Effect of crude oil and simulated acid rain on the growth and physiology of Thaumatococcus daniellii

Paper Details

Research Paper 01/09/2012
Views (712)
current_issue_feature_image
publication_file

Effect of crude oil and simulated acid rain on the growth and physiology of Thaumatococcus daniellii

I.A. Ekpo, R.B. Agbor, E.C. Okpako, A. N. Osuagwu, B.E Ekanem, P.A. Otu
J. Biodiv. & Environ. Sci. 2(9), 21-25, September 2012.
Copyright Statement: Copyright 2012; The Author(s).
License: CC BY-NC 4.0

Abstract

This research work was carried out to investigate the effect of crude oil and simulated acid rain (SAR) on the growth and physiology of Thaumatococcus daniellii. 24 seedlings were planted on soil with different concentrations of crude oil 0.5ml, 2.5ml, 5.0ml, 7.5ml, 10ml, 12.5ml, 15ml and 17.5ml, while soil without crude oil served as the control (0ml). On the other hand, simulated acid rain (SAR) was prepared in varying pH values 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, and 5.4 while pH 7.0 served as the control. Results showed that there were no significant differences (p>0.05) in the morphological and physiological traits of plants treated with crude oil at all concentrations except in the percentage dry matter content which showed significance at p<0.05. Plants treated with simulated acid rain (SAR) showed significant differences (p<0.001) in petiole length, plant height, SO4-accumulation, Al3+, H+ accumulation and percentage dry matter content. Results indicated that Thaumatococcus daniellii can be exploited in phytoremediation. Also, there is an indication that the plant species cannot thrivefavourably on high acidic soil.

Collins CD. 2007.Implementing phytoremediation of petroleum hydrocarbons In: phytoremediation methods and Reviews. Methods in Biotechnology 23, 99-108.

Dejong E. 1980. The effect of crude oil spill on cereals. Environmental pollution 22, 187-196.

Fetzer JC. 2002. The chemistry and analysis of the large polycycle aromatic hydrocarbons. New York: Wiley.

Frick  CM,  Farrell  RE,  Germida JJ.  1999. Assessment of phytoremediation as an insitu technique for cleaning oil contaminated sites. Petroleum Technology Alliance Canada, Calgary.

Likens GE, Bormann FH. 1974. Acid rain: a serious regional environmental. Science 184 (41420), 1176-1179.

Mansfeld R. 1986. Verzeichnis landwirt-schaftlicher and gartnerischer Kulturpflanzen springer, Berlin Zed, pp 1690-1691.

Njoku  KL,  Akinola  MO,  Oboh  BO.  2008. Growth and performance of Glycine max L. (Merril) in crude oil contaminated soil augmented with cowdung. Nat. Sci. 6(1), 48-58.

Onwuema, I.C., Onochie B.E and Safowora E.A 1979. Cultivation of T.daniellii-the sweetener. World Crops, p, 106.

Quinones-aquilar, E.E., Ferra-cerrato R., Gani, R.F., Fernandez, L., Rodnguez, V.R. 2003. Emergence and growth of maize in crude oil polluted soil. Agrociencia 37, 585-594.

Sharma, B.K and Kair, H. 1994. Environmental chemistry. Fourth edition.

Simon W and Sunclair F.L. 2004. Local knowledge about Thaumatococcus daniellii (Benth) in Ghana. A guide to using the agroecological knowledge tool kit (AKT5). Scholl of agriculture and Forest science, University of Wales, Bangor.

Verma, A., Tewari A., Azami A. 2010. An impact of simulated acid rain of different pH levels on some major vegetable plants in India. Report and Opinions 2(4), 38-40.

Wiersema, H. and Leon B. 1999. World economic plants: A Standard Reference CRC press. p, 661.

Related Articles

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.