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Abstract 
 

Ligninolytic enzymes as biocatalysts have the potential to replace conventional processes in several industries 

including the water purification industry especially in the treatment of dye effluent. Development of water 

treatment systems based on ligninolytic enzymes is a desirable option because ligninolytic enzymes can degrade 

dyes of diverse chemical structure and be used in a wide variety of industries. Studies were carried out to 

evaluate and screen for ligninolytic dye decolourisation capacity of Pleurotus ostreatus (P.ostreatus). Pure 

fungal cultures of P.ostreatus were screened for ligninolytic enzyme activity using solid phase decolourisation of 

aromatic food dyes. The assay was carried out on PDA plates with 100mg/l of individual commercial food dyes - 

Sunset Yellow, Orange C10 and Lemon Yellow. All the food dyes were effectively bleached or decolourised by 

fungal mycelia of P.ostreatus after 10 days of active growth in the dark at 25oC. The observation strongly 

suggests the presence of fungal peroxidase enzymes which play a role in the degradation of synthetic lignin or 

dyes. Lignin peroxidase (LiP) activity from crude enzyme extract was determined using the method of Tien and 

Kirk, 1988. An average LiP activity of 7.635U/ml was observed under Solid State Fermentation (SSF) by 

P.ostreatus in wheat bran/soya bean substrate (90:10) after 10 days of full substrate colonisation. In agreement 

with the results of other workers, the study indicates potential for P.ostreatus for industrial production of 

ligninolytic enzymes through solid state fermentation on locally available agricultural products. 
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Introduction 

Industries that use and manufacture dyes constitute a 

notable portion of economically important and 

environmentally significant commercial sectors in the 

world (Vishwakarma et al., 2012, Abdulla et al., 

2000, Ahlawat et al., 2006). Dyes, both natural and 

synthetic, are used extensively in the food industry, 

pulp and paper industry, cosmetic industry and 

textile industry amongst many others (Dzulkalfi, 

2012, Roushdy and Abdel-Shakour, 2011, Marina et 

al., 2010). A significant portion of these dyes is 

however, eventually discharged into the environment 

as industrial effluent (Ahlawat et al., 2006, Anliker, 

1979). This scenario creates a serious need for 

effective methods of clean up or removal of these dyes 

from the environment. In 2012, world production of 

dyes was estimated to be around one million tons 

(Vishwakarma et al., 2012) and is continually on the 

increase thus directly compounding the effects caused 

by dye pollutants in the environment (GonCalves et 

al., 2000, and Singh et al., 2010). 

 

In the food manufacturing industry, synthetic dyes 

are more widely used in place of natural dyes 

(Kiseleva et al., 2002). The availability of natural dyes 

is limited, but synthetic dyes can be manufactured at 

a larger scale and also possess other desirable 

attributes which include stability to light, temperature 

and resistance to microbial attack (Dzulkafli, 2012, 

Kiseleva et al., 2002). Synthetic food dyes are made of 

complex aromatic molecules and can be classified 

according to their chromophoric group as azo, 

anthraquinone, triarylmethane and phthalocyanine 

dyes (Liu et al., 2004). Azo dyes form the majority of 

dyes used in most manufacturing industries especially 

the food industry (Carliell et al., 1995, Chang et al., 

2001). These dyes are recalcitrant xenobiotics which 

are resistant to most conventional degradation 

processes (Fu and Tiraraghavan, 2001). The methods 

available for treatment of industrial effluent 

containing dyes cannot reduce the pollutants to 

required levels; they are not effective and also tend to 

be costly. In addition, most dyes are known to be toxic 

and carcinogenic (Novotny et al., 2006, Kariminaae-

Hamedaani et al., 2007). Their persistence in the 

environment is detrimental to living organisms and 

also affects the photosynthetic processes of aquatic 

plants (Vishwakarma et al., 2012). It is imperative 

therefore to develop methods that effectively remove 

dye pollutants from the environment. 

 

Although numerous physicochemical methods have 

been used for a long time in the treatment of waste 

water containing dyes, they are less favoured to 

biological methods (Gharbani et al., 2008, Roushdy 

and Abdel-Shakour, 2011). Biological methods have 

been found to be more satisfactory, effective and 

efficient (Banat et al., 1996) and thus have received 

attention as a preferred alternative for treating 

effluent containing dyes. Several microorganisms 

including fungi (e.g. Streptomyces spp, Aspergillus 

spp), bacteria (e.g. Proteus vulgaris, Streptococcus 

faecalis), yeast (Rhodotorula spp, Rhodosporidium 

spp) and algae (e.g. Chlorela spp, Spirulina spp) are 

reported to be effective bioremediators (Roushdy and 

Abdel-Shakour, 2011, Banat et al., 1996, Azmi, 1998, 

Alhassani et al., 2007, Ghasemi et al., 2010). Fungi 

however have exhibited greater potential and as a 

result they have been intensively studied for 

environmental bioremediation processes (Maciel et 

al., 2010). 

 

The white rot fungi, a group of diverse eco-

physiological fungi which are composed of 

basidiomycetes and litter decomposing fungi, have 

received a lot of attention due to their capacity to 

degrade synthetic chemicals such as azo dyes (Marina 

et al., 2010, Dzulkafli, 2012, Maciel et al., 2010).They 

possess a ligninolytic enzyme system secreting lignin 

peroxidase (LiP), manganese peroxidase (MnP), and 

laccase (Lac) which degrade synthetic dyes and dye 

based effluent. White rot fungi have an excellent 

ability to reduce environmental pollution and thus are 

an impressive alternative to the currently existing 

approaches of waste water treatment (Selvam et al., 

2003, Eichlerova, et al., 2007). Consequently, they 

have become a major area of research focus and a 

huge number of fungal strains have been investigated 
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for potential application in treatment of industrial 

waste water (Zeinab et al., 2013, Nadeem et al., 2014, 

Sadia and Asgher, 2011). Although various aspects on 

physiology, biochemistry, chemistry and genetics of 

the ligninolytic enzyme system of the white rot fungi 

have been studied, further research thrust is required 

for optimisation of parameters for sustainable 

commercialisation. The objective of this study was to 

screen for and evaluate ligninolytic enzyme activity in 

P. ostreatus mushroom as an initial step in a series of 

studies targeted towards the long term goal of 

biotechnological exploitation for large scale industrial 

and environmental application in our local 

circumstances. 

 

Materials and methods 

Strains and Preparation of Pure Cultures and 

Maintenance 

The fungal strain used in this study was propagated 

from sterile tissue of fresh basidiocarps of oyster 

mushroom, P. ostreatus which were sourced from a 

local grower. A pure culture of this P. ostreatus was 

prepared using the tissue culture method. A fresh and 

tender fruiting body was longitudinally split into two 

and using a sterile blade; a small piece of the 

mushroom tissue was excised and aseptically 

transferred to sterile agar plates of Potato Dextrose 

Agar (PDA) (OXOID, Ltd Basingstoke Hampshire, 

England) containing 300mg/ml ampicillin (Sigma, 

USA). The antibiotic was incorporated in the media to 

inhibit bacterial growth – however PDA plates 

without antibiotic were also used. The petri plates 

were incubated in the dark at 25oC. Fungal growth 

reached the edge of the plate after 10 days. Mycelium 

from the plates was aseptically transferred to PDA 

slants and again incubated in the dark at 25oC for at 

least one week to obtain pure stock cultures that 

would be used in subsequent stages of this work. 

 

Solid Phase Decolourisation Assay 

The pure fungal cultures of P. ostreatus were 

screened for ligninolytic enzyme production using 

solid phase decolourisation of aromatic food dyes. 

The assay was carried out on PDA plates with100mg/l 

of individual commercial food dyes - Sunset Yellow, 

Orange C10 and Lemon Yellow. The agar plates were 

aseptically inoculated at the centre with 1cm2mycelia 

plugs cut from actively growing fungal mycelia on 

agar plates. Inoculated petri plates with the same 

media but without the dyes and agar plates with the 

dyes but with no inoculum served as controls. The 

experiment was performed in triplicate for each 

culture. The plates were incubated in the dark at 25oC 

and observed for results after the plates were fully 

colonised at 10 days. 

 

Solid State Fermentation and Production of Enzymes 

Solid state fermentation (SSF) for enzyme production 

was achieved on medium containing 36g wheat bran 

mixed with 4g of soybean flour (i.e. 90% bran and 

10% soybean flour). The mixture was humidified with 

0.1M sodium phosphate (NaH2PO4) buffer added at 

60% v/w at pH 6.0. The medium was then sterilised 

by autoclaving at 120oC for 60 minutes in 1l 

Erlenmeyer flasks. The sterile medium was aseptically 

inoculated with 1cm2 discs of actively growing fungal 

mycelia on PDA plates. The flasks were incubated in 

the dark at 30oC for 10 days to achieve full 

colonisation. 

 

Preparation of Samples and Extraction of Enzymes  

After incubation, contents of the flask containing fully 

colonised SSF medium were dried in an oven for 24 

hours at 40oC. They were then ground into a powder 

in a coffee grinder for 2 minutes. The crude enzyme 

extract was obtained by soaking the ground medium 

in potassium phosphate buffer at pH 6.0 for 

15minutes.This was followed by centrifugation at 

6000 rpm for 15 minutes and filtration of the 

supernatant through Whatman No 1 filter paper to 

remove residual particles. The filtrate was stored in 

sterile glass bottles and stored in the refrigerator at 

4oC. This was regarded as the crude enzyme extract to 

be later used in subsequent enzyme activity assays. 

 

Assay for Lignin Peroxidase Activity 

Lignin peroxidase activity was determined by 

monitoring the H2O2 dependent oxidation of veratryl 
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alcohol to veratraldehyde according to Tien and Kirk, 

1988. The assay mixture contained (in a final volume 

of 2.5ml), 1.8ml of crude enzyme extract, 0.1ml of 

50mM veratryl alcohol, 0.5ml of 0.5M sodium 

tartrate buffer (pH 3.0) and 0.1ml of 10mM H2O2. 

Oxidation of the substrate at room temperature was 

measured by an absorbance increase at 310nm due to 

the formation of veratraldehyde. Controls without 

H2O2 were also used. One unit of enzyme activity 

(expressed as enzyme units per litre U/l) was 

considered as the amount of enzyme producing 1µmol 

of veratraldehyde per minute under the assay 

conditions with molar extinction ε 310 = 

9300/M/cm. 

 

Results and discussion 

Fungal Mycelial Growth 

The cultural methods used in this study for 

production of fungal mycelia from young and fresh 

fruiting bodies of P. ostreatus are routine and have 

been described by other workers, (Dhouib et al., 

2005,Shittu et al., 2005). The purpose of producing 

pure fungal mycelium was to obtain active and 

vigorous cultures that would rapidly colonise the 

Solid State Fermentation substrate for efficient 

enzyme production. Fungal mycelia of P. ostreatus 

was successfully grown without contamination on 

both PDA media with and without antibiotic 

suggesting that strict practice of aseptic technique 

may eliminate the need for antibiotic use in the 

establishment of fungal cultures. Thick cottony white 

fluffy mycelia covering the entire petri dish were 

produced within 10 days (Fig. 1).These visual 

observations are consistent with the results of other 

workers who recommend PDA as one of the most 

preferred media for tissue culture and maintenance of 

P. ostreatus (Mehta and Bhandal, 1988, Rehana et 

al., 2007, Maz Al et al., 2012). 

 

 

Fig. 1. Mycelia of P ostreatus growing in PDA plates on day 1 and after 10 days of incubation in the dark. 

 

Aromatic Dye Decolourisation  

The ability to decolourise dyes by the cultured P. 

ostreatus fungal mycelium was assayed on PDA 

plates containing aromatic food dyes; Sunset Yellow, 

Orange C10 and Lemon Yellow. These randomly 

selected food dyes, are commercially important dyes, 

with a wide range of uses both at household level and 

industrial scale. They, to a very significant extent, 

contribute to the challenges associated with waste 

water treatment and disposal (Marina et al., 2010, 

Gianfreda et al., 2003). The decolourisation 

experiments were performed in triplicate and 

assessed for visual disappearance of colour over a 10 

day period (Fig. 2). All the food dyes Sunset Yellow, 

Orange C10 and Lemon Yellow were effectively 

decolourised by fungal mycelia of P. ostreatus after 10 

days of active growth. The observation strongly 

suggested the presence of lignin modifying fungal 

peroxidase enzymes; laccase, manganese peroxidase 

and lignin peroxidase which play a role in the 

degradation of synthetic lignin or dyes (Roushdy and 

Abdel-Shakour, 2011).Our results indicated that the 

food dyes were degraded and decolourised under 

ligninolytic conditions - the excellent potential of 

oyster mushroom (P. ostreatus) in dye 

decolourisation was thus exhibited. Research in other 

laboratories has also demonstrated the application of 

P. ostreatus in dye degradation (Erkurt et al., 2007, 
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Liu et al., 2004).This dye degrading property has 

earned P. ostreatus a place amongst strong 

candidates of industrially valuable enzyme producers 

(Maciel et al., 2010, Cho et al., 2009, Vikineswary et 

al., 2006) and it is indeed worthwhile exploiting it for 

commercial applications. 

 

 

Fig. 2. Solid phase decolourisation assay of P ostreatus on Lemon Yellow food dye. 

 

Enzyme Production in Solid State Fermentation 

Oyster mushrooms can successfully grow on a wide 

range of ligninocellulosic substrates due to their 

ability to produce and secrete extracellular oxidative 

enzymes which are capable of degrading lignin 

thereby releasing nutrients for fungal growth (Mane 

et al., 2007, Ferdinandi et al., 2014). In this study, P. 

ostreatus produced thick cottony white fluffy mycelia 

colonising the entire wheat bran substrate within 10 

days at 30oC and secreting dye degrading ligninolytic 

enzymes under the given conditions (Fig. 3). 

 

Fig. 3. Solid state fermentation of P.ostreatus on wheat bran and soya bean medium. 
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Other workers have previously reported a range of 12 

to 41 days for complete mycelial colonisation in 

various Pleurotus species grown on different types of 

lignocellulosic substrates (Ferdinandi et al., 2014, 

Mane et al., 2007, Mshandete and Cuff, 2008). The 

results of our current study suggest that the P. 

ostreatus fungal mycelium was capable of effectively 

decolourising commercial food dyes and also 

successfully growing on SSF media containing wheat 

bran supplemented with soya bean flour. This 

observation implies that P. ostreatus was capable of 

synthesising and secreting dye degrading ligninolytic 

enzymes under solid state fermentation on an 

agricultural based substrate. Furthermore, the 

effective dye decolourisation action demonstrated 

significant potential application of this fungus in 

water purification and waste water treatment. 

 

Lignin Peroxidase (LiP) Activity 

Enzymatic digestion of lignocellulosic substrates is a 

complex secondary metabolic mechanism which is 

brought about by a mixture of several extra cellular 

enzymes of which lignin peroxidases are the most 

crucial. In this study, an average lignin peroxidase 

activity of 7.635U/ml was observed under SSF by P. 

ostreatus in wheat bran/soya bean substrate (9:1) 

after 10 days of full substrate colonisation. Although 

various LiP enzyme yields on a variety of substrate 

formulations have been reported by other authors 

(Parani and Eyini, 2012, Sadia and Asgher, 2011, 

Widiastuti et al., 2008), our current results lie within 

the ranges reported by Ferdinandi et al., 2014 and 

Zeinab et al., 2013. The differences in enzyme yield 

could be due to the relative composition of the 

substrate polysaccharides and the supplements 

incorporated, the size of the substrates used, and 

probably the presence of natural inducers such as 

aromatic compounds (Papinutti and Forchiassin, 

2007). Results of the enzyme activity assay 

demonstrated that P. ostreatus produced ligninolytic 

enzymes of which the presence of LiP was confirmed. 

The results of our study have collectively indicated 

that ligninolytic enzymes play a role in the 

degradation of dyes by P. ostreatus. The study has 

generated adequate information for the formulation 

of further scientific investigations on relevant 

parameters of ligninolytic enzyme production for 

possible scaling up and commercialisation. 

 

Conclusion 

The study demonstrated that P. ostreatus can be 

successfully propagated on locally available residue 

based agricultural substrates and has the ability to 

produce ligninolytic enzymes which are effective for 

degradation of ligninolytic compounds. Ligninolytic 

enzymes as biocatalysts have the potential to replace 

the conventional processes of several industries 

including the water purification industry especially in 

the treatment of dye effluent in this era where 

excessive use of chemicals is being discouraged. The 

biotechnological significance of these enzymes has led 

to a drastic increase in the demand for ligninolytic 

enzymes in recent times. The development of 

processes based on these ligninolytic enzymes is 

indeed an attractive solution due to their potential in 

degrading dyes of diverse chemical structure. Due to 

their versatility, they will find use in a wide variety of 

industries. Extensive exploitation of P. ostreatus will 

contribute significantly to bioremediation whilst 

promoting the local mushroom production industry 

for sustainable economic growth. 
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