23.53	
	Total	272	100	
Marital status	Polygamists	136	56.43	
	Monogamous	86	35.68	
	Single	14	5.81	
	Widower	5	2.07	
	Total	241	100	
1Education level	Illiterates	86	31.62	
	Primary level	65	23.9	
	Secondary level	61	22.43	
	High level	39	14.34	
	literates	21	7.72	
	Total	272	100	
Occupation	Traditional healers	97	35.66	
	Farmers	68	25.00	
	Public servants	34	12.50	
	Craftsmen	26	9.56	
	Herb sellers	24	8.82	
	Traders	10	3.68	
	Students	7	2.57	
	Hunters	6	2.21	
	Total	272	100	
Source of medicinal nowledge	Family members	186	68.38	
	Friends	43	15.81	
	Media/Books	29	10.66	
	Spiritual intuitions	14	5.15	
	Total	272	100	

Furthermore, the most represented plant family was Fabaceae including 20 species (13.51%) followed by Euphorbiaceae (10 species, 6.76%), Malvaceae (7 species, 4.73%) and Poaceae (6 species, 4.05%) (Fig. 2). Thirty-four (34) plant families (22.97%) were relatively less represented (1 species). The plant family importance value was high in Fabaceae (55.88%), Arecaceae (33.46%), Euphorbiaceae (22.79%), Annonaceae (22.43%), Musaceae (19.85%) and Clusiaceae (16.91).

Table 2.	List of aphrodisia	c plants species	use in Benin,	their growth for	rms, used parts and	previous citations.
----------	--------------------	------------------	---------------	------------------	---------------------	---------------------

Botanical name	Family	Vernacular	Growth	Status	Used	Traditional	FC	RFC	Previous citations
		names	forms		parts	uses		(%)	
Abelmoschus esculentus	Malvaceae	Févi (Fo), Ila	Herb	Cultivated	Fruits	SW, LS	3	1.10	Gupta <i>et al.,</i> , 2019;
(L.) Moench**		(Id)							Elkhalifa <i>et al.,</i> 2021
Abrus precatorius L.**+	Fabaceae	Viviman (Fo),	Climber	Spontaneous	Leafy	SW, EE, LS,	12	4.41	Gupta <i>et al.,</i> 2019;
		Odjou êga			stems	LL			Garaniya & Bapodra
		(Id)							2014
Acacia nilotica (L.)	Fabaceae	Bani (Ba),	Tree	Agrosystem	Seeds	V	1	0.37	Gupta <i>et al.,</i> 2019
Willd. ex Delile		Nep Nep (Fr)							
ssp. adstringens									
(Schumach. & Thonn.)									
Roberty**									
Acacia polyacantha	Fabaceae	Egui èdè	Tree	Spontaneous		LS	1	0.37	No records
Willd. ssp.		(Na), Boko-							
campylacantha (Hochst.		saka (Ba)			Latex				
ex A.Rich.)									
Brenan*									
Acridocarpus	Malpighiaceae	Gbanguinan	Tree	Spontaneous	Roots	SW, EE	21	7.72	Kale <i>et al.,</i> 2018
smeathmannii (DC.)		(Fo)							
Guill. & Perr.***+									
Adansonia digitata L.*	Bombacaceae	Sonnan (Ba)	Tree	Agrosystem	Barks,	SW, EE, RP	5	1.84	No records
		Egui otché			Fruits,				
		(Id)			Peduncle				
Aframomum melegueta	Zingiberaceae	Atakoun (Fo)	Herb	Cultivated	Fruits,	SW, EE, LS, I	33	12.13	Mbongue <i>et al.,</i> 2012
(Roscoe) K. Schum.***+		Iro guirou			Seeds				
		(Ba)							
Allium cepa L.***+	Alliaceae	Ayoma (Fo),	Herb	Cultivated	Bulbs	SW, EE, RP	14	5.15	Adeyemi et al., 2017
		Mansa (Id)							
Allium sativum L.***	Alliaceae	Ayo (Fo), Ail	Herb	Cultivated	Bulbs	SW, EE, LS	9	3.31	Adeyemi et al., 2017
		(Fr)							
Aloe vera (L.) Burm.	Asphodelaceae	Aloès (Fr)	Herb	Cultivated	Leaves	SW	4	1.47	Jadhav <i>et al.,</i> 2020
f.***									
Amaranthus spinosus	Amaranthaceae	Tètè ounon	Herb	Spontaneous	Roots	SW	1	0.37	Gupta <i>et al.,</i> 2019 ;
L.**		(Fo)							Abid <i>et al.,</i> 2017
Ananas comosus (L.)	Bromeliaceae	Ananas (Fr)	Herb	Cultivated	Fruits	SW	1	0.37	MacDonald et al.,
Merr.**									2016
Annona senegalensis	Annonaceae	Gniglo (Fo),	Shrub	Spontaneous	Leaves,	SW, LS	18	6.62	Togola <i>et al.,</i> 2020
Pers.**+		Otribobo			Roots				
		(Id),							
		Bahtokor							
		(Ba),							
		Winrébou							
		(Wa),							
		Nanmoubou							
		(Nt)							
Anogeissus leiocarpa	Combretaceae	Hlihontin	Tree	Spontaneous	Roots	SW, EE	3	1.10	Ademosun <i>et al.,</i> 2019
(DC.) Guill. & Perr.***		(F), Fiébou		/Agrosystem					
		(Nt), Kagara							

		(Ba)							
Anthocleista vogelii	Loganiaceae	Klotohou	Tree	Spontaneous	Roots	SW	2	0.74	No records
Planch.*		(Lo), Akpa							
		odo (Na)							
Arachis hypogea L.**	Fabaceae	Aziin (Fo),	Herb	Cultivated	Seeds	SW, I	2	0.74	Gupta <i>et al.,</i> 2019 ;
		Ahorzii (Id)							Togola <i>et al.,</i> 2020
Aristolochia albida	Aristolochiaceae	Kaba tèkè	Climber	Spontaneous	Roots	SW	1	0.37	Gupta <i>et al.,</i> 2019
Duch.**		(Ba)							
Azadirachta indica	Meliaceae	Kininitin	Tree	Cultivated	Leaves	SW	1	0.37	Gupta <i>et al.,</i> 2019
A.Juss.**		(Fo), Neem							
		(Fr)							
Balanites aegyptiaca	Zygophyllaceae	Kpakpakabou	Shrub	Spontaneous	Barks,Ro	SW	1	0.37	No records
(L.) Delile*		(Wa)			ots,Flowe				
					rs				
Bambusa vulgaris	Poaceae	Idawé (Id),	Herb	Spontaneous	Roots	SW	1	0.37	No records
Schrad. ex Wendel*		Bambou (Fr)		/Cultivated					
Boerhavia diffusa L.***	Nyctaginaceae	Gbadjèwin/G	Herb	Spontaneous	Roots	SW, I	1	0.37	Gurav <i>et al.,</i> 2020
		bagbada (Fo)							
Borassus aethiopum	Arecaceae	Agontin (Fo),	Palm	Agrosystem/	Hypocot	SW, EE, I, F	31	11.40	Gbesso <i>et al.,</i> 2016
Mart.***+		Egui Agbon	tree	Cultivated	yl, Roots				
		(Id), Rônier							
		(Fr)							
Bridelia ferruginea	Euphorbiaceae	Egui ira (Id)	Shrub	Spontaneous	Roots,	SW, F	2	0.74	Watcho <i>et al.,</i> 2010
Benth.***					branches				
Caesalpinia bonduc (L.)	Fabaceae	Adjikoun	Shrub	Cultivated	Roots	SW, EE, LS, I	64	23.5	Gbankoto <i>et al.,</i> 2015
Roxb.***+		(Fo), Egui						3	
		adji (Id)							
Calotropis procera	Asclepiadaceae	Amon man	Shrub	Cultivated	Roots	SW	1	0.37	Sumanasinghe et al.,
(Aiton) W.T. Aiton**		(Fo)							2016
Capsicum annuum L.**+	Solanaceae	Tahounbo	Herb	Cultivated	Fruits	SW, I, V	9	3.31	Gupta <i>et al.,</i> 2019
		olobéré (Id),							
		Takii (Fo)							
Carica papaya L.**+	Caricaceae	Aguidi akor	Herb	Cultivated	Roots,	SW, EE, I, V	11	4.04	Gupta <i>et al.,</i> 2019
		(Id; Tch),			Seeds,				
		Papaye tibou			Flowers				
		(Wa)							
Carissa spinarum L.**+	Apocynaceae	Ahanzo (Fo)	Shrub	Spontaneous	Roots,	SW, EE, I	11	4.04	Demoze <i>et al.</i> , 2021
					Barks,				
					Leaves				_
Carpolobia lutea G.	Polygalaceae	Aviatin (Fo),	Shrub	Spontaneous	Roots;	SW, EE, I	16	5.88	Dare <i>et al.,</i> 2015
Don***+		Atchouintcho		/Agrosystem	Stem				
		uin (Ho),		a. 1.1 1					
Cassia sieberiana DC.**	Fabaceae	Agbélékogbar	Tree	Cultivated	Roots,	SW	6	2.21	Gupta <i>et al.,</i> 2019
		oun (Ich);			Latex,				
	Ŧ	Simssan (De)	al: 1		Barks	0111 1 0			
Cassytha filiformis L.***	Lauraceae	Kolakpa	Climber	Spontaneous	Stem	SW, LS	7	2.57	Agbodjento <i>et al.</i> ,
		Kolesse (Na);							2020
		Agbegbekan							
		(F0);							
		(Wa)							
		Wonanhoachi							
		(Nt)							
Ceiba pentandra (L.)	Bombacaceae	Gédéhonsou	Tree	Spontaneous	Barks	SW	1	0.27	Nkouam et al 2017
Gaertn.**	Dompatuccuc	(F).		/Cultivated	Durno	2.11		U.)/	
Sucrem		Fromager		,					

		(Fr)							
Cerathoteca sesamoides Endl.**	Pedaliaceae	Goufounon (An)	Herb	Spontaneous /Cultivated	Leaves	LS	1	0.37	Abubakar <i>et al.,</i> 2020
<i>Cissus populnea</i> Guill. & Perr.***+	Vitaceae	Assankan (Fo), Gborgorlor	Climber	Spontaneous	Stems, Roots	SW, EE, LS	24	8.82	Ojekale <i>et al.,</i> 2015
		(An), Obè ordè (Id), Orlor (Na)							
Cissus quadrangularis L.**	Vitaceae	Assan (Fo)	Climber	Spontaneous	Roots, Stem, Leaves	LS	1	0.37	Gupta <i>et al.,</i> 2019
Citrus aurantifolia (Christm. & Panzer) Swingle**+	Rutaceae	Klétin (Fo), Demounou tiibou (Wa), Nemounou (Ba)	Shrub	Cultivated	Fruits	SW, EE, LS	16	5.88	Enejoh <i>et al.,</i> 2015
Citrus sinensis Osbeck**	Rutaceae	Yovozin (Fo), oranger (Fr)	Tree	Cultivated	Fruits	SW	1	0.37	Jejurkar <i>et al.,</i> 2020
Cocos nucifera L.***+	Arecaceae	Agokintin (Fo), Kpaakpa (Ba), Cocotier (Fr)	Palm tree	Cultivated	Fruits, Roots	SW	20	7.35	Prakash <i>et al.,</i> 2015
Cola acuminata (P. Beauv.) Schott & Endl.***+	Malvaceae	Obi (Id), Vi (Fo)	Tree	Spontaneous /Cultivated	Seeds	SW, EE, LS	17	6.25	Ademiluyi <i>et al.,</i> 2018
<i>Cola nitida</i> (Vent.) Schott. & Endl.***+	Malvaceae	Golotin (Fo), Goro (Id)	Tree	Spontaneous /Cultivated	Barks, Seeds	SW, EE, LS, I	13	4.78	Ademiluyi <i>et al.,</i> 2018
Colocasia esculenta (L.) Schott***	Araceae	Manganri (Id)	Herb	Cultivated	Stem (Tuber)	SW	1	0.37	Ribeiro <i>et al.,</i> 2018
Combretum glutinosum Perr.*	Combretaceae	Mangbèvidé (Fo)	Tree	Spontaneous	Flowers	SW	1	0.37	No records
Combretum micranthum G.Don*	Combretaceae	Vrai kinkéliba (Fr)	Shrub	Spontaneous	Leaves, Roots	SW	4	1.47	No records
Commelina benghalensis L.*	Commelinaceae	olirékou (Id)	Herb	Spontaneous	Roots	SW	1	0.37	No records
Commiphora africana (A.Rich.) Engl.*	Burseraceae	Oridji (Id)	Shrub	Spontaneous /Cultivated	Leaves	SW	1	0.37	No records
Corchorus olitorius L.**	Malvaceae	Yoryor (Id)	Herb	Cultivated	Leaves	SW	1	0.37	Mahajan & Gajare 2012
Crossopteryx febrifuga (G.Don) Benth.**	Rubiaceae	Orgbor/Ayin yin (Na), Bobian (Ba)	Shrub	Spontaneous	Barks, Roots	SW	2	0.74	Valentin <i>et al.,</i> 2020
Ctenium newtonii Hack.*	Poaceae	Koradouré (Wa)	Herb	Spontaneous	Leaves	Ι	1	0.37	No records
Curculigo pilosa (Schum. &Thonn.) Engl.***	Hypoxidaceae	Kôrômi (Ho)	Herb	Spontaneous	Roots (Tuber)	SW, LS	6	2.21	Adefegha <i>et al.,</i> 2018
<i>Cymbopogon citratus</i> (DC.) Stapf***	Poaceae	Tchaman (Fo), éwé ti (Na), Citonnelle (Fr)	Herb	Cultivated	Leaves, Stem	SW, LS, LL	6	2.21	Akpoka <i>et al.,</i> 2019
Cyperus esculentus L ***+	Cyperaceae	Ofio (Id), Fio (Fo), souchet (Fr)	Herb	Cultivated	Stem (Tuber)	SW, EE, LS, I	32	11.76	Allouh <i>et al.,</i> 2015

Arong, *** Normal, ** Benishchin gröngrichen Palaceae Arkhelik Shub Soutanova, Borda, Soutanova, Suutanova, Suutan	Daucus carota L. ssp. sativus (Hoffm.)	Apiaceae	Carotte (Fr)	Herb	Cultivated	Roots (Tubers)	SW	1	0.37	Molkara <i>et al.,</i> 2018
	Arcang.***									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Desmodium gangeticum	Fabaceae	Ayikpéilè	Shrub	Spontaneous	Roots	SW	5	1.84	Gurav <i>et al.,</i> 2020
Demonstration Fabroa Full Fabroa The block Structure	(L.) DC. var. gangeticum***		(Tch)							
(willd.) DC.*** (Fe), sourcempting Koota Deterium microcargum Palsaceae Freide (Urb) Tree Spontaneous branches ER 1 0.37 Renkini & Clement Outscrear durindramu Disservaceaee Aga (R), Climber Spontaneous Stem SW, ER, LS 8 1 0.37 Roncatel & 2012 Disservace durindramu Disservaceaee Lfe (Fr) Climber Spontaneous Stem SW, ER, S 1 0.37 No records Disservace durindramu Disservaceaee Lfe (Fr) Climber Spontaneous Stem SW, ER, S 1 0.37 No records Beach.* Disservaceaee Kikou (Ida) Climber Spontaneous Stem SW, ER, S 1 0.37 No records Bosover andradu Disservaceaee Kikou (Ida) Climber Spontaneous Stem SW 1 0.37 No records Bosover andradu Disservaceaee Kikou (Ida) Climber Spontaneous Stem SW 1 0.37 No records Bosover andradu Disservaceaee Egg (Idg) Palm Climberd Spontaneous Stem SW 1 0.37 Kondod of al. 2009	Desmodium velutinum	Fabaceae	Trèdavor	Herb	Spontaneous	Leaves,	SW, LS	4	1.47	Mafo <i>et al.</i> , 2020
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	(Willd.) DC.***		(Fo),			Roots				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Souannongbi							
Determinitionantic microcorpum Febaceae Iridé (ch) Tree Spontaneous branches EE 1 0.37 Bookini & Clement Discorrea calut L** Discorreaceae Aga (ch) Clinher Spontaneous Stem SW, EE, LS 8 2.94 Dey et al, 2016 Discorrea calut L** Discorreaceae Léf (Fo) Clinher Spontaneous Stem SW, EE, LS 8 2.94 Dey et al, 2016 Discorrea calutionandia Discorreaceae Léf (Fo) Clinher Stem SW, EE, LS 3 1.10 No records Discorrea reactionality Discorreaceae Kokoro (ida) Clinher Cultivated Stem SW 1 0.37 No records Discorrea reactificherris Elemese Wihi (Ba) Tree Spontaneous Stem SW 2 0.47 No records Hotch reactificaritie Elemis printernis Arceaceae Egat (dpi Palm Cultivated (A Flowers, Sw L5.1 17 6.85 Reddy et al. 2019; Hotch a griss ruinersis Arceaceae Egat (dpi Palm Cultivated (A			ni (Ba)							
Discorrea calaba L.** No records Discorrea rotundatia Discorrea calaba L.** Discorrea calaba L.** Caliba C.* Stem Stem SW 1 0.37 No records Discorrea rotundatia Discorrea calaba L.* Wib (Ba) Tree Spontaneous Routs, SW 2 0.74 No records Discorrea rotunda differences Wib (Ba) Tree Spontaneous Routs, SW 1 0.37 No records Discorrea rotunda differences Mull (Pr) Tree Spontaneous Routs, SW 1 0.37	Detarium microcarpum Guill. & Perr.**	Fabaceae	Irédé (Ich)	Tree	Spontaneous	branches	EE	1	0.37	Borokini & Clement 2012
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Dioscorea alata L.**	Dioscoreaceae	Aga (Id),	Climber	Spontaneous	Stem	SW, EE, LS	8	2.94	Dey <i>et al.</i> , 2016
Discorea dumetorum Discorea came Lefe (Fo) Climber Spontaneous Stem SW, EE 3 1.10 No records Discorea prodensilis Discorea prodensilis Discorea prodensilis Discorea prodensilis No records Stem SW 1 0.37 No records Discorea prodensilis Discorea rotandata Discorea rotandata Discorea rotandata 0.37 No records Discorea rotandata Discorea rotandata Discorea rotandata Stem SW 1 0.37 No records Discorea rotandata Discorea rotandata Discorea rotandata Stem SW 2 0.74 No records Rotis printers Arcaceae Raji & Pin Tree Spontaneous Roots, SW 2 0.74 No records Particle printers Arcaceae Raji & Ariso Tree Spontaneous Roots, SW 1 0.37 Morado et al., 2019 Particle printers Arcaceae Ghagbada Climber Spontaneous Reods LS 1 <td></td> <td></td> <td>Kpètè (Fo)</td> <td></td> <td>/Cultivated</td> <td>(Tuber)</td> <td></td> <td></td> <td></td> <td></td>			Kpètè (Fo)		/Cultivated	(Tuber)				
	Dioscorea dumetorum	Dioscoreaceae	Léfé (Fo)	Climber	Spontaneous	Stem	SW, EE	3	1.10	No records
Disservar prachensifies Disservar case Igname maile (Fr) Climber (Fr) Spontaneous (Tuber) Stem SW 1 0.37 No records Disservar varandata Poir.* Disservar varandata Poir.* Disservar varandata Disservar varandata Poir.* No records Biords grants Elenaceae Regul Riph Palm Caltivated/A Filowers, Regul Riph SW 1 0.37 No records Biordad africana Guill. & Paranda dricana Guill. & Parandata grant A Fabaceae Elga arisso (Fo) Tree Spontaneous Roots, SW 1 0.37 Nondo et al., 2019 Partras degradientis Fabaceae Obgabada Climber Spontaneous Roots, SW 1 0.37 Norace et al., 2019 Partras degradientis Fabaceae Obgabada Climber Spontaneous Leaves SW 1 0.37 Norace et al., 2019 Partras dengadrish brita L** Fabaceae Tibb	(Kunth) Pax*				/Cultivated	(Tuber)				
Benth.*(FP)(Tuber)Dioscorear oriandata Poir.*Dioscoreaceae NoreaceaeKokoro (Ida)ClinikerCultivatedStemSW10.37No recordsDiosporear oriandata Poir.*EbenaceaeWilki (Ba), TreeTreeSpoataneousRoots, BarisSW20.74No recordsLiloris guineensisArceaceaeEgui ékpé (Ida), Dein (Ida), Dein TreePalmCultivated/A Flowers, Roots, SeedsSW, LS, I176.25Reddy et al, 2019; Kambalé 2012Jacq.**+(Gol), (Fon), Palmier à huile (FP)TreeSpoataneous SeedsSeeds10.37Mondo et al, 2019; Wondo et al, 2019Entada gricana Guill, & Parters**FabaceaeGlog arisso (Gol)TreeSpoataneous SpoataneousSeeds1.810.37Poster et al, 2020; Kambalé 2012Entada grigar.(L)FabaceaeGlog badaCliniberSpoataneous SpoataneousSW, E.20.74Nama et al, 2017Putrota da gigas (L)FabaceaeGlog badaCliniberSpoataneous (Gol)SwetsSW10.37Gapta et al, 2019; Kambalé 2012Exphorbia hirta L.**EuphorbiaceaeIyaakoun ayira (Id)HerbSpoataneous (LoitareesLawesSW10.37Gapta et al, 2019; Kambalé 2012EuphorbiaceaeIyaakoun ayira (Id)HerbSpoataneous (LoitareesLawesSW10.37Gapta et al, 2019; Kambalé 2012Euphorbia cite	Dioscorea praehensilis	Dioscoreaceae	Igname mâle	Climber	Spontaneous	Stem	SW	1	0.37	No records
Discoreaceae Kokoro (Ida) Clinber Cultivated Stem SW 1 0.37 No records Dispyros megnifyfornis Ebenaceae Wibi (Ba), Tree Spontaneous Roots, SW 2 0.74 No records Hochst, ex A.DC.* Ebenaceae Egui ékpé Palm Collivated/A Flowers, SW, LS, I 17 6.25 Reddy et al., 2019; Jacq.** (Ida), Détin tree grosystem Roots, SW 1 0.37 Mvondo et al., 2019; Perr.*** (Ida), Détin ree grosystem Roots, SW 1 0.37 Mvondo et al., 2019; Entuda grjacus (L) Fabaceae [Igba ariso Tree Spontaneous Seeds 1.5 1 0.37 Mvondo et al., 2019; Erythrias argugeneix Fabaceae Glagbada Cliniber Spontaneous Seeds 1.5 1 0.37 Gupta et al., 2019; Erythrias argugeneix Fabaceae Oshishi (Id) Tree Spontaneous Roots, SW, EE 2 0.74 Numare el., 2019; Evolvu	Benth.*		(Fr)			(Tuber)				
Poix-*(Tuber)Diospyros mespiliformis blochst: ex ADC.*Elenaceae Kimvi (Fo)Wiki (Ba), Kimvi (Fo)Tree 	Dioscorea rotundata	Dioscoreaceae	Kokoro (Ida)	Climber	Cultivated	Stem	SW	1	0.37	No records
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Poir.*					(Tuber)				
Hochst. ex. ADC.*Kinwi (F0)BarksEloester, guineensisArecaceae(Egui ékpéPalmCultivated/AFlowers, grosystemSW, LS, L176.25Reddy et al., 2019; Kambalé 2012Jacq.**+(Ga), DetintreegrosystemRoots, SeedsSeedsSeedsSeedsSeedsSeedsEntuda dyricana Guill. & Perr.***FabaceaeIgba arissoTreeSpontaneousRootsSW10.37Mvondo et al., 2019Perr.***(Go)FabaceaeObajadaClinberSpontaneousSeedsLS10.37Foster et al., 2020Fawcett & Rendle*(Fo)TreeSpontaneousSeedsLS10.37Foster et al., 2020Earyhtrina senegulensisFabaceaeObajadaClinberSpontaneousRoots,SW10.37Gupta et al., 2019; Kambalé 2012Euphorbia hirta L**Euphorbia caeae1yankounHerbSpontaneousLeavesSW10.37Gupta et al., 2019; Kambalé 2012I.**ConvolvulaceaeTholiré (fd), Touristic alsinoides (L.)ConvolvulaceaeTholiré (fd), touristic alsinoides (L.)ConvolvulaceaeShrubSpontaneousLeavesSW10.37Gupta et al., 2019; Kambalé 2012I.**FlacourritaceaeGohoomkadjShrubSpontaneousLeavesSW10.37Gupta et al., 2019; Kambalé 2012I.**FlacourritaceaeGohoomkadjShrubSpontaneousLeave	Diospyros mespiliformis	Ebenaceae	Wibi (Ba),	Tree	Spontaneous	Roots,	SW	2	0.74	No records
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hochst. ex A.DC.*		Kinwi (Fo)			Barks				
$\begin{tabular}{ c c c c c c c } Jacq.**+ & (Ida), Détin tree grosystem Roots, Seeds c c c c c c c c c c c c c c c c c c c$	Elaeis guineensis	Arecaceae	Egui êkpê	Palm	Cultivated/A	Flowers,	SW, LS, I	17	6.25	Reddy <i>et al.,</i> 2019;
(Fon), Palmier à huile (P)SeedsEntada gricana Guill. & Perr.**Fabaceae (Id)Igba arisso (Id)Tree SpontaneousRoots SoutaneousSW10.37Mvondo et al., 2019Perr.**(Id)FabaceaeGbagbadaClimber (Fo)SpontaneousSeedsLS10.37Foster et al., 2020Parvert & Rendle*(Fo)FabaceaeOshishè (Id)Tree (CultivatedSpontaneousRoots, branchesSW, EE20.74Nnama et al., 2017DC.***FabaceaeOshishè (Id)Tree ayira (Id)SpontaneousRoots, ravert & branchesSW, EE20.74Nnama et al., 2017Euphorbia hirita L.**EuphorbiaceaeTibitir (Id), ayira (Id)HerbSpontaneousLeavesI10.37Gupta et al., 2019; Kambalé 2012Euphorbia hirita L.**EuphorbiaceaeTibitir (Id), ayira (Id)HerbSpontaneousLeavesI0.37Gupta et al., 2019; Kambalé 2012Euphorbia hirita L.**Flacourtia indica (Burm. (Fo)Flacourtia indica (Burm. (Fo), (Fo),SpontaneousRoots, SWSW10.37Gupta et al., 2019; Kambalé 2012Placourtia indica (Burm. (Roxb.ex Willd) Voigt.**Flacourtia indica (Burm. (Fo), KoityimaShrubSpontaneousRoots, SWSW41.47Gupta et al., 2018(Roxb.ex Willd) Voigt.**(Fo), Iov (Go), KoityimaTree (Go), KoityimaAgrosystem/c SpontaneousSeedsSW, EE, LS, 	Jacq.**+		(Ida), Détin	tree	grosystem	Roots,				Kambalé 2012
Palmier à huile (Pr)Entada africana Guill. & Perr.***FabaceaeIgba arisso (Id)Tree SpontaneousSpontaneous SeedsSW10.37Mvondo et al., 2019Perr.***(Id)FabaceaeGbagbadaClimberSpontaneous (Fo)SeedsLS10.37Foster et al., 2020Ergthrina senegalensis DC.***FabaceaeOshishê (Id)Tree (VultivatedRoots, (VultivatedSW, EE20.74Nnama et al., 2017DC.***DC.***VultivatedbranchesNorts, (VultivatedSW, EE20.74Nnama et al., 2017Euphorbia kirta L.**EuphorbiaceaeIyankoun ayira (Id)HerbSpontaneous (VultivatedLeavesSW10.37Gupta et al., 2019; (Rambalé 2012)Evolvulus disinoides (L.) ConvolvulaceaeConvolvulaceaeTibitiré (Id), e (Fo)HerbSpontaneous (Fo)LeavesI10.37Gupta et al., 2019; (Rambalé 2012)Flacourtia indica (Burm. (Rabew Wild) Voigt.**Flacourtia indica (Burm. (Fo), (Kabew Wild) Voigt.**Flacourtia shortaSpontaneous (Fo), (Fo), (Fo), (Fo), (Fo), (Fo),SpontaneousRoots, (Sw, SW, EE, LS, (Fo), (Fo), (Fo), (Fo), (Fo), (Fo), (Fo), (Fo), (Fo),SpontaneousRoots, (Sw, SW, EE, LS, (Fo), (Fo), (Fo), (Fo), (Fo), (Fo), (Fo), (Fo),SpontaneousRoots, (Fo), (Fo), (Fo), (Fo), (Fo), (Fo), (Fo),SpontaneousRoots, (Sw, SW, EE, LS, (Fo),<			(Fon),			Seeds				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Palmier à							
Entada qrincuna Gnilli & Perr.**Fabaceae (ld)Igba arisso (ld)Tree (ld)Spontaneous SpontaneousRoots SWSW10.37Mvondo et al., 2019Entada gigas (L.) Favcett & Rendle*Fabaceae (Fo)GbagbadaClimber (ImberSpontaneous (Collivated branchesSeedsLS10.37Foster et al., 2020Erythrina senegalensis Euphorbia hirta L.**Fabaceae (ImberOshishè (Id) (Id)Tree (Cultivated ayira (Id)Roots, SW, EE20.74Nnama et al., 2017Euphorbia hirta L.**Euphorbiaceae (Imber Imber			huile (Fr)							
Perr.***(id)Entada gigas (L)FabaceaeGbagbadaClimberSpontaneousSeeds1.S10.37Foster et al., 2020Erythrina senegalensisFabaceaeOshishè (Id)TreeSpontaneousRoots, /CultivatedSW, EE20.74Nnama et al., 2017DC.***DC.***VPranchesVbranchesVVVVEuphorbia hirta L.**Euphorbiaceaelyankoun ayira (Id)HerbSpontaneousLeavesSW10.37Gupta et al., 2019; Kambalé 2012Evoludus alsinoides (L.)ConvolvulaceaeTibitiré (Id), (Fo)HerbSpontaneousLeavesI10.37Gupta et al., 2019; Bhatt et al., 2021Evolutula alsinoides (L.)ConvolvulaceaeGbohounkadjShrubSpontaneousRootsSW10.37Gunaasekar 2015Flacourtia indica (Burm. (Roxh.ex Wild) Voigt.**FlacourtiaceaeGbohounkadjShrubSpontaneousRootsSW41.47Gupta et al., 2019(Roxh.ex Wild) Voigt.**(Fo), (Fo),SinsiyanLeavesSW41.47Gupta et al., 2018(Garclnia kolaClusiaceaeAhowétinTreeAgrosystem/cSeedsSW, EE, IS4616.91Obiandu et al., 2018(Gardenia erubescensRubiaceaeKatkranborShrubSpontaneousRootsSW, EE, I134.78Sabo et al., 2018(Fo), Ikwa(Fo), Ikwa(Fo), IkwaItere <t< td=""><td>Entada africana Guill. &</td><td>Fabaceae</td><td>Igba arisso</td><td>Tree</td><td>Spontaneous</td><td>Roots</td><td>SW</td><td>1</td><td>0.37</td><td>Mvondo <i>et al.,</i> 2019</td></t<>	Entada africana Guill. &	Fabaceae	Igba arisso	Tree	Spontaneous	Roots	SW	1	0.37	Mvondo <i>et al.,</i> 2019
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Perr.***		(Id)							
Erythrina senegalensis Fabaceae Oshishê (id) Tree Spontaneous Roots, /Cultivated SW, EE 2 0.7,4 Nnama et al., 2017 Euphorbia hirta L** Euphorbiaceae Iyankoun Herb Spontaneous Leaves SW 1 0.37 Gupta et al., 2019 ; Kambalé 2012 Evoluulus alsinoides (L.) Convolvulaceae Tibitiré (Id), Herb Spontaneous Leaves I 1 0.37 Gupta et al., 2019 ; Kambalé 2012 Evoluulus alsinoides (L.) Convolvulaceae Tibitiré (Id), Herb Spontaneous Leaves I 1 0.37 Gupta et al., 2019 ; Bhatt et al., 2021 If accurrita indica (Burm. Flacourritaceae Gobounkadj Shrub Spontaneous Roots SW 1 0.37 Gnaasekar 2015 f.) Merr.* é (Fo) (Fo), Leaves SW 1 0.37 Gupta et al., 2019 (Roxb.ex Wild) Voigt.** Euphorbiaceae Kortorman Shrub Spontaneous Roots, SW 4 1.47 Gupta et al., 2019 (Roxb.ex Wild) Voigt.** (Fo), Iwo ultivated RP Ital.47	<i>Entada gigas</i> (L.) Fawcett & Rendle*	Fabaceae	Gbagbada (Fo)	Climber	Spontaneous	Seeds	LS	1	0.37	Foster <i>et al.,</i> 2020
DC.***/CultivatedbranchesEuphorbia hirta L.**EuphorbiaceaeIyankoun ayira (Id)HerbSpontaneous Agria (Id)LeavesSW1 0.37 Gupta et al., 2019; Kambalé 2012Evoludus alsinoides (L.)ConvolvulaceaeTibitiré (Id), Tibitiré (Id),HerbSpontaneousLeavesI1 0.37 Gupta et al., 2019; Kambalé 2012Evoludus alsinoides (L.)ConvolvulaceaeTibitiré (Id), Tibitiré (Id),HerbSpontaneousRootsI0.37Guanasekar 2015L.**Zounkorman (Fo)(Fo)SpontaneousRootsSW1 0.37 Ganaasekar 2015 <i>Flueggea virosa</i> EuphorbiaceaeKortorman (Fo), SinssynSpontaneousRoots, SWSW4 1.47 Gupta et al., 2019(Roxb.ex Willd) Voigt.**(Fo), (Fo), (Roxb.ex Willd) Voigt.**ClusiaceaeAhowétin (Fo), Iwo (Id), Goror (Ba)Tree ultivatedSeedsSW, EE, LS, RP4616.91Obiandu et al., 2018Gardenia erubescens Stapf & Hutch.**+RubiaceaeKankranbor 	Erythrina senegalensis	Fabaceae	Oshishè (Id)	Tree	Spontaneous	Roots,	SW, EE	2	0.74	Nnama <i>et al.,</i> 2017
Euphorbia hirta L.** Euphorbiaceae Iyankoun Herb Spontaneous Leaves SW 1 0.37 Gupta et al., 2019; Kambalé 2012 Evolvulus alsinoides (L.) Convolvulaceae Tibitiré (Id), Herb Spontaneous Leaves I 1 0.37 Gupta et al., 2019; Kambalé 2012 L.** Zounkorman (Fo) Eaves I 1 0.37 Gupta et al., 2019; Kambalé 2012 Flacourtia indica (Burm. Flacourtiaceae Gbohounkadj Shrub Spontaneous Roots SW 1 0.37 Gnanasekar 2015; f.) Merr.* é (Fo) é (Fo) Euphorbiaceae Kortorman Shrub Spontaneous Roots, SW 4 1.47 Gupta et al., 2019; (Roxb.ex Willd) Voigt.** Euphorbiaceae Kortorman Shrub Spontaneous Roots, SW 4 1.47 Gupta et al., 2019; (Roxb.ex Willd) Voigt.** (Fo), Ixo Leaves SW, EE, LS, 46 16.91 Obiandu et al., 2018; Garcinia kola Clusiaceae Abowétin Tree Agrosystem/c Seeds SW,	DC.***				/Cultivated	branches				
$\begin{tabular}{ c c c c c c c } \hline $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	Euphorbia hirta L.**	Euphorbiaceae	Iyankoun	Herb	Spontaneous	Leaves	SW	1	0.37	Gupta <i>et al.,</i> 2019 ;
Evolvulus alsinoides (L.) Convolvulaceae Tibitiré (Id.), Herb Spontaneous Leaves I 1 0.37 Gupta et al., 2019 ; L** Zounkorman (Fo) Bhatt et al., 201 Bhatt et al., 2019 ; Flacourtia indica (Burm. Flacourtiaceae Gobounkadj Shrub Spontaneous Roots SW 1 0.37 Gupta et al., 2019 ; Flueggea virosa Euphorbiaceae Kortorman Shrub Spontaneous Roots SW 1 0.37 Ganaasekar 2015 f.) Merr.* é (Fo) Flueggea virosa Euphorbiaceae Kortorman Shrub Spontaneous Roots, SW 4 1.47 Gupta et al., 2019 (Roxb.ex Willd) Voigt.** (Fo), Kortorman Shrub Spontaneous Roots, SW 4 1.47 Gupta et al., 2018 (Roxb.ex Willd) Voigt.** (Fo), Ivo Leaves Sinssiyan Leaves SW, EE, LS, 46 16.91 Obiandu et al., 2018 Heckel***+ (Fo), Ivo ultivated RP Id. Id. Gardenia erubescens Kankranbo Shrub Spontaneous			ayira (Id)							Kambalé 2012
L**Zounkorman (Fo)Bhatt et al., 2021Flacourtia indica (Burm. f.) Merr.*FlacourtiaceaeGbohounkadj \hat{e} (Fo)ShrubSpontaneousRootsSW10.37Gnanasekar 2015f.) Merr.* \hat{e} (Fo) \hat{e} (Fo)KortormanShrubSpontaneousRoots,SW41.47Gupta et al., 2019(Roxb.ex Willd) Voigt.**EuphorbiaceaeKortormanShrubSpontaneousRoots,SW41.47Gupta et al., 2019(Roxb.ex Willd) Voigt.**(Fo),(Fo),LeavesLeavesSW510.37Obiandu et al., 2018Garcinia kola Heckel***+ClusiaceaeAhowétin (Fo), IwoTreeAgrosystem/cSeedsSW, EE, LS, RP4616.91Obiandu et al., 2018Gardenia erubescens Stapf & Hutch.**+RubiaceaeKankranborShrubSpontaneousRootsSW, EE, I134.78Sabo et al., 2018(Id), Dakpla (If)(If)(If)IfitIfit0.37No recordsGomphrena celosioides Mart.*AmaranthaceaeDawawé/AdiHerbSpontaneousLeavesSW10.37No recordsHeliotropium indicum L**BorginaceaeKoKlosouHerbSpontaneousLeaves,SW, I20.74Ahmed 2017, Koffuoret al., 2012IfIfineIfineIfineIfineIfineIfineIfineIfineIfineImage: Stape Stape Stape Stape Stape Stape Stape Stape	Evolvulus alsinoides (L.)	Convolvulaceae	Tibitiré (Id),	Herb	Spontaneous	Leaves	Ι	1	0.37	Gupta <i>et al.,</i> 2019 ;
$\begin{tabular}{ c c c c c c c } \hline Flacourtia indica (Burm. Flacourtia ceae Gbohounkadj & Shrub & Spontaneous & Roots & SW & 1 & 0.37 & Gnanasekar 2015 & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	L.**		Zounkorman							Bhatt <i>et al.,</i> 2021
Flacourtia indica (Burm. Flacourtiaceae Gbohounkadj Shrub Spontaneous Roots SW 1 0.37 Gnanasekar 2015 f.) Merr.* ê (Fo) Flueggea virosa Euphorbiaceae Kortorman Shrub Spontaneous Roots, SW 4 1.47 Gupta et al., 2019 (Roxb.ex Willd) Voigt.** (Fo), Leaves Leaves Image: Sinssign (Ba)			(Fo)							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Flacourtia indica (Burm.	Flacourtiaceae	Gbohounkadj	Shrub	Spontaneous	Roots	SW	1	0.37	Gnanasekar 2015
Flueggea virosa Euphorbiaceae Kortorman Shrub Spontaneous Roots, SW 4 1.47 Gupta et al., 2019 (Roxb.ex Willd) Voigt.** (Fo), Leaves Leaves Leaves Image: Sinssign (Ba) Image	f.) Merr.*		ê (Fo)							
(Roxb.ex Willd) Voigt.**(Fo), Sinssiyan (Ba)LeavesGarcinia kola Heckel***+Clusiaceae (Fo), Iwo (Id), Goror (Ba)Agrosystem/c ultivatedSeeds RPSW, EE, LS, RP4616.91Obiandu et al., 2018Gardenia erubescens Stapf & Hutch.**+Rubiaceae (Ida), Dakpla (If)Shrub (Ida), Dakpla (If)Spontaneous (If)Roots SW, EE, I SpontaneousSW, EE, I 13134.78Sabo et al., 2018Gomphrena celosioides Mart.*Amaranthaceae o (Fo)Dawawé/Adi (Fo)Herb SpontaneousLeaves SW, I 2SW, I 20.37No recordsHeliotropium indicum L.**Boraginaceae adinkpèchèKoKlosou HerbHerb SpontaneousLeaves, Flowers,SW, I 20.74Ahmed 2017, Koffuor et al., 2012	Flueggea virosa	Euphorbiaceae	Kortorman	Shrub	Spontaneous	Roots,	SW	4	1.47	Gupta <i>et al.,</i> 2019
Sinssiyan (Ba) Garcinia kola Clusiaceae Ahowétin Tree Agrosystem/c Seeds SW, EE, LS, 46 16.91 Obiandu et al., 2018 Heckel***+ (Fo), Iwo ultivated RP Iteration RP Iteration Iteration Iteration Iteration Iteration RP Iteration It	(Roxb.ex Willd) Voigt.**		(Fo),			Leaves				
(Ba)Garcinia kola Heckel***+Clusiaceae (Fo), Iwo (Id), Goror (Ba)Tree Agrosystem/c ultivatedSeeds SW, EE, LS, RP4616.91Obiandu <i>et al.</i> , 2018Gardenia erubescens Stapf & Hutch.**+Rubiaceae (Ida), Dakpla (Fo), Kikiyiba (If)Shrub (Ida), Dakpla (If)Spontaneous (Ba)Roots SW, EE, I134.78Sabo <i>et al.</i> , 2018Gomphrena celosioides Mart.*Amaranthaceae o (Fo)Dawawé/Adi (HerbHerb SpontaneousLeaves (SW, I20.74Ahmed 2017, Koffuor et al., 2012			Sinssiyan							
Garcinia kolaClusiaceaeAhowétinTreeAgrosystem/cSeedsSW, EE, LS,4616.91Obiandu et al., 2018Heckel***+(Fo), IwoultivatedRPRP16.91Obiandu et al., 2018(Id), Goror(Id), Goror(Ba)NorecordsRP134.78Sabo et al., 2018Gardenia erubescensRubiaceaeKankranborShrubSpontaneousRootsSW, EE, I134.78Sabo et al., 2018Stapf & Hutch.**+(Ida), Dakpla (Fo), Kikiyiba (If)(Fo), Kikiyiba (If)Image: Constant of the second seco			(Ba)							
Heckel***+(Fo), IwoultivatedRP(Id), Goror (Ba)(Id), Goror (Ba)(Ba)(Ba)Gardenia erubescensRubiaceaeKankranborShrubSpontaneousRootsSW, EE, I134.78Sabo et al., 2018Stapf & Hutch.**+(Ida), Dakpla (Fo), Kikiyiba (If)(If)(If)(If)10.37No recordsGomphrena celosioidesAmaranthaceaeDawawé/AdiHerbSpontaneousLeavesSW10.37No recordsHeliotropium indicum L.**BoraginaceaeKoKlosouHerbSpontaneousLeaves,SW, I20.74Ahmed 2017, Koffuor et al., 2012	Garcinia kola	Clusiaceae	Ahowétin	Tree	Agrosystem/c	Seeds	SW, EE, LS,	46	16.91	Obiandu <i>et al.,</i> 2018
(Id), Goror (Ba) Gardenia erubescens Rubiaceae Stapf & Hutch.**+ (Ida), Dakpla (If) (If) Gomphrena celosioides Amaranthaceae Mart.* O (Fo) Heliotropium indicum Boraginaceae L.** KoKlosou Herb Spontaneous Leaves, SW, I Plowers, et al., 2012	Heckel***+		(Fo), Iwo		ultivated		RP			
(Ba) Gardenia erubescens Rubiaceae Kankranbor Shrub Spontaneous Roots SW, EE, I 13 4.78 Sabo et al., 2018 Stapf & Hutch.**+ (Ida), Dakpla (Fo), Kikiyiba (If) Image: Comphrena celosioides Amaranthaceae Dawawé/Adi Herb Spontaneous Leaves SW 1 0.37 No records Mart.* 0 (Fo) Image: Complexity of the complexity of th			(Id), Goror							
Gardenia erubescens Rubiaceae Kankranbor Shrub Spontaneous Roots SW, EE, I 13 4.78 Sabo et al., 2018 Stapf & Hutch.**+ (Ida), Dakpla (Ida), Dakpla (Fo), Kikiyiba (If) If) Image: Comphrena celosioides Amaranthaceae Dawawé/Adi Herb Spontaneous Leaves SW 1 0.37 No records Mart.* 0 (Fo) Image: Complexity of the comple			(Ba)							
Stapf & Hutch.**+ (Ida), Dakpla (Fo), Kikiyiba (If) Gomphrena celosioides Amaranthaceae Dawawé/Adi Herb Spontaneous Leaves SW 1 0.37 No records Mart.* o (Fo) No records <t< td=""><td>Gardenia erubescens</td><td>Rubiaceae</td><td>Kankranbor</td><td>Shrub</td><td>Spontaneous</td><td>Roots</td><td>SW, EE, I</td><td>13</td><td>4.78</td><td>Sabo <i>et al.,</i> 2018</td></t<>	Gardenia erubescens	Rubiaceae	Kankranbor	Shrub	Spontaneous	Roots	SW, EE, I	13	4.78	Sabo <i>et al.,</i> 2018
(Fo), Kikiyiba (If) Gomphrena celosioides Amaranthaceae Dawawé/Adi Herb Spontaneous Leaves SW 1 0.37 No records Mart.* o (Fo) V V V V V V Heliotropium indicum Boraginaceae KoKlosou Herb Spontaneous Leaves, SW, I 2 0.74 Ahmed 2017, Koffuor L.** adinkpèchè Flowers, Et al., 2012 V V V	Stapf & Hutch.**+		(Ida), Dakpla							
(If) Gomphrena celosioides Amaranthaceae Dawawé/Adi Herb Spontaneous Leaves SW 1 0.37 No records Mart.* o (Fo) 0 0 0 1 0.37 No records Heliotropium indicum Boraginaceae KoKlosou Herb Spontaneous Leaves, SW, I 2 0.74 Ahmed 2017, Koffuor L.** adinkpèchè Flowers, et al., 2012			(Fo), Kikiyiba							
Gomphrena celosioides Amaranthaceae Dawawé/Adi Herb Spontaneous Leaves SW 1 0.37 No records Mart.* o (Fo) 0 6			(If)							
Mart.* o (Fo) Heliotropium indicum Boraginaceae KoKlosou Herb Spontaneous Leaves, SW, I 2 0.74 Ahmed 2017, Koffuor L.** adinkpèchè Flowers, et al., 2012	Gomphrena celosioides	Amaranthaceae	Dawawé/Adi	Herb	Spontaneous	Leaves	SW	1	0.37	No records
Heliotropium indicumBoraginaceaeKoKlosouHerbSpontaneousLeaves,SW, I20.74Ahmed 2017, KoffuorL.**adinkpèchèFlowers,et al., 2012	Mart.*	<u>.</u>	o (Fo)							
L.*** adınkpechê Flowers, <i>et al.</i> , 2012	Heliotropium indicum	Boraginaceae	KoKlosou	Herb	Spontaneous	Leaves,	SW, I	2	0.74	Ahmed 2017, Koffuor
	L. ^ ^		adinkpeche			r10wers,				et al., 2012

		(Aj)			Roots				
Holarrhena floribunda (G. Don) T. Durand & Schinz*	Apocynaceae	Lètin wiwi (Fo)	Tree	Spontaneous	Barks	V	1	0.37	No records
Hymenocardia acida Tul.**	Euphorbiaceae	Oroukpa (Id)	Shrub	Spontaneous	Roots, Barks	SW, I	4	1.47	MacDonald <i>et al.,</i> 2016, Valentin <i>et al.,</i> 2020
Icacina oliviformis (Poiret) Raynal,*	Icacinaceae	Azonkwin (Fo)	Shrub	Spontaneous	Roots (Tubers)	Ι	2	0.74	Seidu <i>et al.,</i> 2019
Imperata cylindrica (L.) P. Beauv.***+	Poaceae	Sè (Fo), Igan (Id), Chiendent (Fr)	Herb	Spontaneous	Rhizome s	SW, EE, LS, I	20	7.35	Nwokike <i>et al.,</i> 2020 ; Gaikwad <i>et al.,</i> 2019
Ipomoea batatas (L.) Lam.***	Convolvulaceae	Dankali (Ba), Patate douce (Fr)	Climber	Cultivated	Roots (Tubers)	SW	3	1.10	Majid <i>et al.,</i> 2019
Irvingia gabonensis (Aubry-LeComte ex O'Rorke)**	Irvingiaceae	Igui Oro (Na)	Tree	Cultivated	Seeds	SW	1	0.37	Adegbehingbe <i>et al.,</i> 2017
Jatropha curcas L.**	Euphorbiaceae	Adjagbogbo (Aj), Yonkpontin (Fo), Boukatounou (Ba)	Shrub	Cultivated	Leaves	SW, RP	6	2.21	Singh <i>et al.</i> , 2012; Semenya & Potgieter 2013
Khaya senegalensis (Desr.) A. Juss.**+	Meliaceae	Agao (Na), Kahi (Pe), Hèlemon (Lo), Fèlè (De)	Tree	Spontaneous /Cultivated	Roots, Barks	SW, EE	14	5.15	Gupta <i>et al.</i> , 2019 ; Ipona <i>et al.</i> , 2018
<i>Kigelia africana</i> (Lam.) Benth.***	Bignoniaceae	Tortorlor (Ich), Kpandor (Na), Gnankpo (Id)	Tree	Spontaneous	Fruits, Barks	SW, V	6	2.21	Micheli <i>et al.,</i> 2020
Lagenaria siceraria (Molina) Standl.**	Cucurbitaceae	Gbaka (Ba), Calebasse (Fr)	Climber	Cultivated	Fruits	SW	1	0.37	Demoze <i>et al.</i> , 2021
Lantana trifolia L.*	Verbenaceae	Tiyindarha (Wa)	Shrub	Spontaneous	Roots (Tubers)	SW, I	1	0.37	No records
Launaea taraxacifolia (Willd.) Amin ex C. Jeffrey***	Asteraceae	Gnantoto (Fo)	Herb	Spontaneous /Cultivated	Leaves, leafy stem	SW	3	1.10	Adejuwon <i>et al.,</i> 2015
Lawsonia inermis L.**	Lythraceae	Henné (Fr) Lali (Na)	Shrub	Cultivated	Roots, Leaves	LL	1	0.37	Kumari <i>et al.,</i> 2015
Lippia multiflora Moldenke**	Verbenaceae	Tchaga (Ich)	Herb	Spontaneous /Cultivated	Roots	V	1	0.37	Mathur 2013
<i>Lophira lanceolata</i> Tiegh. ex Keay***	Ochnaceae	Orkpao (Na), Bolagan (An), Faux kaité (Fr)	Tree	Spontaneous	Barks	SW, EE	3	1.10	Etuk <i>et al.,</i> 2009
Luffa cylindrica M.	Cucurbitaceae	Eponge	Climber	Spontaneous	Leaves	SW	1	0.37	No records
Roem.* Mallotus oppositifolius (Geisel.) Müll.Arg. var. oppositifolius**	Euphorbiaceae	vegétale (Fr) Ayindja (Id)	Shrub	Spontaneous	Roots	SW	1	0.37	Nwaehujor <i>et al.,</i> 2014

Manihot esculenta Crantz**+	Euphorbiaceae	Logo (Ba), Finyin (Fo), Adjagoun (Id), Manioc (Fr)	Shrub	Cultivated	Roots	SW, LS, I	30	11.03	Togola <i>et al.</i> ,, 2020
Momordica charantia	Cucurbitaceae	Badoman	Climber	Spontaneous	Leafy	F	1	0,37	Obiandu & Achinike
L.***		(De)			stem				2020
<i>Mondia whitei</i> (Hook. f.) Skeels***	Asclepiadaceae	Tchirigoun (Fo)	Climber	Spontaneous	Roots	SW	5	1.84	Watcho <i>et al.,</i> 2015
Monodora myristica	Annonaceae	Sassalikoun	Tree	Spontaneous	Seeds	SW, EE, LS	16	5.88	No records
(Gaertn.) Dunal*+		(Fo), Ariwo							
Moringa oleifera	Moringaceae	Vorolivara	Shrub	Cultivated	Seeds	SW/ FF	14	E 1E	Prabeattroo at al
Lam ***+	Woringaceae	(Ba)	Sillub	Cultivated	Roots	5W, EE	14	5.15	2015
Lum.		Yovokpatin			Leaves				2013
		(Fo).							
		Moringa (Fr)							
Musa sapientum auct.	Musaceae	Kokoé aloga	Herb	Cultivated	Fruits	SW, EE, LS, I	54	19.8	Alabi <i>et al.,</i> 2013
div.***+		(Fo),						5	
		Agbagba							
		(Na),							
		Bananier							
		plantain (Fr)							
Newbouldia laevis	Bignoniaceae	Kpatin (Fo),	Shrub	Spontaneous	Leaves	Ι	1	0.37	Akomolafe <i>et al.,</i> 2018
(P.Beauv.) Seemann ex Bureau***		Hysope (Fr)		/Cultivated					
Ocimum canum L.**	Lamiaceae	Héhétchou	Herb	Spontaneous	Leaves,	SW, I	3	1.10	Tshilanda <i>et al.,</i> 2019
		(Aj)		/Cultivated	leafy				
0.1		Table - (Tab	TTl	0	stem	0147.37			
Ocimum gratissimum	Lamiaceae	I chiayo (Fo),	Herb	Spontaneous	KOOIS,	Sw, v	4	1.47	0j0 et al., 2019
L."""		(Ai)		/Cultivated	Leaves				
Pachucarnus	Asclepiadaceae	Aghoaguin	Herb	Spontaneous	Rhizome	SW. EE. LS. I	16	5.88	No records
lineolatus (Decne.)	Tisciepluduceue	(Fo). Tchéffé	neib	opontuneouo	s	511, 10, 1	10	5.00	ito recorda
Bullock*+		(Ida),							
		Sonrouwrobo							
		u (De)							
Parkia biglobosa (Jacq.)	Fabaceae	Egui Igba	Tree	Spontaneous	Barks	SW	1	0.37	MacDonald et al.,
R. Br. ex G. Don**		(Id)		/Agrosystem					2016
Paullinia pinnata L.***	Sapindaceae	Adaklordor	Climber	Spontaneous	Roots	SW, I	5	1.84	Baffoe <i>et al.,</i> 2021
		(Fo), Gbogbo							
		awiya (Id)							
Pergularia daemia	Asclepiadaceae	Orgbor	Climber	Spontaneous	Leaves	SW	1	0.37	No records
(Forssk.) Chiov.*		founfoun							
		(Na)							_
Pericopsis laxiflora	Fabaceae	Sinaférikou	Tree	Spontaneous	Leaves,	SW, RP	3	1.10	No records
(Benth. ex Baker)*		(Ba), Iabàdaun (If)			Roots,				
Donoog amoniogna	Louroccoc	Avagation	Tuoo	Cultivated	Darks	S1 47	- 1	0.07	Daniagua Zambrana
Mill **	Lauraceae	(Fr)	1166	Cultivated	Seeus	3₩	1	0.3/	et al., 2020
Phoenix dactulifera	Arecaceae	Dattier (Fr).	Palm	Spontaneous	Fruits	SW. EE	10	6.99	Abedi <i>et al.</i> . 2012
L.***+		Giyofopor	tree			,	,		, ====
		(An)							
Phyllanthus amarus	Euphorbiaceae	Tèyinsso	Herb	Spontaneous	Roots,	SW, LS, I	6	2.21	Azubuike <i>et al.,</i> 2018
Schumach. & Thonn.***		(Nago),			Leaves				
		Sobarou (Ba)							
		Sobarou (Ba)							

<i>Picralima nitida</i> (Stapf.) T. & H.Durand**	Apocynaceae	Ayokpè (Fo)	Tree	Spontaneous	Barks	SW	1	0.37	Awodele <i>et al.,</i> 2019
Piliostigma thonningii (Schumach.) Milne- Redh.**	Fabaceae	Kparounman (Id)	Shrub	Spontaneous	Barks	EE	1	0.37	Emmanuel <i>et al.,</i> 2017
<i>Piper guineense</i> Schumach. & Thonn.***	Piperaceae	Linlinkoun (Fo), Idjayé (Id)	Climber	Spontaneous	Fruits	SW, EE, LS, I	8	2.94	Ochei <i>et al.,</i> 2017
Piper nigrum L.***	Piperaceae	Moussoro (De), Poivre (Fr)	Climber	Spontaneous	Fruits	SW	1	0.37	Septiyorini <i>et al.,</i> 2020
Plumbago zeylanica L.***	Plumbaginaceae	Dangblan (Fo)	Shrub	Spontaneous /Cultivated	Roots	Ι	1	0.37	Onen <i>et al.</i> , 2021
Prosopis africana (Guill. & Perr.) Taub.**+	Fabaceae	Kakêtin (Fo), Acacayin (Id), Sorba (Ba)	Tree	Spontaneous	Roots, Leaves, Stem	SW, EE, LS, I, LL, V	23	8.46	MacDonald <i>et al.,</i> 2016 ; Togola <i>et al.,</i> 2020
Pseudocedrela kotschyi (Schweinf.) Harms***	Meliaceae	Tchaklikli (Fo), Bississonbou (Ba)	Tree	Spontaneous	Roots, Barks	SW, EE, V	4	1.47	Ojewale <i>et al.,</i> 2014;
Psidium guajava L.***	Myrtaceae	Goyavier (Fr)	Tree	Cultivated	Roots	SW	2	0.74	Uboh <i>et al.,</i> 2010
Pteleopsis suberosa Engl. & Diels*	Combretaceae	Okroukrou (Id)	Shrub	Spontaneous	Leaves, Barks	SW, LS	2	0.74	No records
Pterocarpus erinaceus Poir.**	Fabaceae	Tém (Lo), Sooda (Wa), Tona (Ba)	Tree	Spontaneous	Roots, Barks	SW, I	6	2.21	Segla <i>et al.,</i> 2015
Raphia sudanica A. Chev.*	Arecaceae	Kpako (Na)	Palm tree	Spontaneous	Fruits	SW	4	1.47	No records
Rourea coccinea (Thonn.ex Schumach.) Benth.***	Connaraceae	Sèssèguérou (Ba), Ganganlissè (Fo), Tchihountob oui (Aj)	Shrub	Spontaneous	Leaves	SW, LS	5	1.84	Agbodjento <i>et al.,</i> 2020
Saccharum officinarum L.***	Poaceae	Léké (Fo)	Herb	Cultivated	Stem	LL	1	0.37	Gurav <i>et al.,</i> 2020
Sarcocephalus latifolius (Sm.) E. A. Bruce****+	Rubiaceae	Kodor (Fo), Igbêssin (Id)	Shrub	Spontaneous	Roots	SW, EE	15	5.51	Méa <i>et al.,</i> 2017
Scoparia dulcis L.**	Scrophulariaceae	Manmarou (Ba), Oyin (Na), Odoundoun (Id)	Herb	Spontaneous	Leaves, Leafy stem	SW, LL	4	1.47	Reddy <i>et al.,</i> 2012
Securidaca longepedunculata Fres.***	Polygalaceae	Ikpata (Tch), Bissaha (Lo), Sorwan (Ba), Souan (De)	Shrub	Spontaneous	Roots, Barks	SW	6	2.21	Chika <i>et al.,</i> 2017
Senna occidentalis (L.) Link*	Fabaceae	Kpaja-kpaja (Na); Yayinor (Wa); Faux kinkéliba (Fr)	Herb	Spontaneous	Roots, Leaves	SW	2	0.74	No records
<i>Sida acuta</i> Burm.f. ssp. carpinifolia (L.f.) Borss.Waalk.***	Malvaceae	Adoman (Fo)	Herb	Spontaneous	Leaves	SW, EE	2	0.74	Semwal <i>et al.,</i> 2015

		abo (Tch)			plant				
Smilax kraussiana Meisn.***	Smilacaceae	Lalalouhou (Lo)	Herb	Spontaneous	Leaves	SW	1	0.37	Nwafor & Oniyide 2017
Solanum nigrum L.***	Solanaceae	Kotoroku (Wa)	Herb	Spontaneous	Leaves	Ι	1	0.37	Omojokun <i>et al.,</i> 2019
Sterculia setigera Delile*	Malvaceae	Olaoko (Na)	Tree	Spontaneous	Roots	SW	2	0.74	No records
Stereospermum	Bignoniaceae	Gbékpatin	Tree	Spontaneous	Roots	SW	1	0.37	No records
kunthianum Cham.*		(Fo)							
Syzygium aromaticum	Myrtaceae	Atikingbadot	Tree	Spontaneous	Flowers	SW, LS, I	11	4.04	Ahmad <i>et al.,</i> 2004
(L.) Merr. & L. M. Perry***+		a (FO), Karoufou		/Cultivated					
1011		(Ba)							
Talinum triangulare	Portulacaceae	Glasséman	Herb	Spontaneous	Leaves	SW	3	1.10	No records
(Jacq.) Willd.*		(Fo),							
		Caloulou							
	P .1	(Tch)	T	0	Desta				Deistel and
Tamarinaus inaica T ***⊥	Fabaceae	Djevivi (Fo),	Tree	Agrosystem	KOOUS,	SW, EE, I	12	4.41	Kal <i>et al.</i> , 2018
Ц. т		(An),		/Agrosystem	, Barks				
		Poussika			,				
		(Wa)							
Tetrapleura tetraptera	Fabaceae	Aïdan ôtôror	Tree	Spontaneous	Fruits	SW	4	1.47	Adelakun <i>et al.,</i> 2021
(Schumach. & Thonn.) Taub.***		(Na)							
Tragia senegalensis	Euphorbiaceae	Azor (Fo),	Climber	Spontaneous	Leaves	SW	4	1.47	No records
Müll.Arg.*		Wérékpékpé (Id)							
Trema orientalis (L.)	Celtidiaceae	Afèfè (Id)	Tree	Spontaneous	Leaves	SW	1	0.37	Parvez, <i>et al.</i> , 2019
Blume syn Trema									
Thonn.) Ficalho*									
Tribulus terrestris L.***	Zygophyllaceae	Ishakoro (Id)	Herb	Spontaneous	Fruits	SW	1	0.37	Gauthaman &
									Ganesan 2008
Triclisia subcordata	Menispermaceae	Viaka (Aj),	Climber	Spontaneous	Roots	SW, I	2	0.74	No records
Oliv.*		Oshougban (Na)							
Uapaca togoensis Pax*	Euphorbiaceae	Farou (Ba).	Tree	Spontaneous	Barks.	SW. I	4	1.47	No records
e ap ann rog strans i an		Wawo (Na)		-F	Roots				
Uvaria chamae P.	Annonaceae	Egui Yaha	Climber	Spontaneous	Roots,	SW, EE, LS	5	1.84	Owaba <i>et al.</i> , 2021***
Beauv***		(Id), Ayadaha			Leaves				
I II		(Fo)	<u></u>						0
Vernonia amygdalina Delile***	Asteraceae	Amanvivé (Fo)	Shrub	Spontaneous /Cultivated	Leaves	SW	2	0.74	Omojokun <i>et al.,</i> 2019
Vernonia cinerea Sch.	Asteraceae	Houssikoussi	Herb	Spontaneous	Leaves	SW	1	0.37	Pomiunva et al., 2017
Bip***		n (Fo)		/Cultivated			-		,,,
Vitellaria paradoxa C.F.	Sapotaceae	Egui êmi (Id),	Tree	Spontaneous	Roots,	SW, V	3	1.10	Ojo et al., 2021
Gaertn. ssp. Paradoxa*		Karité (Fr)		/Agrosystem	Barks				
Voacanga africana	Apocynaceae	Agbossou	Shrub	Spontaneous	Roots	SW, EE	6	2.21	Brunetti <i>et al.,</i> 2020
Stapf.**		ningla (Fo)	<u> </u>			014			
Ximenia americana L.**	Olacaceae	Iwewe oko (Id)	Shrub	Spontaneous	Roots	SW	1	0.37	Togola <i>et al.,</i> 2020
Xylopia aethiopica	Annonaceae	Kpédjélékoun	Tree	Spontaneous	Fruits	SW, EE, V	22	8.09	Adienbo <i>et al.</i> , 2013
(Dunal) A. Rich.***+		(Fo), Orhoun (Id)							
Zanthoxylum	Rutaceae	Egui ata (Id).	Shrub	Spontaneous	Roots.	SW, I	14	5.15	Ombito 2021
zanthoxyloides (Lam.)		Hêtin (Fo),			Stem,		•	- 0	

2022

Zepernick & Timler*		Salé salé (If)			Leaves,				
					Barks				
Zea mays L.***+	Poaceae	Maïs (Fr)	Herb	Cultivated	Fruits	SW, EE	13	4.78	Carro-Juárez et al.,
									2017
Zingiber officinale	Zingiberaceae	Dotè (Fo),	Herb	Cultivated	Rhizome	SW, EE	21	7.72	Alhowiriny et al., 2013
Roscoe***+		Atalè (Id),			s				Gurav <i>et al.,</i> 2020
		Ataribo (Ba),							
		Gingembre							
		(Fr)							

Botanical name:

*Aphrodisiac use of specie cited for the first time,

** Aphrodisiac use of specie previously cited but not yet confirmed scientifically,

***Aphrodisiac use of specie already evaluated scientifically +Commonly used species; Vernacular names: Fo=Fon, Id=Idaatcha, Ba=Bariba, Na=Nago, Fr=French, Wa=Waama, Nt=Natimba, Tch=Tchabè, Ho=Holli, Ich=Itcha, De=Dendi, An=Anii, If=Ifè, Aj=Adja, Lo=Lokpa, Pe=Peulh; Traditional uses: SW=Sexual weakness, SD= Lack of sperm, EE= Early ejaculation, I= Sexual Impotence, LL= Lack of libido, RP= Reduced penis size,

V= Vaginitis;

FC= Number of people having quoted the species; RFC= Relative Frequency of Citation.

This is not surprising considering the greatest number of medicinal plants commonly used from these taxa to treat several diseases in Benin and neighboring countries (Adomou *et al.*, 2012; Laleye *et al.*, 2015; Ambé *et al.*, 2015). Fabaceae is especially reported as the third largest flowering plant family in the world (Ahmad *et al.*, 2016). Moreover, several ethnobotanical studies mentioned these taxa as containing more aphrodisiac plant species (Ipona *et al.*, 2018; Ajao *et al.*, 2019; Togola *et al.*, 2020; Valentin *et al.*, 2020). Furthermore, plants from these families were known to contain active metabolites which might also be the reason for their efficacy to treat sexual dysfunctions. However, assuming that medicinal properties are not randomly distributed in plant phylogenies (Saslis-Lagoudakis *et al.*, 2011), these findings need to be confirmed through bioscreening potential and bioinformatics approaches for example. More specifically, aphrodisiac plants from these dominant families especially those threatened in Benin (Adomou, 2005) should be more studied for their sustainable use.

Aphrodisiac plant species	Plant families	Vernacular names	Parts used	Ailments Treated	FC	Cpr (%)
Caesalpinia bonduc (L.) Roxb.	Fabaceae	Adjikoun (Fo), Egui adji (Id)	Roots	SW, EE, LS, SI	64	9.91
Musa sapientum auct. div.	Musaceae	Kokoé aloga (Fo), Agbagba (Na),	Fruits	SW, EE, LS, SI	54	11.76
		Bananier plantain (Fr)				
Garcinia kola Heckel	Clusiaceae	Ahowétin (Fo), Iwo (Id), Goror (Ba)	Seeds	SW, EE, LS, RP	46	8.98
Aframomum melegueta (Roscoe) K.	Zingiberaceae	Atakoun (Fo) Iro guirou (Ba)	Fruits, seeds,	SW, EE, LS, SI, F	33	8.36
Schum.						
Cyperus esculentus L.	Cyperaceae	Ofio (Id), Fio (Fo), souchet (Fr)	Stem tubers	SW, EE, LS, SI	32	7.43
Borassus aethiopum Mart.	Arecaceae	Agontin (Fo), Egui Agbon (Id),	Hypocotyls,	SW, EE, SI	31	5.26
		Rônier (Fr)	Roots			
Manihot esculenta Crantz	Euphorbiaceae	Logo (Ba), Finyin (Fo), Adjagoun	Root tubers		30	6.19
		(Id), Manioc (Fr)		SW, LS, SI		
Cissus populnea Guill. & Perr.	Vitaceae	Assankan (Fo), Gborgorlor (An),	Stems, Roots	SW, EE, LS	24	5.26
		Obè ordè (Id), Orlor (Na)				
Prosopis africana (Guill. & Perr.)	Fabaceae	Kakêtin (Fo), Acacayin (Id), Sorba	Stems, Roots,	SW, EE, LS, SI, LL, V	23	4.95
Taub.		(Ba)	Leaves			
Xylopia aethiopica (Dunal) A. Rich.	Annonaceae	Kpédjélékoun (Fo), Orhoun (Id)	Fruits	SW, EE, V	22	4.95
Acridocarpus smeathmannii (DC.)	Malpighiaceae	Gbanguinan (Fo)	Roots	SW, EE	21	3.41
Guill. & Perr.						
Zingiber officinale Roscoe	Zingiberaceae	Dotè (Fo), Atalè (Id), Ataribo (Ba),	Rhizomes	SW, EE	21	4.64

Table 3. List of commonly used aphrodisiac plants.

		Gingembre (Fr)				
Cocos nucifera L.	Arecaceae	Agokintin (Fo), Kpaakpa (Ba),	Fruits, Roots	SW	20	4.33
		Cocotier (Fr)				
Imperata cylindrica (L.) P. Beauv.	Poaceae	Sè (Fo),	Rhizomes	SW, EE, LS, SI	20	4.95
		Igan (Id),				
		Chiendent				
		(Fr)				
Phoenix dactylifera L.	Arecaceae	Dattier (Fr), Giyofopor (An)	Fruits	SW, EE	19	3.41
Annona senegalensis Pers.	Annonaceae	Gniglo (Fo), Otribobo (Id), Bahtokor		SW, LS, V	18	1.86
		(Ba), Winrébou (Wa), Nanmoubou (Nt)	Leaves, Roots			
Cola acuminata (P. Beauv.) Schott &	Malvaceae	Obi (Id), Vi (Fo)	Seeds	SW, EE, LS	17	3.41
Endl.			D			
Elaeis guineensis Jacq.	Arecaceae	Egui ekpe (Ida), Detin (Fon),	Roots,	SW, LS, SI	17	4.64
Completion buters C. Der	Debreelesses	Palmier a hulle (Fr)	Flowers, Seeds			
Carpolobia Iulea G. Don	Polygalaceae	Aviatin (F0), Attendumtendum (H0),	Roots, Stems	SW, LS, SI	10	2.79
Bachusermus lineslatus (Daena)	Annonaceae	Sassankoun (Fo), Ariwo (Id)	Dhinomon	SW, EE, LS	10	3.10
Bullock	Asciepiadaceae	Agboaguin (Fo), Tchene (Ida), Sonrouwrobou (De)	Knizomes	SW, EE, LS, SI	16	3.72
<i>Sarcocephalus latifolius</i> (Sm.) E. A. Bruce	Rubiaceae	Kodor (Fo), Igbêssin (Id)	Roots	SW, EE	15	1.24
Allium cepa L.	Alliaceae	Ayoma (Fo), Mansa (Id)	Bulbs	SW, EE, PR	14	3.10
Khaya senegalensis (Desr.) A. Juss.	Meliaceae	Agao (Na), Kahi (Pe), Hèlemon (Lo), Fèlè (De)	Bark, Roots	SW, EE	14	2.17
Moringa oleifera Lam.	Moringaceae	yorouyara (Ba), Yovokpatin (Fo), Moringa (Fr)	LeavesSeeds, Roots	SW, EE	14	3.72
Cola nitida (Vent.) Schott. & Endl.	Malvaceae	Golotin (Fo), Goro (Id)	Seeds, Barks	SW, EE, LS, SI	13	2.48
Gardenia erubescens Stapf & Hutch.	Rubiaceae	Kankranbor (Ida), Dakpla (Fo), Kikiyiba (If)	Roots	SW, EE, SI	13	4.02
Zea maus L	Poaceae	Maïs (Fr)	Fruits	SW EE	12	2 72
Abrus precatorius L	Fabaceae	Viviman (Fo) Odiou êga (Id)	Stem leafy	SW LS	12	2 10
Tamarindus indica L	Fabaceae	Diêviyi (Fo), Gouvêmou (An).	Root	SW. EE. SI	12	3.72
	Tubaccac	Poussika (Wa)	Branches, Barks	511, 22, 61		5.7-
Carica papaya L.	Caricaceae	Aguidi akor (Id; Tch), Papaye tibou (Wa)	Roots	SW, EE, SI	11	2.48
Carissa spinarum L.	Apocynaceae	Ahanzo (Fo)	Roots, Bark, Leaves	SW, EE, SI	11	1.55
Syzygium aromaticum (L.) Merr. & L.	Myrtaceae	Atikingbadota (Fo), Karoufou (Ba)	Flowers	SW, LS, SI	11	1.55

M. Perry

FC: Frequency species citations; Cpr: Contribution of the plant to aphrodisiac recipes;

Ethny: Fo=Fon, Id= Idaatcha, Ba= Bariba, Na=Nago, Fr=French, Wa= Waama, Nt= Natimba, Tch = Tchabè, Ho= Holli, Ich =Itcha, De= Dendi, An= Anii, If= Ife

Ailments treated: SW= Sexual weakness, EE= Early ejaculation, LS= Lack of Sperm, SI= Sexual impotence, LL= Lack of libido, RP= Reduced penis size, V= Vaginitis.

Considering the total of 148 aphrodisiac plants recorded, sixty-four (64, 43.24% of all recorded plants) included *Acridocarpus smeathmannii* (DC.) Guill. & Perr. (Kale *et al.*, 2018), *Allium cepa* L. (Adeyemi *et al.*, 2017), *Aloe vera* (L.) Burm. f. (Jadhav *et al.*, 2020), *Borassus aethiopum* Mart (Gbesso *et al.*, 2016), *Caesalpinia bonduc* (L.) Roxb (Gbankoto *et al.*, 2015), *Cissus populnea* Guill. & Perr. (Ojekale *et al.*, 2015), *Musa sapientum* auct. div. (Alabi *et al.* 2013) (Table 2) have previously been evaluated scientifically, thus lending credence to the folkloric usage of the plants. So, toxicological tests are required to demonstrate the safety of these plant parts used. Forty-seven plant species (47, 31.76% of all recorded species) have been cited as possessed aphrodisiac properties and are usually used in traditional medicine but not yet confirmed clinically (Table 2). They include species such as *Abelmoschus* esculentus (L.) Moench (Gupta et al., 2019), Annona senegalensis Pers. (Togola et al., 2020), Aristolochia albida Duch. (Gupta et al., 2019), Carissa spinarum L. (Demoze et al., 2021), Cerathoteca sesamoides Endl. (Abubakar et al., 2020), Dioscorea alata L. (Dey et al., 2016), Manihot esculenta Crantz (Togola et al., 2020) etc. These results attest that informants hold a good knowledge of plant species with aphrodisiac properties. This study reports for the first time the aphrodisiac use of 37 plants (25% of all recorded species) included *Combretum glutinosum* Perr., *Combretum micranthum* G.Don, *Dioscorea rotundata* Poir., Lantana trifolia L., *Monodora myristica* (Gaertn.) Dunal, *Tragia senegalensis* Müll.Arg. etc. (Table 2, Appendix). As a result, scientific evaluation of these claimed species is needed in order to uncover important leads in the fight against sexual dysfunction.

Table 4. List of credible aphrodisiac recipes (Ncr≥2).

Ailments treated		Credible recipes		Fr (%)	Ncr
	Composition	Preparation	Administration and		
		mode	dosage form		
Sexual weakness	Caesalpinia bonduc roots + "Sodabi"	Maceration	Drink one to two glass of 40 mL a few	6.7	15
			minutes before having sexual intercourse		
	Unripe fruits of Musa sapientum +	Powdering	Oral one tablespoon once daily with	6.25	14
	sugar cubes		porridge until cure		
	Manihot esculenta roots	Powdering	Orally taken during a week to strengthen	4.02	9
			his sexual vigor		
	Cissus polpunea stem	Powdering	Oral one tablespoon once daily with	3.57	8
			porridge or cow milk until cure		
	Garcinia kola seeds	Chewing	One or two seeds are chewed and fluid	3.57	8
			swallowed		
			a few minutes before having sexual		
			intercourse		
	Leaves of Annona senegalensis	Trituration + lemon	Drink the solution sometimes to keep his	2.68	6
		juice	virility		
	Hypocotyls of Borassus aethiopum	Prepared	Oral eat sometimes	2.23	5
	Roots of Desmodium gangeticum +	Maceration	Drink two glass of 40 mL twice daily until	2.23	5
	preferred alcoholic drink		cure		
	Hypocotyls of <i>Borassus aethiopum</i> +	Maceration	Drink one glass of 40 mL a few minutes	1.79	4
	<i>Cocos nucifera</i> kernel + alcoholic		before having sexual intercourse		
	drink				
	Hypocotyls of Borassus aethiopum +	Maceration	Drink one glass of 40 mL twice daily until	1.79	4
	Caesalpinia bonduc roots + Elaeis		cure		
	guineensis roots + Garcinia kola				
	seeds + Cyperus esculentus tubers +				
	Sodabl	D 1 '			
	Zingiber officinale rhizomes	Powdering	Oral one teaspoon once each morning	1.79	4
			with warm porridge during one week		
	Unripe truits of <i>Musa sapientum</i> +	Maceration	Drink one or two glass of 40 mL a few	1.79	4
	Despire dastulifong fruits		minutes before having sexual intercourse		
	+ Phoenix duciyijeru muits +				
	acthionum hypototyle + Tonia/				
	fermented starch liquid / "Sodabi"				
	Cupamic acculantic tubors	Chowing	Oral showed and fluid swallowed	1 70	4
	Cyperus escutentus tubers	Magazetian	Drink the solution comptimes to	1.79	4
	surcoceptatus tatyottus Roots +	Maceration	strongthon his social vigor	1.79	4
	Carcinia kola soods + Caecalninia	Magaration	Drink two glass of 40 mL doily until ouro	1.0.4	0
	bonduc roots + Cyperus esculentus	Maceration	Drink two glass of 40 mL daily until cure	1.34	3
	tubers + "Sodabi"				
	Carica panaya male flowers/roots +	Maceration	Drink two glass of 40 mL daily until cure	1.94	2
	alcoholic drink	macciation	Drink two glass of 40 mL daily until tule	1.04	3
	Cariesa eninarum roots + "Sodabi"	Maceration	Drink one glass of 40 mL twice daily until	1.94	2
	Curressu spinar and 10003 + 500001	Materation	cure	1.34	3
			Cuit		

<i>Musa spientum</i> unripe fruits +	Powdering	Oral one teaspoon twice daily until cure	1.34	3
<i>Dioscorea alata</i> tubers + sugar cubes				
Imperata cylindrica Rhyzomes +	Maceration	Drink one glass of 40 mL twice daily until	1.34	3
honey + 3 sugar cubes + "sodabi"		cure		
Caesalpinia bonduc roots (10 cm)	Chewing	Oral use as a toothpick in the evening	0.89	2
Acridocarpus smeathmanii roots +	Maceration	Drink one glass of 40 mL twice daily until	0.89	2
Pachycarpus lineolatus roots +		cure		
Caesalpinia bonduc roots + Garcinia				
kola seeds + Mondia <i>whitei</i> roots +				
Fermented starch liquid/Cocos				
nucifera wine / "sodabi"				
Abrus precartorius leaves	Trituration + honey	Orally taken one per week	0.80	2
Acridocarnus Smeathmanii roots +	Maceration	Drink one glass of 40 mL twice daily until	0.80	2
"Sodabi"	Macciation	cure	0.09	2
Casedhinia hondua nosta + Cunomua	Magazetian	Drink one glass of 40 mL twice doily until	0.90	0
Caesalpinia bonauc roots + Cyperus	Maceration	Drink one glass of 40 mL twice daily until	0.89	2
esculentus tubers + Sarcocepnatus		cure		
latifolius roots + Acriaocarpus				
smeathmannii roots + Garcinia kola				
seeds + "Sodabi"				
Annona senagalensis roots/leaves	Powdering	Oral one tablespoon once daily with	0.89	2
		porridge		
Prosopis africana dried stem (cut	Maceration	Drink one glass of 40 mL twice daily	0.89	2
into slices) + Caesalpinia bonduc		(morning & evening) until cure		
roots + 9 small Raphia sudanica				
fruits + "sodabi"				
Prosopis africana roots + Capsicum	Powdering	Oral one teaspoon once each morning	0.89	2
annum fruits + salt + burrowing	-	with warm porridge during one week		
squirrel penis + sheep penis				
Cassytha filiformis stems+ Musa	Powdering	Orally taken once daily with warm	0.80	2
sanientum unripe fruits		porridge		_
Zanthovulum zanthovuloides leaves	Trituration + lemon	Drink the solution each evening during	0.80	2
Zaninoxytum zaninoxytotaes teaves		one month	0.89	2
Cogos nucifara fruit kornel + sheep	Powdering	Orally taken with warm perridge	0.80	0
popia - burrowing aquirrel	Powdering	Orany taken with warm pornage	0.89	2
	Maaaatiaa	Deich and also of some the in definition of the	a 0a	
Eldels guineensis roots + Cocos	Maceration	Drink one glass of 40 mL twice daily until	0.89	2
nucifera roots + Khaya senegalensis		cure		
barks + Phoenix dactylifera truits +				
tonic or preference alcoholic drink				
<i>Eugenia aromaticum</i> buds	Powdering + honey	Oral one teaspoon with honey or lemon	0.89	2
		juice a few minutes before having sexual		
		intercourse		
Garcinia kola seeds + Xylopia	Maceration	Drink one glass of 40 mL twice daily until	0.89	2
aethiopica fruits + Monodora		cure		
<i>myristica</i> seeds + "Sodabi"				
Whole plant of Phyllanthus amarus +	Maceration	Drink one glass of 40 mL twice daily until	0.89	2
"sodabi"		cure		
Prosopis africana dried stem (cut out	Maceration	Drink one glass of 40 mL twice daily until	0.89	2
in small pieces) + rooster penis +		cure		
sugar cubes +" sodabi"				
Pterocarpus erinaceus barks + sugar	Powdering	Orally taken with warm porridge daily	0.89	2
cubes		until cure		
Zanthoxylum zanthoxyloides root	Maceration	Drink one glass of 40 mL twice daily until	0.80	2
barks + "sodabi"	maccration	cure	0.09	~
Cumulian pilona poota + Campolobia	Magazetian	Drink one glass of 40 mL turing daily until	0.90	0
hutag no sto - Candenia emploasano	Maceration	Drink one glass of 40 mL twice daily until	0.89	2
lutea roots + Garaenia erubescens		cure		
roots+ burrowing squirrel penis+				
sneep penis + preference alcohol				
arınk				
Cocos nucifera roots + Moringa	Maceration	Oral one teacup of 200 mL once a day	0.89	2
oleifera roots + fermented starch		until cure		
liquid				
Cymbopogon citratus stem	Chewing	Oral use as a toothpick in the evening	0.89	2

	Uapaca togoensis roots (10 cm)	Chewing	Oral use as a toothpick in the evening	0.89	2
	Dried Zea mays cobs + sheep penis +	Powdering	Oral one teaspoon with porridge once	0.89	2
	goat penis		daily		
Early ejaculation	<i>Musa sapientum</i> unripe fruits + sugar	Powdering	Orally take one teaspoon with warm	14.29	3
	cubes + burrower squirrel penis		porridge daily until cure		
	Moringa oleifera leaves + Zingiber	Maceration	Drink one glass of 40 mL twice daily until	9.52	2
	officinale rhizomes + "sodabi"		cure		
Lack of libido/	Abrus precartorius leaves	Trituration	Drink the juice	30	3
Anaphrodisia	Cymbopogon citratus leaves	Decoction	Orally taken as a tea daily to maintain his	20	2
			libido		
Lack of sperm	Annona senegalensis leaves	Trituration + lemon	Drink the solution with milk or not twice	22.22	6
		juice	a week		
	Rourea coccinea leaves	Powdering	Oral use with porridge / Tapioca/ milk	14 81	4
	Noureu coccineu icaves	rondering	oral use man porriage / ruproca/ mink	14.01	
	Abelmoschus esculentus fruit + salt	Chewing	Chew and absorb the juice	11.11	3
	Abelmoschus esculentus fruit + salt Dioscorea alata tubers + sugar cubes	Chewing Powdering	Chew and absorb the juice Oral one teaspoon with porridge once	14.01 11.11 11.11	3
	Abelmoschus esculentus fruit + salt Dioscorea alata tubers + sugar cubes	Chewing Powdering	Chew and absorb the juice Oral one teaspoon with porridge once daily	11.11 11.11	3
	Abelmoschus esculentus fruit + salt Dioscorea alata tubers + sugar cubes Manihot esculenta fresh tubers	Chewing Chewing Chewing	Chew and absorb the juice Oral one teaspoon with porridge once daily Chew and absorb the juice	11.11 11.11 7.41	3 3 2
	Abelmoschus esculentus fruit + salt Dioscorea alata tubers + sugar cubes Manihot esculenta fresh tubers Cissus populnea roots + fermented	Chewing Powdering Chewing Maceration	Chew and absorb the juice Oral one teaspoon with porridge once daily Chew and absorb the juice Oral one teacup of 200 mL once daily	14.01 11.11 11.11 7.41 7.41	3 3 2 2 2
	Abelmoschus esculentus fruit + salt Dioscorea alata tubers + sugar cubes Manihot esculenta fresh tubers Cissus populnea roots + fermented starch liquid	Chewing Powdering Chewing Maceration	Chew and absorb the juice Oral one teaspoon with porridge once daily Chew and absorb the juice Oral one teacup of 200 mL once daily until cure	14.01 11.11 11.11 7.41 7.41	3 3 2 2
Reduced penis	Abelmoschus esculentus fruit + salt Dioscorea alata tubers + sugar cubes Manihot esculenta fresh tubers Cissus populnea roots + fermented starch liquid Kigelia africana fruit (cut into slices)	Chewing Powdering Chewing Maceration Maceration	Chew and absorb the juice Oral one teaspoon with porridge once daily Chew and absorb the juice Oral one teacup of 200 mL once daily until cure Penis massage daily twice (morning and	14.01 11.11 11.11 7.41 7.41 57.14	3 3 2 2 4
Reduced penis size	Abelmoschus esculentus fruit + salt Dioscorea alata tubers + sugar cubes Manihot esculenta fresh tubers Cissus populnea roots + fermented starch liquid Kigelia africana fruit (cut into slices) + water + water	Chewing Powdering Chewing Maceration Maceration	Chew and absorb the juice Oral one teaspoon with porridge once daily Chew and absorb the juice Oral one teacup of 200 mL once daily until cure Penis massage daily twice (morning and evening) just after having bath until get	14.01 11.11 11.11 11.11 7.41 7.41 57.14	3 3 2 2 4

**Sodabi:* a sort of alcohol drink locally made in Benin from distilled palm wine; Fr: recipes frequency Ncr: number of one given recipe citations.

Growth forms of aphrodisiac plants reported

The growth forms of the reported species were herbs (31.08%), tree (27.70%), shrub (22.97%), climber (14.86%) and palm tree (3.38%) (Fig. 3). Similar results have been reported for aphrodisiac plants used in Ethiopia (Demoze *et al.*, 2021). Congruent with this result Ahmad *et al.*, (2009) suggested that plants with herbaceous life forms are the most

commonly used in traditional medicine all over the globe due to their wide distribution and easy collection. In addition, the highest use of herbaceous plants as compared to other growth forms could be due to their accessibility, the higher possibility of obtaining pharmacologically active compounds, and the sociocultural beliefs and practices of healers to treat the ailment (Abebe *et al.*, 2020).

Table 5. List of aphrodisiac plants and parts sold.

Approdicion planta	Ports sold	Plant status	Approdución planta	Ports sold	Plant
Apinocisiae plains	r arts solu	r lailt Status	Aphrodistae plants	r ai ts soiu	status
Abrus precartorius*	Leafy stem		Garcina kola *	Seeds	EW
Acridocarpus	Roots	EN	Gardenia erubescens*	Roots	
smeathmannii *					
Aframomum melegueta *	Fruits		Khaya senegalensis*	Barks	EN
Allium cepa*	Bulbs		Kigelia africana	Fruits	VU
Allium sativum	Bulbs		Lophira lanceolata	Barks	
Aristochia albida	Roots		Mondia whitei	Roots	EN
Borassus aethiopum*	Fruits	VU	Monodora myristica *	Seeds	EN
Caesalpinia bonduc *	Roots	EW	Musa sapientum*	Fruits	
Capsicum annum	Fruits		Pachycarpus lineolatus *	Rhizomes	
Carissa spinarum*	Roots	VU	Paullinia pinnata	Roots	
Carpolobia lutea*	Roots		Phoenix dactylifera*	Fruits	

Cassia sieberiana	Roots	Phyllanthus amarus	Leafy stem	
Cassytha filiformis	Stem	Piper guineense	Fruits	
Cissus populnea*	Stem	Prosopis africana*	Stem	
Cocos nucifera*	Fruits	Sarcocephalus latifolius*	Roots	
Cola acuminata *	Seeds	Securidaca	Roots	
		longepedunculata		
Cola nitida*	Seeds	Syzygium aromaticum*	Flowers	
Curculigo pilosa	Roots	Tetrapleura tetraptera	Fruits	
Cyperus esculentus*	Tubers	Uvaria chamae	Roots	
Dioscorea alata	Tubers	Voacanga africana	Roots	EN
Dioscorea dumetorum	Tubers	Xylopia aethiopica *	Fruits	VU
Entada gigas	Seeds	Zanthoxylum	Roots	EN
		zanthoxyloides		
		Zingiber officinale*	Rhizomes	

* Commonly used species; EN= Endangered, VU= Vulnerable, EW= Extinct in the Wild.

Aphrodisiac plant species were spontaneous (62.79%) and cultivated (31.40%) in the study area while 5.81% were found in agro systems. This shows that most aphrodisiac plants are wild and more harvested from natural ecosystems.

Plant parts and manner of use

The most common plant part used was root (68 species, 31.92%) followed by leaves (43 species, 20.19%), bark (26 species, 12.21%), fruits (19 species, 8.92%), stem (19 species, 8.92%), seeds (13 species, 6.10%) and rhizome/bulb/latex (10 species, 4.69%). The less represented parts were flowers (5 species, 2.35%), leafy stem (5 species, 2.35%) and the whole plant (1 species, 0.47%) (Fig. 4). These results were well illustrated by the greatest amount of roots observed among different plants parts sold through the surveyed markets. Similarly, in another studies, it was reported that the root was the predominant plant part used for erectile dysfunction (Kambalé, 2012; Ipona et al., 2018; Togola et al., 2020; Valentin et al., 2020). Therefore, the root appears as the plant part that contains more aphrodisiac-active ingredients. Leaves mostly used for aphrodisiac purposes were also cited by similar studies (Ajao et al., 2019; Demoze et al., 2021). This can serve basis for future phytochemical studies on underutilized parts such as leaves of species that only roots were usually used in aphrodisiac recipes in order to limit their destruction. Contrary to the devastating effect that the use of roots can cause to plant biodiversity, the high frequency of leaves used in recipes is a great advantage for the preservation of plant biodiversity because they are less dangerous apart from the flowering delay due to allocations.

Medicinal plant parts used in aphrodisiac recipes were prepared in various forms. The most frequent mode was maceration (38.72%) followed by powder (29.79%), decoction (11.28%), raw (10.64%), trituration (5.32%), soap (1.91%), juice (1.49%) and calcineration (0.85%) (Fig. 5). This is congruent with Ipona et al., (2018) who reported maceration as the main route of aphrodisiac remedies preparation. However, these results are contrary to a decoction or chewing obtained by similar studies as the main mode of aphrodisiac remedies preparation (Kambalé, 2012; Ajao et al., 2019; Togola et al., 2020; Valentin et al., 2020). Compared to these studies, our findings can result in the fact that the Benin Republic is not an Islamic country, so alcohol drinking is not an interdiction.

The maceration is alcoholic in most cases with the local drink "sodabi". For the present study, alcoholic maceration was the most suitable for aphrodisiac active compounds extracting from roots and made the use of remedies for a long time.

Factors	Modalities	Mean of plant number cited		P value
Education level	Illiterates	4.98±4 ^b	Df= 4, F= 4	4.20, p=0.001
	Primary level	3.52 ± 2.76^{a}		
	Secondary level	4.54 ± 4.91^{ab}		
	High level	3.87 ± 2.40^{ab}		
	literates	7.09±3.74°		
Climatic zones	Guinean zone	3.65 ± 2.49^{a}		
	Sudano-Guinean zone	4.26±3.80ª	Df= 2, chi-square	ed= 9.518, p= 0.008
	Sudanian zone	6.41±4.69 ^b		
Gender	Male	4.06±3.51ª	Df =269, 7	Γ= 19.23, p<0
	Female	8.16 ± 4.61^{b}		
Occupation	Traditional healers	$5.53 \pm 4.5^{\circ}$		
	Farmers	2.70 ± 1.47^{a}	Df=7, chi-squa	ared= 84.54, p<0
	Public servants	3.41 ± 3.03^{a}		
	Craftsmen	2.61 ± 1.41^{a}		
	Herb sellers	10.30 ± 3.24^{b}		
	Traders	3±1.82ª		
	Students	3.71 ± 3.03^{a}		
	Hunters	3.5 ± 1.76^{a}		
Marital status	Monogamous	4,41±4,41		
	Polygamists	$3,72\pm2,74$		
	Single	$3,42\pm2,47$	Df= 3, F= 3	1.17, p= 0.323
	Widower	$2,40\pm1,51$		
Category of age	Adult	4,77±4,14		
	Old	$4,50\pm 3,58$	Df=2, F=1	1.97, p=0.142
	Young	$3,29\pm2,25$		

Table 6. Means of aphrodisiac plants cited among education level, climatic zones and gender of informants.

*means±sd followed by the similar letter in the same factor are not significantly different at p < 0.05.

According to Lévy and Garnier (2006), the consumption of alcohol in moderate quantities could constitute substance-lifting inhibitions, which could amplify sensations and contribute to increased sexual arousal. Chikere et al., (2011) reported also that alcohol drinking enhances pleasure during the period of sex. But studies are needed in order to find a more suitable solvent for the human body other than alcohol which can be one cause of sexual weakness (bad quality and excessive drinking). This study suggests powdering as an alternative to alcohol. In agreement with this study, several ethnobotanical studies mentioned the oral route as the main administration route for erectile dysfunction (Togola et al., 2020; Valentin et al., 2020; Demoze et al., 2021). Ingredients included parts of wild animals (ivory and elephant penis, buffalo horn, horse penis, striped ground squirrel penis etc.), penis of domestic

120 **Batcho** *et al.*

animals (sheep, dog, rooster, duck etc.), mineral and similar elements (kaolin, white stone, spike etc.) and others elements such as eggs, cow's milk, honey, lemon juice, palm oil, sugar cube, shea butter, snail etc. They are sometimes associated in recipes to make them more efficiency. This is very dangerous and can lead to these wild animals' disappearance. Sensitization actions are needed in order to discourage this practice from reducing animal biodiversity.

The most common route of administration of aphrodisiac plants recipes was oral route (92.92%) followed by penis application (4.57%), vagina application (1.83%), body scarring (0.46%) and anal route (0.23%) (Fig. 6). Semilar results were found by several previous studies (Iponal *et al.*, 2018; Togola *et al.*, 2020; Valentin *et al.*, 2020; Demoze *et al.*, 2021).

Fig. 2. Diversity of aphrodisiac plants, for families with more than two species.

Disorders frequently treated by aphrodisiac plants and consensus evaluation on remedy

The total of 148 aphrodisiac plants recorded were used in the formulation of 324 recipes to treat mainly seven (7) ailments of which sexual weakness (86.40%) was the more frequent. Other sexual disorders treated were lack of sperm (14.71%), early ejaculation (11.03%), sexual impotence (9.56%), lack of libido (5.15%), reduced penis size (3.68%), vaginitis (2.57%), and vaginal dryness (0.37%). Informants agreed more in the treatment of sexual weakness (ICF=0.75>0.5) and vaginitis (|ICF|= 0.57>0.5). The informant consensus factors for the other ailments treated were 0.44, 0.29, 0.27, -0.41 and -0.26 respectively for reduced penis size, lack of libido, lack of sperm, sexual impotence and early ejaculation.

These results are congruent with McCabe *et al.* (2016) concerning premature ejaculation and erectile dysfunction as the most common sexual dysfunctions for men. In addition, erectile dysfunction is a serious public health problem that affects 150 million men in the world (Togola *et al.*, 2020). Women's ailments less cited may be due to their less representativeness in this study. It is possible that the proportion of women who speak out on an issue in traditional medicine is influenced by the subject himself, and in this case, sexual dysfunction is more easily discussed

topic for men than women (Valentin *et al.*, 2020).

Recipes involved one (1) to sixteen (16) aphrodisiac plants with two (2 ± 1) plants on average per recipe. Aphrodisiac plants with the highest Fidelity Level (100%) accounted for 56.08% (83/148) of all species recorded. High degree of consensus was observed among informants on the use of important number of aphrodisiac plants (64 species, 43.24%) to treat sexual weakness.

Fig. 3. Growth forms of inventoried taxa.

These species included *Sarcocephalus latifolius* and *Moringa oleifera* cited among the commonly used

species. For sexual impotence treated, nine (9) species received a high degree of informants' consensus (FL=100%). They were *Boerhavia diffusa* L., *Ctenium newtonii* Hack., *Evolvulus alsinoides* (L.), *Icacina oliviformis* (Poiret) Raynal, *Lantana trifolia* L., *Newbouldia laevis* (P.Beauv.) Seemann ex Bureau, *Plumbago zeylanica* L., *Sida cordifolia* L., and *Solanum nigrum* L. Early ejaculation was more treated with *Detarium microcarpum* Guill. & Perr., *Piliostigma thonningii* (Schumach.) Milne-Redh. (FL=100%, each) and *Sida acuta* Burm.f. ssp. *carpinifolia* (L.f.) Borss.Waalk. (FL=50%), the lack of sperm was more treated with *Cerathoteca sesamoides* Endl., *Entada gigas* (L.) Fawcett & Rendle (FL=100%, each) and *Abelmoschus esculentus* (L.) Moench (FL=66.67%), the reduced penis size was more treated with *Kigelia africana* (Lam.) Benth. (FL=66.67%), vaginitis was more treated with *Holarrhena floribunda* (G. Don) T. Durand & Schinz, *Acacia nilotica* (L.) Willd. ex Delile ssp. *adstringens* (Schumach. & Thonn.) Roberty and *Lippia multiflora* Moldenke (FL=100%, each) while the lack of libido was more treated with *Lawsonia inermis* L. and *Saccharum officinarum* (FL=100% each). The highest fidelity level (100%) obtained for some aphrodisiac plant species indicates that each of them was used to treat only one ailment. Lots of them were only cited by one informant.

Fig. 4. Percentages of aphrodisiac plants parts used.

Aphrodisiac plants commonly used

Based on the criteria defined, 33 plants were picked out as priority aphrodisiac plants and therefore commonly used in the study area. They included species such as *Caesalpinia bonduc* (L.) Roxb. (64 citations, Cpr=9.91%), *Musa sapientum* L. (54 citations, Cpr=9.91%), *Garcina kola* Heckel (46 citations, Cpr=8.98%), *Aframomum melegueta* (Roscoe) K Schum. (33 citations, Cpr=8.36%), *Cyperus esculentus* L. (32 citations, Cpr= 7.43%), *Borassus aethiopum* Mart. (31 citations, Cpr=5.26%)

(Table 3).

Aphrodisiac properties of twenty-two (22) species among them were already confirmed scientifically. These plants could be considered as promising candidates for the development and evaluation of new aphrodisiac remedies formulations. Nevertheless, to the best of our knowledge, no scientific study has been carried out to explore aphrodisiac properties of species *Manihot esculenta* (30 citations), *Prosopis africana* (23 citations), *Annona senegalensis* (18

citations), Elaeis guineensis (17 citations), Monodora myristica (16 citations), Pachycarpus lineolatus (16 citations), Khaya senegalensis (14 citations), Gardenia erubescens (13 citations), Abrus precatorius (12 citations), Carica papaya (11 citations) and Carissa spinarum (11 citations). In addition, species *Manihot esculenta, Monodora myristica* and *Pachycarpus lineolatus* were cited for the first time. Clinical trials are urgently necessary to demonstrate the effectiveness of their aphrodisiac bioactive compounds and strengthen these traditional use.

Fig. 5. Modes of recipes preparation reported to treat sexual dysfunction.

Credible recipes

By considering the values of recipes frequency, 42 recipes were selected as credible for sexual weakness out of the 224 recipes provided in total for that ailment. The number of credible recipes was 6/28 recipes cited, 2/21 recipes cited, 2/10 recipes cited and 1/7 recipes cited respectively for lack of sperm, early ejaculation, lack of libido and reduced penis size (Table 4). There were no high values of recipes frequency for sexual impotence (26 recipes recorded) and vaginitis (5 recipes recorded). Each recipe has been cited only once. The highest values of recipes frequency were obtained for the fruit of Kigelia africana (Fr= 57.14%) involved in the treatment of penis size reducing and for the leaves of Abrus precartorius (Fr= 30%) used for lack of libido recipes. As far as the lack of sperm treatment is concerned, the drinking of Annona senegalensis leaves juice after trituration received the high frequency (Fr= 22.22%).

123 Batcho et al.

Causes of sexual dysfunction according to informants

Several causes of sexual dysfunctions were cited by informants for both men and women. According to them, the causes of men's sexual dysfunction were mostly chronic diseases (20.83% of responses) such as hemorrhoids, diabetes, ulcers, hypertension, gonorrhea, chancroid, malaria, dysentery and hepatitis. Other causes cited were bad nutrition (19.79% of responses), mystical causes (13.54% of responses), alcoholism (11.46% of responses), intense physical activities (8.33% of responses), sex abuse (7.29% of responses), aging (5.21% of responses), others (side effects of some pharmaceutical drugs, masturbating, too long abstinence) (5.21% of responses), obesity (4.17%) of responses), psychological disorders (3.13% of responses), and heredity (1.04 % of responses). Regarding women, three mainly causes were cited of which diseases mainly infections (vaginal and uterus cancer,

hemorrhoids, myoma, fibroma) were mostly represented (63.64%). These were followed by menstrual troubles (22.73%) and another category of causes (13.64%) such as menopause, excision and unsuccessful abortion. Similar studies suggested that women and men with hemorrhoids (Abdelaziz et al., 2019), diabetes (Giuliano et al., 2004; Shiferaw et al., 2020; Djrolo et al., 2021), ulcers (Keller et al., 2012), cancer (Pizzol et al., 2020) and hypertension (Giuliano et al., 2004) had an increased prevalence of sexual dysfunction. These results suggested that sexual dysfunction treatment should be associate with these chronic diseases treatment.

Market data

A total of forty-five (45) aphrodisiac plants (30.40% of all recorded species) were inventoried through market surveys (Table 5). Twenty-five (25) aphrodisiac plant species commonly used (16.89% of

all species) had their parts sold from which twelve (12) species fall in the Red List of IUCN due to root, bark and/or fruit overexploitation: *Garcina kola* (EW) *Acridocarpus smeathmannii* (EN), *Khaya senegalensis* (EN), *Kigelia africana* (VU), *Mondia whitei* (EN), *Borassus aethiopum* (VU), *Monodora myristica* (EN), *Caesalpinia bonduc* (EW) *Carissa spinarum* (VU), *Voacanga africana* (EN), *Xylopia aethiopica* (VU) and *Zanthoxylum zanthoxyloides* (EN). In-depth, studies must be conducted especially implications of commercial extraction in the reproductive ecology of these plant species for conservation purposes.

According to van Andel *et al.*, (2015), in order to guarantee a continuous supply of herbal medicine in the future, appropriate management plans must be designed, for which specified information on species occurrence and extraction localities is needed.

Fig. 6. Modes of recipes administration reported to treat sexual dysfunction.

Effects of demographic factors on aphrodisiac plants' knowledge

The number of aphrodisiac plants recorded varied significantly among factors such as education level (Df= 4, F= 4.20, p= 0.001), climatic zones (Df= 2, chi-squared= 9.52, p=0.008), gender (Df= 269, T=

19.23, p<0) and the occupation (Df=7, chi-squared= 84.54, p<0) of informants (Table 6). Similar results were found by Laleye *et al.*, (2015), on the use of plants in the traditional treatment of diabetes in the Republic of Benin. These results suggest that informants' knowledge of aphrodisiac plants depends

on factors such as gender, education level, location and occupation of informants. There was no significant effect on the ability of informants from different marital status (Df=3, F= 1.17, p= 0.323) and different category of ages (Df=2, F= 1.97, p= 0.142) to mention aphrodisiac plants. This surprising may be probably due to the "snowball" method (Johnston and Sabin, 2010) used to identify informants. But, considering the number of aphrodisiac plants cited individually, it appears clearly that adults (123 plants cited) and old person (87 plants cited) had quoted more plants than young (51 plants cited). Regarding education level, literates and illiterates informants mentioned a higher number of plants suggesting that they know more aphrodisiac plants (Fig. 7). Concerning climatic zones, the high mean number of aphrodisiac plants were recorded in Sudanian zone (6.41 ± 4.69) followed by Sudano-Guinean (4.26 ± 3.80) and Guinean zones (3.65 ± 2.49). In addition, the mean number of aphrodisiac plants cited by women (8.16 ± 4.61) was higher than those cited by men (4.06 ± 3.51).

Fig. 7. Mean number of reported species per informant relative to (A) occupation, (B) education level, (C) age and (D) marital status.

The great number of women herb sellers involved in this study could explain that. However in term of number of plant cited, men (143 plants cited) had quoted more aphrodisiac plants than women (50 plants cited). Occupation also strongly influenced the number of plants mentioned by the informants. Herb sellers (10.30 ± 3.24) and traditional healers (5.53 ± 4.5) mentioned a higher number of aphrodisiac

plants suggesting that they know more medicinal plants than the others informants. It is not a surprising, because local markets of medicinal herbs concentrate, maintain and spread empirical knowledge on the use of plant genetic resources (Adomou *et al.* 2012). Furthermore, traditional healers are always included in many ethno-medicinal studies for their potential knowledge of medicinal plants and recipes (Semenya *et al.* 2012b; Laleye *et al.* 2015).

Conclusion

The ethnobotanical survey revealed the use of 148 plant species against sexual dysfunction in the Republic of Benin. Sixty-four (64) of them have previously been evaluated scientifically and the aphrodisiac use of 38 plants was reported for the first time. Thirty-three (33) plant species were the most commonly used. Aphrodisiac plant species were the most (20 species, 13.51%) was the dominant plant family and the most common plant part used were root (68 species, 31.92%) and leaves (43 species, 20.19%). Aphrodisiac plants were used for 324 recipes to treat seven (7) ailments of which the common was sexual weakness (86.40%).

The maceration (38.72%), powder (29.79%) and oral route (92.92%) were the main galenic forms and the main mode of administration, respectively. Knowledge of aphrodisiac plants depends on factors such as gender, education level, location and occupation of informants. The current findings may serve as references for the selection of plants for further pharmacological, toxicological, and phytochemical investigations in developing new plant-based drugs used for the treatment of Sexual dysfunction.

Acknowledgments

The authors wish to express humble and sincere thanks to the authorities of the Ministry of Higher Education and Scientific Research of Benin for providing financial support to carry out this research through the program «Appui aux doctorants» to IAB.

References

Abdelaziz AS, Ghoneem AM, Elewesy EA. 2019. The impact of surgical hemorrhoidectomy on male sexual function: A preliminary study. Urology annals **11**, 235–240.

http://dx.doi.org/10.4103/UA.UA 138 18

Abebe FB, Asfaw MM, Tolossa TT. 2020. Medicinal plant species used to treat tonsillitis in Ethiopia: a systematic review, Journal of Plant Studies 9, 34-42.

https://doi.org/10.5539/jps.v9n1p34

Abedi A, Parviz M, Karimian SM, Sadeghipour RHR. 2012. The effect of aqueous extract of *Phoenix dactylifera* pollen grain on sexual behavior of male rats. Journal of Physiology and Pharmacology Advances *2*, 235-242.

Abid M, Gosh AK, Khan NA. 2017. In vivo psychopharmacological investigation of *Delphinium denudatum* and *Amaranthus spinosus* extracts on Wistar rats. Basic and clinical neuroscience **8**, 503– 512.

http://dx.doi.org/10.29252/NIRP.BCN.8.6.503

Abubakar MA, Etonihu AC, Kigbu PE, Owuna JE, Audu SI. 2020. Phytochemical and antimicrobial analyses of leaf extracts of *Cerathoteca* sesamoides and Chromolaena odorata. International Journal of Research-GRANTHAALAYAH **8**, 65-74.: https://doi.org/10.29121/granthaalayah.v8.i8.2020.4 35

Abudayyak M, Nath E, Özhan G. 2015. Toxic potentials of ten herbs commonly used for aphrodisiac effect in Turkey. Turkish journal of medical sciences **45**, 496-506. http://dx.doi.org/10.3906/sag-1401-153.

Adefegha SA, Oyeleye SI, Oboh G. 2018. African crocus (*Curculigo pilosa*) and wonderful kola (*Buchholzia coriacea*) seeds modulate critical enzymes relevant to erectile dysfunction and oxidative stress. Journal of Complementary & Integrative Medicine 15.

https://doi.org/10.1515/jcim-2016-0159

Adegbehingbe KT, Adeleke BS, Fakoya S. 2017. Solid substrate fermentation of African Bush Mango (*Irvingia gabonensis*) seeds. Journal of Advances in Microbiology **3**, 1-9.

http://dx.doi.org/10.9734/JAMB/2017/33191

Adejuwon SA, Femi-Akinlosotu OM, Omirinde JO. 2015. Cisplatin-induced testicular dysfunction and its amelioration by *Launaea taraxacifolia* leaf extract. Andrologia **47**, 553-559. http://dx.doi.org/10.1111/and.12302.

Adelakun SA, Ogunlade B, Olawuyi TS, Ojewale AO. 2021. Aqueous extract of *Tetrapleura tetraptera* fruit peels influence copulatory behavior and maintain testicular integrity in sexually mature male Sprague-Dawley rats: Pro-fertility evaluation and histomorphometry evidence. Current Research in Physiology **4**, 7-16.

https://doi.org/10.1016/j.crphys.2021.01.001

Ademiluyi AO, Oyeleye SI, Oboh G. 2018. Antioxidant property and inhibition of erectile dysfunction-linked enzymes by some *Cola* and *Gacinia kola* spp. Applied Tropical Agriculture 2, 7-8.

Ademosun AO, Adebayo AA. Oboh G. 2019. *Anogeissus leiocarpus* attenuates paroxetine-induced erectile dysfunction in male rats via enhanced sexual behavior, nitric oxide level and antioxidant status. Biomedicine & Pharmacotherapy **111**, 1029-1035.

https://doi.org/10.1016/j.biopha.2019.01.022

Adeyemi OI, Ige OO, Agbede E, Adebajo CA. 2017. The effect of tardalafil on the aphrodisiac properties of Allium sativum and *Allium cepa* using behavioural models in rats. Nigerian Journal of Natural Products and Medicine **21**, 14-20. https://dx.doi.org/10.4314/njnpm.v21i1.2.

Adienbo OM, Nwafor A. Ronami SO. 2013. Effect of hydro-methanolic extract of Xylopia aethiopica on sexual behaviour in male Wister rats. International Journal of Advanced Biological Research **1**, 1078-1085. Adomou AC, Agbani OP, Sinsin B. 2011. Plantes [Plants]. In: Protection de la Nature en Afrique de l'Ouest [Nature conservation in West Africa]. Une Liste Rouge pour le Benin [Red list for Benin (in French and English)], M. Neuenschwander, B. Sinsin, and G. Goergen, eds., Ibadan, Nigeria: International Institute of Tropical Agriculture, p. 21-60.

Adomou AC. 2005. Vegetation patterns and environmental gradients in Benin: Implications for biogeography and conservation. Ph.D. thesis, Wageningen University, Pays-Bas, p. 1-150.

Adomou AC, Yedomonhan H, Djossa B, Legba SI, Oumorou M, Akoegninou A. 2012. Etude ethnobotanique des plantes médicinales vendues dans le marché d'Abomey-Calavi au Bénin. International Journal of Biological and Chemical Sciences 6, 745-72.

Agbodjento E, Klotoé JR, Sacramento TI, Dougnon TV, Déguenon E, Agbankpé J, Ahmad H, Khan SM, Ghafoor S, Ali N. 2009. Ethnobotanical study of upper Siran. Journal of Herbs, Spices & Medicinal Plants **15**, 86–97. https://www.tandfonline.com/doi/abs/10.1080/1049 6470902787519

Ahmad F, Anwar F, Hira S. 2016. Review on medicinal importance of Fabaceae family. Pharmacologyonline **3**, 151-157.

Ahmad S, Latif A, Qasmi IA. 2004. Effect of 50% ethanolic extract of *Syzygium aromaticum* (L.) Merr. & Perry.(clove) on sexual behaviour of normal male rats. BMC complementary and Alternative medicine **4**, 1-7.

http://dx.doi.org/10.1186/1472-6882-4-17

Ahokpossi Y. 2018. Analysis of the rainfall variability and change in the Republic of Benin (West Africa). Hydrological sciences journal **63**, 2097-2123. https://doi.org/10.1080/02626667.2018.1554286

Ajao AA, Sibiya NP, Moteetee AN. 2019. Sexual prowess from nature: A systematic review of medicinal plants used as aphrodisiacs and sexual dysfunction in sub-Saharan Africa. South African Journal of Botany **122**, 342-359.

Akobundu IO, Agyakwa CW. 1989. Guide des adventices d'Afrique de l'Ouest. Institut international d'agriculture tropicale Ibadan, Nigéria, 1-522 p.

Akoègninou A, Adjakidjè V, Essou JP. 2011. Les nouveaux ordres des angiospermes (Utilités des espèces). Fascicule à l'usage des étudiants de Licence et de Master en Sciences naturelles et Agronomie. 1ère édition. Bénin, 1- 216 p.

Akoègninou A, van der Burg WJ, Van der Maesen LJG. 2006. Flore Analytique du Bénin. Leiden, Netherlands: Backhuys Publishers, Cotonou & Wageningen, 1-1063 p.

Akomolafe SA, Oyeleye SI, Olasehinde TA, Oboh G. 2018. Phenolic characterization, antioxidant activities, and inhibitory effects of *Physalis angulata* and *Newbouldia laevis* on enzymes linked to erectile dysfunction. International Journal of Food Properties **21**, 645-654.

https://doi.org/10.1080/10942912.2018.1446149

Akpoka OA, Okwu, MU, Imade OS, Nwangwu SC, Omonegho EG, Uti C. 2019. A Comparative Study of the Antibacterial Effect of Three Ethnomedical Plants (*Ocimum gratissimum*, *Vernonia amygdalina* and *Cymbopogon citratus*) on Certain Clinical Isolates. Herbal Medicines 4, 65-75. http://dx.doi.org/10.22087/herb%20med%20j.v4i2.7 51.

Akre C, Berchtold A, Gmel G, Suris JC. 2014. The evolution of sexual dysfunction in young men aged 18–25 years. Journal of adolescent health **55**, 736-743.

Alabi AS, Omotoso GO, Enaibe BU, Akinola OB, Tagoe CNB. 2013. Beneficial effects of low dose *Musa paradisiaca* on the semen quality of male Wistar rats. Nigerian medical journal: journal of the Nigeria Medical Association **54**.

http://dx.doi.org/92.10.4103/0300-1652.110035

Albuquerque UP, da Cunha LVFC, De Lucena RFP, Alves RRN. 2014. Methods and techniques in ethnobiology and ethnoecology. Springer protocols handbooks, Brazil, 1-477 p.

Alhowiriny TA, Al-Rehaily AJ, El Tahir KE, Al-Taweel AM, Perveen S. 2013. Molecular mechanisms that underlie the sexual stimulant actions of ginger (*Zingiber officinale* Rosocoe) and garden rocket (*Eruca sativa* L.). Journal of Medicinal Plants Research 7, 2370-2379.

http://dx.doi.org/10.5897/JMPR12.821

Ambe AS, Ouattara D, Tiebre MS, Vroh BTA, Zirihi GN, N'guessan KE. 2015. Diversité des plantes médicinales utilisées dans le traitement traditionnel de la diarrhée sur les marchés d'Abidjan (Côte d'Ivoire). Journal of Animal and Plant Sciences **26**, 4081-4096.

Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Stuppner H. 2015. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology advances **33**, 1582-1614.

https://doi.org/10.1016/j.biotechadv.2015.08.001

Awodele O, Coulidiaty AGV, Afolayan GO, Agagu S, Omoseyindemi B, Busia K. 2019. Toxicological evaluation of *Picralima nitida* in rodents. Journal of ethnopharmacology **236**, 205-219.

Azubuike, NC, Okwuosa CN, Onwukwe OS, Onyemelukwe AO, Ikele I, Achukwu PU. 2018.

Effects of *Phyllanthus amarus* on epididymal sperm characteristics, testosterone levels and histology of reproductive organs of male rats. Pharmacologyonline **3**, 57-67.

Babu ND, Rao BG, Ramadevi D. 2017. Evaluation of Aphrodisiac Activity of Buchanania axillaris (Linn.) Leaves. International Journal of Pharmacognosy and Phytochemical Research **9**, 258-265.

https://www.researchgate.net/publication/31792391 Z

Baffoe M, Koffuor G, Baffour-Awuah A, Sallah L. 2021. Assessment of Reproductive Toxicity of Hydroethanolic Root Extracts of *Caesalpinia benthamiana, Sphenocentrum jollyanum*, and *Paullinia pinnata*. Journal of experimental pharmacology **13**, 223–234.

http://dx.doi.org/10.2147/JEP.S283557

Bhatt MD, Kunwar RM, Bussmann RW, Paniagua-Zambrana NY, Turi MA. 2021. *Evolvulus alsinoides* (L.) L. Ethnobotany of the Himalayas 1, 1–9. https://doi.org/10.1007/978-3-030-45597-2_99-2

Borokini TI, Clement M. 2012. Ethnomedicinal significance and conservation status of tree barks sold in herbal markets in Ibadan, Southwest Nigeria. International Journal of Current Research **4**, 31-36.

Brunetti P, Lo Faro AF, Tini A, Busardò FP, Carlier J. 2020. Pharmacology of Herbal Sexual Enhancers: A Review of Psychiatric and Neurological Adverse Effects. Pharmaceuticals **13**, 1-51. http://dx.doi.org/10.3390/ph13100309

Carro-Juárez M, Rodríguez-Santiago MG, Franco MA, Hueletl-Soto ME. 2017. Aphrodisiac activity of the aqueous crude extract of purple corn (*Zea mays*) in male rats. Journal of evidence-based complementary & alternative medicine **22**, 637-645. http://dx.doi.org/10.1177/2156587217708521

Chika CI, Luka M, Azubuike US. 2017. Effect of Securidaca longepedunculata root-bark methanol extract on testicular morphometry of New Zealand rabbits. Journal of veterinary medicine and animal health 9, 361-367.

http://dx.doi.org/10.5897/JVMAH2017.0586

Chikere EI, Mayowa MO. 2011. Prevalence and perceived health effect of alcohol use among male undergraduate students in Owerri, South-East Nigeria: a descriptive cross-sectional study. BMC Public health **11**, 1-6.

Dare A, Salami SA, Kunle-Alabi OT, Akindele OO, Raji Y. 2015. Comparative evaluation of the aphrodisiac efficacy of sildenafil and Carpolobia lutea root extract in male rabbits. Journal of intercultural ethnopharmacology **4**, 302-307.

http://dx.doi.org/10.5455/jice.20151101092942

De Souza S. 2008. Flore du Bénin (tome 3) : Noms des Plantes dans les Langues Nationales Béninoises (2 ème édition). Imprimerie Tundé, Cotonou, p. 1-679. **Dean J, Shechter A, Vertkin A, Weiss P, Yaman O, Hodik M, Ginovker A.** 2013. Sexual Health and Overall Wellness (SHOW) survey in men and women in selected European and Middle Eastern countries. Journal of international medical research **41**, 482-492.

http://dx.doi.org/10.1177/0300060513476429.

Demoze A, Tesfay HK, Tsgabu YA, Desilu MD, Dawit ZW, Gebrehiwot GT. 2021. Medicinal Plants Used for the Treatment of Erectile Dysfunction in Ethiopia: A Systematic Review, BioMed Research International **2021**, 1-12.

https://doi.org/10.1155/2021/6656406

Dey P, Roy Chowdhuri S, Sarkar MP, Chaudhuri, TK. 2016. Evaluation of antiinflammatory activity and standardisation of hydromethanol extract of underground tuber of *Dioscorea alata*. Pharmaceutical biology **54**, 1474-1482. http://dx.doi.org/10.3109/13880209.2015.1104702

Djrolo F, Gninkoun CJ, Gbessoua ML 2021. Sexual Dysfunction in Women with Diabetes: Prevalence and Associated Factors in the Diabetes Center in Cotonou – Benin. Diabetes Complications. **5**, 1-4.

Elkhalifa AEO, Alshammari E, Adnan M, Alcantara JC, Awadelkareem AM, Eltoum NE, Ashraf SA. 2021. Okra (*Abelmoschus Esculentus*) as a Potential Dietary Medicine with Nutraceutical Importance for Sustainable Health Applications. Molecules **26**, 1-21.

https://doi.org/10.3390/molecules26030696

Emmanuel HM, Gusau HL, Gidado LM, Ali B, Ugwah-Oguejiofor CJ, Yahaya A. 2017. Comparative Studies on Phytochemical and Antioxidant activities of *Tapinanthus globiferus Piliostigma thonningii* (A. Rich) and its host plant (Schum). Advance Pharmaceutical Journal 2, 179-184.

Enejoh OS, Ogunyemi IO, Bala MS, Oruene IS, Suleiman MM, Ambali SF. 2015. Ethnomedical importance of *Citrus aurantifolia* (christm) swingle. The Pharma Innovation Journal **4**, 1-6.

Etuk EU, Muhammad AA, Igbokwe V, Okolo RU. 2009. Sexual stimulatory effects of aqueous stem bark extract of *Lophira laceolata* in male Sprague Dawley rats. Journal of Clinical Medicine and Research **1**, 18-21.

Faleyimu OI, Oso AO. 2012. Medicinal utilization of herbs for the treatment of erectile dysfunction in Lere local government area of Kaduna State, Nigeria. Asian Journal of Natural & Applied Sciences **1**, 15-25.

Foster SR, Randle MM, Bazrah D, Riley CK, Watson CT. 2020. Effects of processing techniques on phytochemical content and nutritional composition of *Entada gigas* seeds. International Journal of Herbal Medicine **8**, 111-117.

Garaniya N, Bapodra A. 2014. Ethno botanical and Phytopharmacological potential of Abrus precatorius L.: A review. Asian Pacific journal of tropical biomedicine **4**, 27-34.

https://doi.org/10.12980/APJTB.4.2014C1069

Gauthaman K, Ganesan AP. 2008. The hormonal effects of *Tribulus terrestris* and its role in the management of male erectile dysfunction–an evaluation using primates, rabbit and rat. Phytomedicine **15**, 44-54. https://doi.org/10.1016/j.phymed.2007.11.011

Gbankoto A, Anago E, Houndjo PA, Adjahouinou DC, Gbaguidi F. 2015. Effect of Aqueous and Ethanolic Extracts of *Caesalpinia bonduc* Root on Sexual Behaviour of Male Wistar Rats. Inter National Journal of Multidisciplinary and

Rats. Inter National Journal of Multidisciplinary Current research **3**, 1137-1141.

Gbesso F, Adjatin A, Dansi A, Akoegninou A. 2016. Aphrodisiac Properties of Hypocotyls Extracts of *Borassus aethiopum* Mart (Arecaceae) Collected in Central of Benin Republic. International Journal of Current Microbiology and Applied Sciences **5**, 802-814.

http://dx.doi.org/10.20546/ijcmas.2016.503.093

Giuliano FA, Leriche A, Jaudinot EO, de Gendre AS. 2004. Prevalence of erectile dysfunction among 7689 patients with diabetes or hypertension, or both. Urology **64**, 1196-1201.

https://doi.org/10.1016/j.urology.2004.08.059

Gnanasekar N. 2015. Phytochemical and pharmacological evaluation of *Flacourtia indica* linn for anti–anxiety activity, Doctoral dissertation, SRI Ramachandra university 1-139 p.

Gnanglè CP, Glèlè RK, Assogbadjo AE, Vodounnon S, Yabi JA, Sokpon N. 2011. Tendances climatiques passées, modélisation, perceptions et adaptations locales au Bénin. Climatologie **8**, 27-41. https://doi.org/10.4267/climatologie.259

Gupta AK, Jain A, Singh R. 2019. Aphrodisiac: An Overview in Present Context of Ailment. Asian Pacific Journal of Health Sciences **6**, 184-193. http://dx.doi.org/10.21276/apjhs..6.2.28.

Gurav N, Gurav S, Wanjari M, Prasad S, Wayal S, Rarokar N. 2021. Development and evaluation of aphrodisiac potential of a classical ayurvedic formulation, 'Kaamdev ghrita'in rat model. Journal of Ayurveda and Integrative Medicine 12, 294-301.

https://doi.org/10.1016/j.jaim.2020.09.007

Houéhanou DT, Assogbadjo AE, Chadare FJ, Zanvo S, Sinsin В. 2016. Approches méthodologiques synthétisées des études d'ethnobotanique quantitative en milieu tropical. Annales des sciences agronomiques 20, 187-205.

INSAE. 2017. Synthèse des analyses sur les Caractéristiques Socio culturelles et economiques de la population au Bénin. Tom 3. National Institute of Statistics and Economic Analysis (INSAE), Bénin p. 1-20.

INSAE. 2016. Effectifs de la population des villages et quartiers de ville du Bénin, RGPH-4. Cotonou, Benin: National Institute of Statistics and Economic Analysis (INSAE), Bénin, 1-85 p.

Ipona EN, Inkoto CL, Bongo GN, Mulenga CM, Ilinga BL, Shetonde OS, Ngbolua KN. 2019. Ethno-Botanical survey and ecological study of medicinal plants traditionally used against erectile dysfunction in Democratic Republic of the Congo. Bioscience and Bioengineering **4**, 85-91.

Jadhav AS, Patil OA, Kadam SV, Bhutkar MA. 2020. Review on Aloe vera is used in medicinal plant. Asian Journal of Research in Pharmaceutical Science **10**, 26-30 http://dx.doi.org/10.5958/2231-5659.2020.00006.5

Jejurkar P, Mankar SD, Harshada J. 2020. A Review on Orange Peel Powder: It is best from waste. Research Journal of Pharmacognosy and Phytochemistry **12**, 224-226.

Johnston LG, Sabin K. 2010. Échantillonnage déterminé selon les répondants pour les populations difficiles à joindre. Methodological Innovations Online **5**, 38-48.

http://dx.doi.org/10.4256/mio.2010.0017.

Kale OE, Awodele O, Akindele AJ. 2019. *Acridocarpus smeathmannii* (DC.) Guill. & Perr. Root enhanced reproductive behavior and sexual function in male wistar rats: Biochemical and pharmacological mechanisms. Journal of ethnopharmacology **230**, 95-108.

https://doi.org/10.1016/j.jep.2018.10.024

Kamatenesi-Mugisha M, Oryem-Origa H. 2005. Traditional herbal remedies used in the management of sexual impotence and erectile dysfunction in western Uganda. African Health Sciences **5**, 40-49.

Kambalé MM. 2012. Plantes aphrodisiaques utilisées par les Kumu de Yoko (Ubundu, Province Orientale, RD Congo). RD Congo, 1-38 p.

131 Batcho et al.

Karaarslan C. 2020. Ocular Side Effects of Sildenafil That Persist Beyond 24 h—A Case Series. Frontiers in neurology **11**, 1-4. https://doi.org/10.3389/fneur.2020.00067

Kassier SM, Veldman FJ. 2014. When science meets culture: the prevention and management of erectile dysfunction in the 21st century. South African Journal of Clinical Nutrition **27**, 7-12.

https://journals.co.za/doi/pdf/10.10520/EJC152945

Keller JJ, Lin HY, Chung SD, Lin HC. 2012. A Population-Based Study on the Association between Gastric Ulcers and Erectile Dysfunction in Taiwan. The journal of sexual medicine **9**, 686-693. https://doi.org/10.1111/j.1743-6109.2011.02614.x

Kingsberg SA, Woodard T. 2015. Female sexual dysfunction: focus on low desire. Obstetrics & Gynecology 125, 477-486. http://dx.doi.org/10.1097/AOG.000000000000620

Koffuor GA, Boye A, Amoateng P, Ameyaw EO, Abaitey AK. 2012. Investigating the site of action of an aqueous extract of *Heliotropium indicum* Linn (Boraginaceae) on smooth muscles. http://197.255.68.203/handle/123456789/3327

Kumari P, Singh N, Kumar D. 2015. Synergistic analgesic activity of chloroform extract of Lawsonia inermis Linn. and *Chlorophytum borivilianum* Sant. Journal of Pharmacognosy and Phytochemistry **3**, 35-38.

Laleye FA, Mensah S, Assogbadjo AE, Ahissou H. 2015. Diversity, knowledge, and use of plants in traditional treatment of diabetes in the Republic of Benin. Ethnobotany Research and Applications 14, 231-57.

http://dx.doi.org/10.17348/era.14.0.231-257

Lévy J, Garnier C. 2006. Drogues, médicaments et sexualité. Drogues, santé et société 5, 11-48. https://doi.org/10.7202/015693

MacDonald I, Oghale OU, Oyiza BS. 2016. Species diversity in handling infertility in some Local Government Areas of Kano State, Nigeria. Annals of Biological Sciences **4**, 13-25. **Mafo AR, Otaru OW, Ajuma SF, Boniface MT, Adejoh IP.** 2020. Evaluation of the Fertility Activity of Aqueous Leaf Extract of *Desmodium velutinum* in Male Wistar Rats. Journal of Advance Researches in Biological Sciences **7**, 1-8.

Mahajan RT, Gajare SM. 2012. Manifestation of erectile dysfunction with adaptogenic antioxidant aphrodisiac plants. International Journal of Pharmaceutical and Biomedical Research **3**, 52-68.

Majid M, Ijaz F, Baig, MW, Nasir B, Khan MR, Haq IU. 2019. Scientific validation of ethnomedicinal use of *Ipomoea batatas* L. Lam. as aphrodisiac and gonadoprotective agent against bisphenol A induced testicular toxicity in male Sprague Dawley rats. BioMed research international **2019**, 1-21.

https://doi.org/10.1155/2019/8939854

Malviya N, Jain S, Gupta VB, Vyas S. 2011. Recent studies on aphrodisiac herbs for the management of male sexual dysfunction-a review. Acta Poloniae Pharmaceutica-Drug Research 68, 3-8. <u>https://ptfarm.pl/pub/File/Acta_Poloniae/2011/1/0</u> 03.pdf

Mathur M. 2013. Knowledge and Gaps for Herbal Zinc in Relation to Their Role in Regulation of Male Fertility: A Review. Trends in Biosciences **6**, 14-18.

Mbongue GYF, Kamtchouing P, Dimo T. 2012. Effects of the aqueous extract of dry seeds of *Aframomum melegueta* on some parameters of the reproductive function of mature male rats. Andrologia **44**, 53-58.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.14 39-0272.2010.01102.x

McCabe MP, Sharlip ID, Lewis R, Atalla E, Balon R, Fisher AD, Segraves RT. 2016. Incidence and prevalence of sexual dysfunction in women and men: a consensus statement from the Fourth International Consultation on Sexual Medicine 2015. The journal of sexual medicine 13, 144-152.

http://dx.doi.org/10.1016/j.jsxm.2015.12.034

Méa BAN, Ernest ZNG, Nazaire LG, Koffi K. 2017. Effects of the aqueous extract of *Sarcocephalus latifolius* (Smith) sheets on the reproduction parameters in male rats. The Pharma Innovation **6**, 85-91.

Micheli V, Sanogo R, Mobilia MA, Occhiuto F. 2020. Effects of *Kigelia africana* (Lam.) Benth. Fruits extract on the development and maturation of the reproductive system in immature male rats. Natural product research **34**, 162-166.

https://doi.org/10.1080/14786419.2019.1579809

Molkara T, Akhlaghi F, Ramezani MA, Salari R, Vakili V, Kamalinejad M, Motavasselian M. 2018. Effects of a food product (based on *Daucus carota*) and education based on traditional Persian medicine on female sexual dysfunction: a randomized clinical trial. Electronic physician **10**, 6577. http://dx.doi.org/10.19082/6577

Mulhall J, King R, Glina S. 2008. Importance of and satisfaction with sex among men and women worldwide: results of the Global Better Sex Survey. International Society for Sexual Medicine **5**, 788-795. http://dx.doi.org/10.1111/j.1743-6109.2007.00765.x.

Mvondo MA, Saah NH, Minko ES, Awounfack CF, Njamen D. 2019. Effects of Entada africana Guill. et Perr.(Mimosaceae) extracts on some symptoms of estrogen deficiency in ovariectomized Wistar rats. Cameroon Journal of Experimental Biology **13**, 1-9.

Napagoda MT, Sundarapperuma T, Fonseka D, Amarasiri S, Gunaratna P. 2018. An ethnobotanical study of the medicinal plants used as anti-inflammatory remedies in Gampaha District, Western Province, Sri Lanka. Scientifica **2018**, 1-8. https://doi.org/10.1155/2018/9395052

Nkouam GB, Adjoh G, Leudeu CBT, Kouebou C, Tchiegang C, Kapseu C. 2017. Local uses of kapok (*Ceiba pentandra* Gaertn.) Tree from the Northern Part of Cameroon. International Journal of Environment, Agriculture and Biotechnology **2**, 2214-2219.

http://dx.doi.org/10.22161/ijeab/2.4.82

Nwaehujor CO, Ezeja MI, Udeh NE, Okoye DN, Udegbunam RI. 2014. Anti-inflammatory and antioxidant activities of *Mallotus oppositifolius* (Geisel) methanol leaf extracts. Arabian Journal of Chemistry 7, 805-810.

https://doi.org/10.1016/j.arabjc.2012.03.014

Nwafor PA, Oniyide VK. 2017. Aphrodisiac effects of methanol extract of *Smilax kraussiana* root in experimental rats. African Journal of Biomedical Research **20**, 65-73.

Nwokike MO, Ghasi SI, Ogbonna AO, Anusiem CA. 2020. The Effect of *Imperata cylindrica* Root Aqueous Extracts on Serum Testosterone Levels of Hyperglycemic Rats. Journal of Pharmaceutical and Pharmacological Sciences **4**, 1-7.

http://dx.doi.org/10.29011/2574-7711.100087.

Obiandu C, Achinike PC. 2020. Evaluation of Sexual Behaviour in *Momordica Charantia* Treated Male Wistar Rats. Saudi Journal of Medical and Pharmaceutical Sciences **6**, 183-185.

http://dx.doi.org/10.36348/sjmps.2020.v06i02.007

Obiandu C, Adienbo OM, Chuemere AN. 2018. The effects of hydromethanolic extracts of uncoated and coated seeds of Garcinia kola on the sexual behaviour of male Wistar rats. International Journal of Innovative Research & Development **7**, 333-338. http://dx.doi.org/10.24940/ijird/2018/v7/i1/JAN18 066

Ochei JO, Enitan SS, Effedua HI, Omodiale PE, Giwa O. 2017. Libido Enhancement Potential of *Piper guineense* in Male Wistar Rats. Asian Journal of Biology **4**, 1-9.

Ojekale AB, Lawal OA, Jewo PI, Oguntola JA, Abdul LO. 2015. *Cissus populnea* (Guill & Perr): A study of the aqueous extract as potential spermatogenic enhancers in Male Wistar rats. American Journal of Medical and Biological Research **3**, 124-127.

http://dx.doi.org/10.12691/ajmbr-3-5-1

Ojewale AO, Olaniyan OT, Faduyile FA, Odukanmi OA, Oguntola JA, Dare BJ. 2014. Testiculo protective effects of ethanolic roots extract of *Pseudocedrela kotschyi* on alloxan induced testicular damage in diabetic rats. British Journal of Medicine & Medical Research **4**, 548-563.

Ojo OA, Ojo AB, Oyinloye BE, Ajiboye BO, Anifowose OO, Akawa A, Kappo AP. 2019. *Ocimum gratissimum* Linn. Leaves reduce the key enzymes activities relevant to erectile dysfunction in isolated penile and testicular tissues of rats. BMC complementary and alternative medicine **19**, 1-10. <u>https://doi.org/10.1186/s12906-019-2481-0</u>

Ojo O, Kengne MH, Fotsing MC, Mmutlane EM, Ndinteh DT. 2021. Traditional uses, Phytochemistry, Pharmacology and Other Potential Applications of *Vitellaria paradoxa* Gaertn. (Sapotaceae): A Review. Arabian Journal of Chemistry **14**, 1-27.

https://doi.org/10.1016/j.arabjc.2021.103213

OmbitoJO.2021.PhytochemistryandPharmacology of the Genus Zanthoxylum (Rutaceae):A Review. The Natural Products Journal 11, 21-43.:https://doi.org/10.2174/2210315509666191202095924

Omojokun OS, Famurewa AJ, Jaiyeoba OA, Oboh G, Agbebi OJ. 2019. Alkaloid extracts from Bitter leaf (*Vernonia amygdalina*) and Black nightshade (*Solanum nigrum*) inhibit phosphodiesterase-5, arginase activities and oxidative stress in rats penile tissue. Journal of food biochemistry **43**, 1-16.

http://dx.doi.org/10.1111/jfbc.12889

Onen P, Ocira D, Omara T, Nyeko J, Okwir A. 2021. Preliminary Phytochemical Screening of *Plumbago zeylanica* L. Roots and Its Aphrodisiac Effect in Male Rats. Asian Journal of Applied Chemistry Research **8**, 24-31.

http://dx.doi.org/10.9734/AJACR/2021/v8i33019

Owaba AD, Etim EI, Johnson EC, Umoh UF. 2021. Aphrodisiac agents used in traditional medicine and their mechanism of action-A Review. Journal of Pharmacognosy and Phytochemistry **10**, 126-153. <u>https://doi.org/10.22271/phyto.2021.v10.i3b.14085</u>

Parvez A, Azad MA, Islam MZ, Munna M MR, Shaheen SM, Rahman MM, Azad AK. 2019. A phytochemical and pharmacological review on *Trema orientalis*: a potential medicinal plant. Pharmacology Online **3**, 103-119.

Pizzol D, Xiao T, Lee S, Sánchez GFL, Garolla A, Parris C, Grabovac I. 2020. Prevalence of Erectile Dysfunction in Male Cancer: a Systematic Review and Meta-Analysis of Cross-Sectional Studies. British Journal of General Practice. *Accepted* Manuscript, 1-26.

https://doi.org/10.3399/bjgp20X71419

Pomjunya A, Ratthanophart J, Fungfuang W. 2017. Effects of *Vernonia cinerea* on reproductive performance in streptozotocin-induced diabetic rats. The Journal of Veterinary Medical Science **79**, 572-578.

Prabsattroo T, Wattanathorn J, Iamsaard S, Somsapt P, Sritragool O, Thukhummee W., Muchimapura S. 2015. *Moringa oleifera* extract enhances sexual performance in stressed rats. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology 16, 179-190.

http://dx.doi.org/10.1631/jzus.B1400197.

Prakash R, Dheeraj R, Muralidharan P, Karthickeyan K, Vijayakumar R, Prabu TP. 2015. Aphrodisiac activity of *Cocos nucifera* attentuates cerric sulphate induced infertility in male rats. Pharmacology, Toxicology and Biomedical Reports 1, 62-68.

http://dx.doi.org/10.5530/PTB.1.2.5

Rai A, Das S, Chamallamudi MR, Nandakumar K, Shetty R, Gill M, Kumar N. 2018. Evaluation of the aphrodisiac potential of a chemically characterized aqueous extract *of Tamarindus indica* pulp. Journal of ethnopharmacology **210**, 118-124.

https://doi.org/10.1016/j.jep.2017.08.016

Reddy MT, Kalpana M, Sivaraj N, Kamala V, Pandravada SR, Suni N. 2019. Indigenous traditional knowledge on health and equitable benefits of oil palm (*Elaeis* spp.). Open Access Library Journal **6**, 1-25.

https://doi.org/10.4236/oalib.1105103

Reddy SK, Kumar SA, Ganapaty S. 2012. Pharmacological screening of *Scoparia dulcis* roots for hypoglycaemic activity. International Journal of Pharmacy and Pharmaceutical Sciences **4**, 367-369.

Ribeiro GG, Pessôa LR, de Abreu MDC, Corrêa LBNS, Pereira AA, Chagas MA, Boaventura GT. 2018. Taro flour (*Colocasia esculenta*) increases testosterone levels and gametogenic epithelium of Wistar rats. Journal of developmental origins of health and disease **9**, 373-376.

Sabo SY, Otimenyin SO, Uguru MO, Bukar BB. 2018. Ethnobotanical Survey of Medicinal Plants Used as Aphrodisiacs in Bauchi Local Government Area. Journal of Complementary and Alternative Medical Research **4**, 1-13.

http://dx.doi.org/10.9734/JOCAMR/2017/39229.

Saslis-Lagoudakis CH, Klitgaard BB, Forest F, Francis L, Savolainen V, Williamson EM, Hawkins JA. 2011. The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: an example from Pterocarpus (Leguminosae). PloS one 6, 1-13.

http://dx.doi.org/10.1371/journal.pone.0022275

Segla KN, Adjonou K, Radji AR, Kokutse AD, Kokou K, Habou R, Mahamane A. 2015. Importance socio-économique *de Pterocarpus erinaceus* Poir. au Togo. European Scientific Journal 11, 199-217.

Seidu R, QuAinoo AK, Cobbina SJ, Quansah L. 2019. Phytochemical Screening and Antimicrobial Activity of False Yam (*Icacina oliviformis*) Extracts on Microbes. *Ghana* Journal of Science **60**, 24-31. https://dx.doi.org/10.4314/gjs.v60i2.3

Semenya SS, Potgieter MJ. 2013. Ethnobotanical survey of medicinal plants used by Bapedi traditional healers to treat erectile dysfunction in the Limpopo Province, South Africa. Journal of Medicinal Plants Research 7, 349-357.

http://dx.doi.org/10.5897/JMPR12.499

Semenya SM, Potgieter M, Tshisikhawe S, Shava A. 2012b. Medicinal utilization of exotic plants by Bapedi traditional healers to treat human ailments in Limpopo province, South Africa. Journal of Ethnopharmacology **144**, 646–655.

http://dx.doi.org/dx.doi.org/10.1016/j.jep.2012.10.0 05.

Semwal A, Kumar MS, Singh R. 2015. Influence of Chloroform Extract of *Sida acuta* Burm. Leaves on the sexual behavior of normal rats. African Journal of Pharmacy and Pharmacology **9**, 514-522.

http://dx.doi.org/10.5897/AJPP2015.4326

Septiyorini N, Purwono S, Rizal DM. 2020. The Effect of Black Pepper Fruits (*Piper nigrum* L.) on the Increase of Erection. Advances in Health Sciences Research **20**, 251-255. Atlantis Press.

https://doi.org/10.2991/ahsr.k.200204.054

Shiferaw WS, Akalu TY, Aynalem YA. 2020. Prevalence of erectile dysfunction in patients with diabetes mellitus and its association with body mass index and glycated hemoglobin in Africa: a systematic review and meta-analysis. International Journal of Endocrinology **2020**, 1-10.

https://doi.org/10.1155/2020/5148370

Shrivastava A, Singh S, Singh S. 2013. Phytochemical investigation of different plant parts of *Calotropis procera*. International Journal of Scientific and Research Publications **3**, 1-4.

Singh R, Singh S, Jeyabalan G, Ali A. 2012. An overview on traditional medicinal plants as aphrodisiac agent. Journal of Pharmacognosy and Phytochemistry **1**, 43-56.

Strasbourg. 2008. 1ères Assises Françaises de sexologie et de santé sexuelle, Paris, p 1-15.

Talaa S. 2009. Etude ethnopharmacologique des plantes aphrodisiaques. Enquête effectuée dans la région Casablanca-rabat durant la période entre 01/09/2008 et 30/03/2009. Doctoral dissertation. Université Mohammed V, p 1-205.

Tardío J, Pardo-de-Santayana M. 2008. Cultural importance indices: a comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain) 1. Economic Botany **62**, 24-39.

Togola I, Dembélé J, Daou C, Dénou A, Diarra N, Badiaga M, Sanogo R. 2020. Ethnobotanical Survey and Phytochemical Screening of Some Plants used in the Management of Erectile Dysfunction in Bwatun (Mali). Journal of Natural Product and Plant Resources **9**, 1-8.

Tshilanda DD, Inkoto CL, Mpongu K, Mata S, Mutwale PK, Tshibangu DST, Mpiana PT. 2019. Microscopic studies, phytochemical and biological screenings of *Ocimum canum*. International Journal of Pharmacy and Chemistry **5**, 61-67.

Uboh FE, Edet EE, Eteng MU, Eyong EU. 2010. Comparative effect of aqueous extract of *P. guajava* leaves and ascorbic acid on serum sex hormones levels in male and female rats. Journal of Applied Sciences Research **6**, 275-279.

Valentin BC, Gracia AA, Arlette KM, Salvius BA. 2020. Ethnobotanical study of medicinal plants used in the treatment of sexual dysfunctions in traditional medicine in Kampemba-Lubumbashi, DR Congo. World Journal of Advanced Research and Reviews 7, 16-28.

Van Andel TR, Croft S, van Loon EE, Quiroz D, Towns AM, Raes N. 2015. Prioritizing West African medicinal plants for conservation and sustainable extraction studies based on market surveys and species distribution models. Biological Conservation 181, 173-81.

http://dx.doi.org/10.1016/j.biocon.2014.11.015

Watcho P, Donfack MM, Zelefack F, Nguelefack TB, Wansi S, Nguola F, Kamanyi A. .2005. Effects of the hexane extract of *Mondia whitei* on the reproductive organs of male rat. African Journal of Traditional, Complementary and Alternative Medicines **2**, 302-311.

Watcho P, Nchegang B, Nguelefack TB, Kamanyi A. 2010. Évaluation des effets prosexuels des extraits de *Bridelia ferruginea* chez le rat mâle naïf. Basic and Clinical Andrology **20**, 209-215. http://dx.doi.org/10.1007/s12610-010-0094-z

Wolfe OA, Ijeoma UF. 2010. Effects of aqueous extracts of Irvingia gabonensis seeds on the hormonal parameters of male guinea pigs. Asian Pacific Journal of Tropical Medicine **3**, 200-204.

https://doi.org/10.1016/S1995-7645(10)60009-0

Woode E, Alhassan A, Abaidoo CS. 2011. Effect of ethanolic fruit extract of *Xylopia aethiopica* on reproductive function of male rats. International Journal of Pharmaceutical and Biomedical Research **2**, 161-165.

Yabi I, Afouda F. 2012. Extreme rainfall years in Benin (West Africa). Quaternary International 262, 39-43.

https://doi.org/10.1016/j.quaint.2010.12.010

Yovwin DG, Imarhiagbe FA, Obazee EM, Oguike TC. 2015. Erectile dysfunction in a sub-Saharan African population: Profile and correlates in a tertiary care hospital. Sahel Medical Journal **18**, 116-120.