International network for natural sciences – research journal
  • mendeley icon
  • linkedin icon
  • google plus icon
  • twitter icon
  • google scholar icon
  • facebook icon

Marine woodborers: A source of Lignocellulolytic enzymes

By: M Bosire Carren

Key Words: Marine woodborers, Lignocellulolytic enzymes, Bioconversion

Int. J. Agron. Agri. Res. 15(4), 10-29, October 2019.

Certification: ijaar 2019 0200 [Generate Certificate]


Lignocellulose, the structural framework of woody plants biomass, is an inexhaustible, renewable, and ubiquitous organic material on earth. It is present in huge amounts as agricultural and forestry residues and wastes generated from different industries including solid municipal wastes. Lignocellulosic biomass is an alternative, economical and eco-friendly source for biofuel production and other bio-based products. It is mainly comprised of cellulose, lignocellulose, and lignin polymers. Each of its structural components is degraded by specific enzymes, such as cellulases, hemicellulases and lignolytic enzymes, and these constituents in turn can be utilized as a sustainable source of energy. Biofuel offers great promise to replace fossil fuels without causing the feud of food-fuel supply as they are derived from non-edible sources such as lignocellulosic biomass. For this reason, lignocellulolytic enzymes are the focus of present decade research. These enzymes are obtained from microorganisms especially bacteria, fungi, and actinomycetes. Marine woodborers digest wood and play a role in carbon cycling by bioconversion in the ocean. The woodborers also harbor microbial groups for production of lignocellulolytic enzymes. Various studies have evaluated the lignocellulose degrading ability of marine woodborers and that of microbial groups from their guts, which have potential in the production of value-added products. This paper is an overview of the diversity of marine woodborers endogenous lignocellulolytic enzymes as well as microbial groups from their guts that are sources of lignocellulolytic enzymes, along with a brief discussion on their hydrolytic enzyme systems involved in bioconversion.

| Views 7 |

| Views 7 |

Marine woodborers: A source of Lignocellulolytic enzymes

Abbas A, Koc H, Liu F, Tien M. 2005. Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanero-chaete chrysosporium grown on oak substrate. Current Genetics 47, 49-56.

Abdel-Aziz MS, Talkhan FN, Fadel M, AbouZied AA, Abdel-Razik AS. 2011. “Improvement of xylanase production from Streptomyces pseudogriseolus via UV mutagenesis,” Australian Journal of Basic and Applied Sciences 5(5), 1045-1050.

Ahmad B, Nigar S, Shah SSA, Bashir S, Ali J, Yousaf S, Bangash JA. 2013. Isolation and identification of cellu- lose degrading bacteria from municipal waste and their screening for potential antimicrobial activity. World Applied Sciences Journal 27(11), 1420-1426.

Ahmed S, Rahman MS, Hasan MM, Paul N, Sajib AA. 2018. Microbial degradation of lignocellulosic biomass: discovery of novel natural lignocellulolytic bacteria. BioTechnologia 99(2), 137-146.

Ahn Y, Lee SH, Kim HJ, Yang YH, Hong JH, Kim YH, Kim H. 2012. Electrospinning of lignocellulosic biomass using ionic liquid. Carbohydrate Polymers 88, 395-398.

Alessi A, Bird S, Oates NC, Li Y, Dowle AA, Novotny E, deAzevedo E, Bennett, JP, Polikarpov I, Young JPW, McQueen M, Simon J, Bruce NC. 2018. Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies. Biotechnology for biofuels 11, 166.

Ali BR, Zhou L, Graves FM, Freedman RB, Black GW, Gilbert HJ, Hazelwood GP. 1995. Cellulases and hemicellulases of the an-aerobic fungus Piromyces constitute a multiprotein cellu-lose-binding complex and are encoded by multigene families. FEMS Microbiology Letters 125, 15-21.

Anand AAP, Vennison SJ, Sankar SG, Prabhu DIG, Vasan PT, Raghuraman T, Geoffrey CJ, Vendan SZ. 2009. Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. Journal of Insect Science 10, 107.

Aoyama K, Yamada Y, Suzuki Y, Kato K, Nagai RK. 2014. “Newly-isolated laccase high productivity Streptomyces sp.grown in cedar powder as the sole carbon source,” International Journal of Waste Resources 4 (2), 1-5.

Arias ME, Arenas M, Rodríguez J, Soliveri J, Ball AS, Hernández M. 2003. “Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335.” Applied and Environmental Microbiology 69(4), 1953-1958.

Bairoch A. 1999. “Classification of glycosyl hydrolase families and index of glycosyl hydrolase entries in SWISS-PROT”. Nucleic Acids Research 27(1), 310-311.

Bajaj K, Singh NP. 2010. “Production of xylanase from an alkali tolerant Streptomyces sp. 7b under solid-state fermentation, its purification, and characterization,” Applied Biochemistry and Biotechnology 162, (6) 1804-1818.

Baldrian P, Valaskova V. 2008. Degradation of cellulose by basidio-mycetous fungi. FEMS Microbiology Review 32, 501-521.

Ball A, McCarthy AJ. 1988. “Saccharification of straw by actinomycete enzymes,” Journal of General Microbiology 134, 2139-2147.

Ball AS, Betts WB, McCarthy AJ. 1989. “Degradation of lignin-related compounds by actinomycetes,” Applied and Environmental Microbiology 55 (6), 1642-1644.

Bandounas L, Wierckx NJP, de Winde JH, Ruijssenaars HJ. 2011. Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnology 11, 94-104.

Bayer EA, Chanzy H, Lamed R, Shoham Y. 1998. Cellulose, cellulases and cellulosomes. Current Opinion in Structural Biology 8, 548-557.

Beeson WT, Vu VV, Span EA, Phillips CM, Marletta MA. 2015. Cellulose degradation by polysaccharide monooxygenases. Annual Reviews of Biochemistry 84, 923-946.

Beg QK, Bhushan B, Kapoor M, Hoondal GS. 2000. “Enhanced production of a thermostable xylanase from Streptomyces sp. QG- 11-3 and its application in biobleaching of eucalyptus kraft pulp,” Enzyme and Microbial Technology 27(7), 459-466.

Behera BC, Parida S, Dutta SK, Thatoi HN. 2014. Isolation and identification of cellulose degrading bacteria from Mangrove soil of Mahanadi river delta and their cellulase production ability. American Journal of Microbiology Research 2(1), 41-46.

Berens S, Kaspari H, Klemme JH. 1996. “Purification and characterization of two different xylanases from the thermophilic actinomycete Microtetraspora flexuosa SIIX,” Antonie van Leeuwenhoek 69(3), 235-241.

Besser K, Malyon GP, Eborall WS, Paro da Cunha G, Goncalves Filgueiras J, Dowle A, Cruz Garcia L, Page SJ, Dupree R, Kern M F, Gomez LD, Li Y, Elias L, Sabbadin F, Mohamad SE, Pesante G, Steele-King CG, Ribeiro de Azevedo E, Polikarpov I, Dupree P. & 3 others. 2018. Hemocyanin facilitates lignocellulose digestion by wood-boring marine crustaceans. Nature Communications 9, 5125.

Betcher MA, Fung JM, Han AW, O’Connor R, Seronay R, Concepcion GP, Daniel L, Distel DL, Haygood MG. 2012. Microbial Distribution and Abundance in the Digestive System of Five Shipworm Species (Bivalvia: Teredinidae). PLoS ONE 7(9).

Bhosale HJ, Sukalkar SR, Uzma SMZ, Kadam TA. 2011. “Production of xylanase by Streptomyces rameus grown on agricultural wastes,” Biotechnology, Bioinformatics and Bioengineering 1(4), 505-512.

Biswas R. 2014. Production of cellulolytic enzymes. In Bioprocessing of Renewable Resources to Commodity Bioproducts, 1st ed.; Bisaria, V.S., Kondo, A., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 105-132.

Boondaeng A, Tokuyama S, Kitpreechavanich V. 2011. “Xylanase from a novel strain of Microbispora siemensis DMKUA 245T: enzyme production and characterization,” in Proceedings of the 49th Kasetsart University Annual Conference 7, 308-315.

Boroujeni ME, Das A, Prashanthi K, Suryan S, Bhattacharya S. 2012. Enzymatic screening and random amplified polymorphic DNA fingerprinting of soil Streptomycetes isolated from Wayanad District in Kerala, India. Journal of Biological Sciences 12(1), 43-50.

Bosire CM, Abubakar L, Ochanda J. Bosire JO. 2013a. Lignocellulolytic activities of crude gut extracts of marine woodborers Dicyathifer mannii and Sphaeroma terebrans. International Journal of Biosciences 3(12), 134-144.

Bosire CM, Abubakar LU. 2017. Lignocellulolytic Activities of Culturable Marine Woodborers’ Gut Microbiota. International Journal of Mycology and Microbiology 5(5), 1-18.

Bosire CM, Ochanda J, Abubakar L, Bosire JO. 2013b. Culturable gut microbiota of marine wood boring invertebrates Dicyathifer manni (wright, 1866), Sphaeroma terebrans (Bate, 1866) and Cirolana sp. Journal of Biodiversity and Environmental Sciences 3(1), 12-20.

Brune A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology 12, 168-180.

Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R. 2011. Pathways for degradation of lignin in bacteria and fungi. Natural Products Reports 28, 1883-1896.

Calderón-Cortés N, Quesada M, Watanabe H, Cano-Camacho H, Oyama K. 2012. Endogenous plant cell wall digestion: a key mechanism in insect evolution. Annual Review of Ecology, Evolution, and Systematics 43, 45-71.

Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Research 37, 233-238.

Chahal DS. 1985. Solid-State Fermentation with Trichoderma reesei for Cellulase Production. Applied Environmental Microbiology 49, 205-210.

Chaudhary HS, Soni B, Shrivastava AR, Shrivastava S. 2013. “Diversity and versatility of actinomycetes and its role in antibiotic production,” Journal of Applied Pharmaceutical Science 3(8), S83-S94.

Chen CY, Huang YC, Wei CM, Meng M, Liu WH, Yang CH. 2013. “Properties of the newly isolated extracellular thermo-alkali-stable laccase from thermophilic actinomycetes, Thermobifida fusca and its application in dye intermediates oxidation,” AMB Express 3(1), 49.

Chen H, Li XL, Blum DL, Ljungdahl LG. 1998. Two genes of the anaerobic fungus Orpinomyces sp. strain PC-2 encoding cellulases with endoglucanase activities may have arisen by gene duplication. FEMS Microbiology Letters 159, 63-68.

Chun SG, Kok TT, Keat TL, Subhash B. 2010. Bio-ethanol from lignocellulose: Status, perspectives and challenges in Malaysia. Bioresource Technology 101, 4834-4841.

Coutinho PM, Henrissat B. 1999. Carbohydrate-Active Enzymes. An integrated Database Approach. In: Gilbert, H.J., Davies, G.J., Henrissat, B., Svensson, B. eds. Recent advances in carbohydrate bioengineering. The royal society of chemistry, Cambridge 3-12.

Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JEM, Zimmer M. 2015. Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology 29, 108-119.

Dantur KI, Enrique R, Welin B, Castagnaro AP. 2015. Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express 5, 15.

Das K, Hamedani M, Soudbakhsh K, Prashanthi S, Bhattacharya S, Suryan S. 2012. “Enzymatic screening, antibacterial potential and molecular characterization of Streptomyces isolated from Wayanad District in Kerala, India,” International Journal of Pharma and Bio Sciences 2, 201-210.

Das P, Solanki R, Khanna M. 2014. “Isolation and screening of cellulolytic actinomycetes from diverse habitats,” International Journal of Advanced Biotechnology and Research 15(3), 438-451.

Dashtban M, Schraft H, Qin W. 2009. Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives. International Journal of Biological Science 5(6), 578-595.

De Gonzalo G, Colpa DI, Habib MH, Fraaije MW. 2016. Bacterial enzymes involved in lignin degradation. Journal of Biotechnology 236, 110-119.

De Souza WR. 2013. Microbial Degradation of Lignocellulosic Biomass. In: Sustainable Degradation of Lignocellulosic Biomass-Techniques, Application and Commercialization. Intech 207-247.

De Souza WR, de Gouvea PF, Savoldi M, Malavazi I, Bernardes LAD, Goldman MHS, et al. 2011. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotechnology for Biofuels 4, 40.

De Vries RP, Visser J. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiology and Molecular Biology Reviews 65(4), 497-522.

De Vries RP. 2003. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production. Applied Microbiology and Biotechnology 61(1), 10-20.

Distel DL, Roberts SJ. 1997. Bacterial Endosymbionts in the Gills of the Deep-Sea Wood-Boring Bivalves Xylophaga atlantica and Xylophaga washingtona. Biological Bulletin 192, 253-261.

Doi RH. 2008. Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Annals of New York Academy of Science 1125, 267-279.

Dubey SK, Meena RK, Sao S, Patel J, Thakur S, Shukla P. 2014. Isolation and characterization of cellulose degrading bacteria from biogas slurry and their RAPD profiling. Current Research in Microbiology and Biotechnology 2(4), 416-421. e45309. doi:10.1371/journal.pone.0045309

Escudero LR, Daza ODS, Torrs JH. 2012. “Characterization of lignocellulose degrading rare actinobacteria: demonstration of laccase activity in two isolates of Tsukamurella sp and Cellulosimicrobium sp,” Revista Colombiana de Biotecnología 14(2), 70-80.

Fernandes TAR, da Silveira WB, Passos FML, Zucchi TD. 2014a. “Oligonucleotide primers for specific detection of actinobacterial laccases from superfamilies I and K,” Antonie Van Leeuwenhoek 106(2), 391-398.

Fernandes TAR, da Silveira WB, Passos FML, Zucchi TD. 2014b. “Laccases from Actinobacteria—what we have and what to expect,” Advances in Microbiology 4(6), 285-296.

Fernández LCL, Rodrigez J, Soliveri J, Copa-Patinà JL, Perez-Leblic MJ, Arias ME. 1995. “The effect of culture media on the production of xylan-degrading enzymes by Streptomyces chattanoogensis UAH 23.” Journal of Basic Microbiology 35, 405-412.

Franco Cairo JPL, Carazzolle MF, Leonardo FC, Mofatto LS, Brenelli LB, Gonçalves TA, Uchima CA, Domingues RR, Alvarez TM, Tramontina R, Vidal RO, Costa FF, Costa-Leonardo AM, Paes Leme AF, Pereira GAG, Squina FM. 2016. Expanding the knowledge on lignocellulolytic and redox enzymes of worker and soldier castes from the lower termite Coptotermes gestroi. Frontiers in Microbiology 7, 1518.

Gerbi C, Bata J, Breton A, Prensier G. 1996. Glycoside and polysac-charide hydrolase activity of the rumen anaerobic fungus Cae-comyces communis (Sphaeromonas communis SENSU ORPIN) at early and final stages of the developmental cycle. Current Microbiology 32, 256-259.

Geyer H, Becker G. 1980. Attractive effects of several marine fungi on Limnoria tripunctata. Material und Organismen 15(1), 53-78.

Ghodake GS, Kalme SD, Jadhav JP, Govindwar SP. 2009. Purification and partial characterization of lignin peroxidase from Acinetobacter calcoaceticus NCIM 2890 and its application in decolorization of textile dyes. Applied Biochemistry and Biotechnology 152(1), 6-14.

Godden A, Ball S, Helvenstein P McCarthy AJ, Penninckx MJ. 1992. “Towards elucidation of the lignin degradation pathway in actinomycetes,” Journal of General Microbiology 138(11), 2441-2448.

Grabski C, Jeffries TW. 1991. “Production, purification and characterization of β-1,4-endoxylanse of Streptomyces roseiscleroticus,” Applied and Environmental Microbiology 57, 987-992.

Grabski CIT, Forrester RP, Jeffries TW. 1993. “Characterization and N-terminal amino acid sequences of β-(1-4)endoxylanases from Streptomyces roseiscleroticus: purification incorporating a bioprocessing agent,” Protein Expression and Purification 4(2), 120-129.

Gravatis, J. 2004. Clustering of bio-products technologies for zero emissions and eco- efficiency. Industrial Crops and Products 20(2), 169-180.

Gregory ACE, O’Connell APO, Boldwell P. 1998. Xylans.  Biotechnology and Genetic Engineering Reviews 15, 439-455.

Griffith GW, Ozkose E, Theodoroua MK, Davies DR. 2009. Diversity of anaerobic fungal populations in cattle revealed by selective enrichment culture using different carbon sources. Fungal Ecology 2, 87-97.

Gunne M, Urlacher VB. 2012. “Characterization of the alkaline laccase Ssl1 from Streptomyces sviceus with unusual properties discovered by genome mining,” PLoS ONE 7(12), 1-8.

Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF. 2007. Towards    industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology 74(5), 937-53.

Hao J, Song F, Huang F, Yang C, Zhang Z, Zheng Y, Tian X. 2007. Production of laccase by a newly isolated deuteromycete fungus Pestalotiopsis sp. and its decolorization of azo dye. Journal of Industrial Microbiology and Biotechnology 34, 233-240.

Hao JJ, Tian XJ, Song FQ, He XB, Zhang ZJ, Zhang P. 2006. Involvement of lignocellulolytic enzymes in the decomposition of leaf litter in a subtropical forest. Journal of Eukaryotic Microbiology 53, 193-198.

Henrissat B, Callebaut I, Mornon JP, Fabrega S, Lehn P, Davies G. 1995. “Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases”. Proceedings of the National Academy of Sciences, U.S.A 92(15), 7090-7094.

Hernández-Coronado MJ, Hernández M, Centenera F, Pérez-Leblic MI, Ball A, S, Arias ME. 1997. “Chemical characterization and spectroscopic analysis of the solubilization products from wheat straw produced by Streptomyces strains grown in solid-state fermentation,” Microbiology 143(4), 1359-1367.

Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804-807.

Himmel ME. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5827), 804-807.

Ho MT, Weselowski BY, Ze C. 2017. Complete genome sequence of Acinetobacter calcoaceticus CA16, a bacterium capable of degrading diesel and lignin. Genome Announc 5(24), 417.

Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S. 2003. Lignocellulose biotechnology: Issues of bioconversion and enzyme production. African Journal of Biotechnology 2(12), 602-619.


Huang XF, Santhanam N, Badri DV, Hunter WJ, Manter DK, Decker SR, Vivanco JM, Reardon KF. 2013. Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnology and Bioengineering 110(6), 1616 -1626.

Iqbal M, Mercer DK, Miller PGG, McCarthy AJ. 1994. “Thermostable extracellular peroxidases from Streptomyces thermoviolaceus,” Microbiology 140(6), 1457-1465.

Isikgor FH, Becer CR. 2015. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry 6(25), 4497-4559.

Islam MA, Karim A, Woon CW, Ethiraj B, Cheng CK, Yousuf A, Khan MMR. 2017. Augmentation of air cathode microbial fuel cell performance using wild type Klebsiella variicola. RSC Advances 7, 4798.

Jeffrey LSH, Azrizal MR. 2007. “Screening for cellulase activities in actinomycetes isolated from different locations of Peninsular Malaysia,” Journal of Tropical Agriculture and Food Science 35(1), 153-157.

Jeffrey LSH, Norzaimawati AN, Rosnah H. 2011. “Prescreening of bioactivities from actinomycetes isolated from forest peat soil of Sarawak,” Journal of Tropical Agriculture and Food Science 39(2), 245-253.

Jeffrey LSH. 2008. “Isolation, characterization and identification of actinomycetes from agriculture soils at Semongok, Sarawak,” African Journal of Biotechnology 7(20), 3700-3705.

Jiménez DJ, Dini-Andreote F, van Elsas JD. 2014. Meta- taxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Biotechnology for Biofuels 7, 92.

Jing D, Wang J. 2012. “Controlling the simultaneous production of laccase and lignin peroxidase from Streptomyces cinnamomensis by medium formulation,” Biotechnology for Biofuels 5(15), 2-7.

Kern M, McGeehan JE, Streeter SD, Martin RNA, Besser K, Elias L, Eborral W, Malyon GP, Payne CM, Himmel ME, Schnorr K, Beckham GT, Cragg SM, Bruce NC, McQueen-Mason SJ. 2013. Structural characterization of the first Family 7 cellobiohydrolase from a marine animal reveals mechanisms of cellulase salt tolerance. Proceeding of National Academy of Science 110, 10189-10194.

Khan MH, Ali S, Fakhru’l-Razi A, Alam Z. 2007. Use of fungi for the bioconversion of rice straw into cellulase enzyme. Journal of Environmental Science and Health B 42, 381-386.

Khurana S, Kapoor M, Gupta S, Kuhad RC. 2007. “Statistical optimization of alkaline xylanase production from Streptomyces violaceoruber under submerged fermentation using response surface methodology,” Indian Journal of Microbiology 47(2), 144-152.

Kim JD, Yoon JH, Park YH, Kawai F, Kim HT, Lee DW, Kang KH. 2002. Identification of Stenotrophomonas maltophilia LK-24 and its degradability of Crystal Violet. Journal of Microbiology and Biotechnology 12(3), 437-443.

King AJ, Cragg SM, Li Y, Dymond J, Guille MJ, Bowles DJ, Neil C, Bruce NC, Graham IA, McQueen-Mason SJ. 2010. Molecular insight into lignocellulose digestion by a marine isopod in the absence of gut microbes. Proceedings of the National Academy of Science 107, 5345-5350.

Kluepfel D, Shareck F, Mondou F, Morosoli R. 1986. “Characterization of cellulase and xylanase activities of Streptomyces lividans,” Applied Microbiology and Biotechnology 24(3), 230-234.

Kohli U, Nigam P, Singh D, Chaudhary K. 2001. “Thermostable, alkalophilic and cellulase free xylanase production by Thermoactinomyces thalophilus subgroup C,” Enzyme and Microbial Technology 28(7-8), 606-610.

Kuhad RC, Gupta R, Singh A. 2011. Microbial cellulases and their industrial applications. Enzyme Research 2, 280696.

Kurzatkowski W, Torronen A, Filipek J, Mach RL, Herzog P, Sowka S, Kubicek CP. 1996. Glucose-induced secretion of Trichoderma reesei xylanases. Appl Environmental Microbiology  62, 2859-2865.

Kusakabie M, Kawaguchi T, Yasui T, Kobayashi T. 1977. “Purification and some properties of extracellular xylanase from Streptomyces sp. E-86,” Nippon Nogei Kagaku Kaishi 51(7), 429-437.

Lee J. 1997. Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology 56, 1-24.

Lee SS, Ha JK, Cheng KJ. 2001. The effects of sequential inoculation of mixed rumen protozoa on the degradation of orchard grass cell walls by anaerobic fungus Anaeromyces mucronatus 543. Canadian Journal of Microbiology 47, 754-760.

Leggio LL, Simmons TJ, Poulsen JC, Frandsen KE, Hemsworth GR, Stringer MA, von Freiesleben P, Tovborg M, Johansen KS, De Maria L, Harris PV, Soong CL, Dupree P, Tryfona T, Lenfant N, Henrissat B, Davies GJ, Walton PH. 2015. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nature Communications 6, 5961.

Li XL, Calza RE. 1991. Fractionation of cellulases from the ruminal fungus Neocallimastix frontalis EB188. Applied Environmental Microbiology                    57, 3331-3336.

Ljungdahl LG. 2008. The cellulase/hemicellulase system of the an-aerobic fungus Orpinomyces PC-2 and aspects of its applied use. Annals of the New York Academy of Science 1125, 308-321.

López-Fernández L, Rodríguez J, Ball AS, Copa-Patińo JL, Pérez-Leblic MI, Arias ME. 1998. “Application of the affinity binding of xylanases to oat-spelt xylan in the purification of endoxylanase CM-2 from Streptomyces chattanoogensis CECT 3336,” Applied Microbiology and Biotechnology 50(2), 284-287.

Lu L, Zeng G, Fan C, et al. 2014. “Diversity of two-domain laccase-like multicopper oxidase genes in Streptomyces spp.: identification of genes potentially involved in extracellular activities and lignocellulose degradation during composting of agricultural waste,” Applied and Environmental Microbiology 80(11), 3305-3314.

Madson PW, Tereck CD. 2004. Lignocelluloses Feedstocks for Ethanol Production: The Ultimate Renewable Energy Source. In: Ethanol as Transportation Fuel-Production Technology Developments. 2004 Annual Meeting. Austin Texas.

Mahmoud MG, Rifaat HM, El Sayed OH, El-Beih FM, Selim MS. 2013. “Effect of inducers and process parameters on laccase production by locally isolated marine Streptomyces lydicus from Red Sea, Egypt,” International Journal of ChemTech Research 5(1), 15-23.

Majumdar S, Lukk T, Solbiati JO, Bauer S, Nair SK, Cronan JE, Gerlt JA. 2014. Roles of small laccases from Streptomyces in lignin degradation. Biochemistry 53, 4047-4058.

Maryandani A. 2007. “Characterization of xylanase from Streptomycessp. strain C1-3,” HAYATI Journal of Biosciences 14(3), 115-118.

Mason MG, Ball AS, Reeder BJ, Silkstone G, Nicholls P, Wilson MT. 2001. “Extracellular heme peroxidases in actinomycetes: a case of mistaken identity,” Applied and Environmental Microbiology 67(10), 4512-4519.

McCarthy J, Peace E, Broda P. 1985. “Studies on the extracellular xylanase activity of some thermophilic actinomycetes,” Applied Microbiology and Biotechnology 2193(4), 238-244.

Morosoli R, Bertrand JL, Mondou F, Shareck F, Kluepfel D. 1986. “Purification and properties of a xylanase from Streptomyces lividans,” Biochemical Journal 239(3), 587-592.

Mussatto SI, Teixeira JA. 2010. Lignocellulose as raw material in fermentation processes. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology 897-907.

Niladevi KN, Prema P. 2005. “Mangrove Actinomycetes as the source of ligninolytic enzymes,” Actinomycetologica 19(2), 40-47.

Niladevi KN, Sheejadevi PS, Prema P. 2008. “Strategies for enhancing laccase yield from Streptomyces psammoticus and its role in mediator-based decolorization of azo dyes,” Applied Biochemistry and Biotechnology 151(1), 9-19.

Ninawe S, Kapoor M, Kuhad RC. 2008. “Purification and characterization of extracellular xylanase from Streptomycescyaneus SN32,” Bioresource Technology 99(5), 1252-1258.

Nishimoto A, Haga T, Asakura A, Shirayama Y. 2015. An experimental approach for understanding the process of wood fragmentation by marine wood borers in shallow temperate waters. Marine Ecology Progress Series 538, 53-65.

O’Connor RM, Fung JM, Sharp KH, Benner JS, McClung C, Cushing S, Lamkin LR, Fomenkov AI, Henrissat B, Londer YY, Scholz MB, Posfai J, Malfatti S, Tringe SG, Woyke T, Malmstrom RR, Coleman-Derr D, Altamia MA, Dedrick S, Kaluziak ST, Haygood MG, Distel DL. 2014. Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk. Proceedings of the National Academy of Science USA 111, E5096-E5104.

Ozkose E, Thomas BJ, Davies DR, Griffith GW, Theodorou MK. 2001. Cyllamyces aberensis gen.nov. sp.nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Canadian Journal of Botany 79, 666-673.

Padmavathi K, Thiyagarajan M, Ahamed NN, Palvannan T. 2011. “Production, optimization and partial purification of xylanase from streptomyces coelicolor using agriculture waste,” International Journal of Chemical and Pharmaceutical Sciences 2(1), 18-24.

Park YS, Kang SW, Lee JS, Hong SI, Kim SW. 2002. Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Applied Microbiology and Biotechnology 58, 761-766.

Parthasarathi R, Bellesia G, Chundawat SPS, Dale BE, Langan P, Gnanakaran S. 2011. Insights into hydrogen bonding and stacking interactions in cellulose. The Journal of Physical Chemistry A 115, 14191-14202.

Pasti MB, Pometto III AL, Nuti MP, Crawford DL. 1990. “Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut,” Applied and Environmental Microbiology 56(7), 2213-2218.

Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Stahlberg J, Beckham GT. 2015. Fungal cellulases. Chemical Reviews 115, 1308-1448.

Pillai NK. 1961. Wood – boring Crustacea of India. Manager of Publications, Govt. of India. Press, New Delhi 61.

Pollegioni L, Tonin F, Rosini E. 2015. Lignin-degrading enzymes. FEBS Journal 282, 1190-1213.

Pometto L, Crawford DL. 1986. “Catabolic fate of Streptomyces viridosporus T7A-produced, acid-precipitable polymeric lignin upon incubation with ligninolytic Streptomyces species and Phanerochaete chrysosporium,” Applied and Environmental Microbiology 51(1), 171-179.

Ponnambalam AS, Deepthi RS, Ghosh AR. 2011. Qualitative display and measurement of enzyme activity of isolated cellulolytic bacteria. Biotechnology, Bioinformation and Bioengineering 1(1), 33-37.

Popper ZA, Michel G, Hervé C, Domozych DS, Willats WG, Tuohy MG, Kloareg B, Stengel DB. 2011. Evolution and diversity of plant cell walls: from algae to flowering plants. Annual Review of Plant Biology 62, 567-590.

Prasad MP, Sethi R, Anand M, Padmavathi T. 2014. Degradation of agrowastes by lignocellulolytic activity of bacterial isolates from marine sources. Asian Journal of Plant Science and Research 4(2), 60-63.

Priya S, Stalin T, Selvam K. 2012. “Efficient utilization of xylanase and lipase producing thermophilic marine actinomycetes (Streptomyces albus and Streptomyces hygroscopicus) in the production of ecofriendly alternative energy from waste,” African Journal of Biotechnology 11(78), 14320-14325.

Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JC, Johansen KS, Krogh KB, Jørgensen CI, Tovborg M, Anthonsen A, Tryfona T, Walter CP, Dupree P, Xu F, Davies GJ, Walton PH. 2011. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proceedings of the National Academy Science USA 108, 15079-15084.

Ramachandra M, Crawford DL, Hertel G. 1988. “Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus,” Applied and Environmental Microbiology 54(12), 3057-3063.

Rifaat HM, Nagieb ZA, Ahmed YM. 2005. “Production of xylanases by Streptomyces species and their bleaching effect on rice straw pulp,” Applied Ecology and Environmental Research 4(1), 151-160.

Ristroph L, Humphrey AE. 1985. “Kinetic characterization of the extracellular xylanases of Thermomonospora sp,” Biotechnology and Bioengineering 27(6), 832-836.

Roberts JC, McCarthy AJ, Flynn NJ, Broda P. 1990. “Modification of paper properties by the pretreatment of pulp with Saccharomonospora viridis xylanase,” Enzyme and Microbial Technology 12(3), 210-213.

Roes-Hill ML, Rohland J, Burton S. 2011. “Actinobacteria isolated from termite guts as a source of novel oxidative enzymes,” Antonie van Leeuwenhoek 100(4), 589-605.

Roger V, Grenet E, Jamot J, Bernalier A, Fonty G, Gouet P. 1992. Degradation of maize stem by two rumen fungal species, Piromyces communis and Caecomyces communis, in pure cultures or in association with cellulolytic bacteria. Reproduction Nutrition Development 32, 321-329.

Rüttimann D, Seelenfreund, Vicuña R. 1987. “Metabolism of low molecular weight lignin-related compounds by Streptomyces viridosporus T7A,” Enzyme and Microbial Technology 9(9), 526-530, 1987.

Sabbadin F, Pesante G, Elias L, Besser K, Li Y, Steele-King CG, Stark M, Rathbone DA, Dowle A, Bates R, Shipway JR, Cragg SM, Bruce NC, McQueen Mason SJ. 2018. Uncovering the molecular mechanisms of lignocellulose digestion in shipworms. Biotechnology for biofuels 11, 59. doi: 10.1186/s13068-018-1058-3

Saha BC. 2000. Alpha-L-arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnology Advances 18, 403-423.

Saha BC. 2003. Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology 30, 279-291.

Saini A, Aggarwal NK, Sharma A, Yadav A. 2015. Actinomycetes: A Source of Lignocellulolytic Enzymes. Enzyme Research 279381. http://dx.doi. org/10.1155/2015/279381.

Sajith S, Priji P, Sreedevi S, Benjamin S. 2016. An Overview on Fungal Cellulases with an Industrial Perspective. Journal of Nutrition and Food Science 6, 1.

Sanchez C. 2009. Lignocellulosic residues: biodegradation and bio-conversion by fungi. Biotechnology Advances 27, 185-194.

Sandgren M, Stahlberg J, Mitchinson C. 2005. Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. Progress in Biophysics and Molecular Biology 89, 246-291.

Santhakumaran LN. 1996. Marine wood- borers from mangroves along Indian Coasts. Journal of Indian Academy of Wood Science 26, 1-14.

Santo M, Weitsman R, Sivan A. 2013. “The role of the copper-binding enzyme laccase in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber,” International Biodeterioration & Biodegradation 84, 204-210.

Sharma P, Bajaj BK. 2005. “Production and partial characterization of alkali-tolerant xylanase from an alkalophilic Streptomyces sp. CD3,” Journal of Scientific and Industrial Research 64(9), 688-697.

Shin JH, Choi JH, Lee OS,2009. “The rmostable xylanase from Streptomyces thermocyaneoviolaceus for optimal production of xylooligosaccharides,” Biotechnology and Bioprocess Engineering 14(4), 391-399.

Sinnott ML. 1990. “Catalytic mechanisms of enzymatic glycosyl transfer”. Chemical Reviews 90, 1171-1202.

Sivan A, Elad Y, Chet I. 1984. Biological control effects of a new isolate of Trichoderma harzianum on Pythium aphanidermatum. Phytopathology 74, 498-501.

Sokan-Adeaga AA, Ana GREE, Sokan-Adeaga MA, Sokan-Adeaga ED. 2016. Lignocelluloses: An Economical and Ecological Resource for Bio-Ethanol Production – A Review. International Journal of Natural Resource Ecology and Management 1(3), 28-144.

Song BC, Kim KY, Yoon JJ, Sim SH, Lee K, Kim YS, Kim YK, Cha CJ. 2008. Functional analysis of a gene encoding endoglucanase that belongs to glycosyl hydrolase family 12 from the brown-rot basidiomycete Fomitopsis palustris. Journal of Microbiology and Biotechnology 18, 404-409.

Sørensen A, Lübeck M, Lübeck PS, Ahring BK. 2013. Fungal beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 3612-631.

Sorieul M, Dickson A, Hill SJ, Pearson H. 2016. Plant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite. Materials 9(8), 618.

Strachan D, VanInsberghe, Williams D. 2012. “Ligninase activity is not consistently predicted by the presence of manganese coordinating residues in dyp-like proteins,” Journal of Experimental Microbiology and Immunology 16, 66-72.

Sunna A, Antranikian G. 1997. “Xylanolytic enzymes from fungi and bacteria.” Critical Reviews in Biotechnology 17(1), 39-67.

Sutherland JB, Blanchette RA, Crawford DL, Pometto III AL. 1979. “Breakdown of Douglas-fir phloem by a lignocellulose-degrading Streptomyces,” Current Microbiology 2(2), 123-126.

Tengerdy RP, Szakacs G. 2003. Bioconversion of lignocelluloses in solid substrate fermentation. Biochemical Engineering Journal 13, 169-179.

Thomas L, Joseph A, Arumugam M, Pandey A. 2013a. “Production, purification, characterization and over-expression of xylanases from actinomycetes,” Indian Journal of Experimental Biology 51(11), 875-884.

Thomas L, Sindhu R, Pandey A. 2013b. “Identification and characterization of a highly alkaline and thermotolerant novel xylanase from Streptomyces sp.,” Biologia 68(6), 1022-1027.

Tokuda G, Miyagi M, Makiya H, Watanabe H, Arakawa G. 2009. Digestive β-glucosidase from the wood-feeding higher termite, Nasutitermes takasagoensis: Intestinal distribution, molecular characterization, and alteration in sites of expression. Insect Biochemistry and Molecular Biology 39, 931-937.

Tsujibo H, Kosaka M, Ikenishi S, Sato T, Miyamoto K, Inamori Y. 2004. “Molecular characterization of a high-affinity xylobiose transporter of Streptomyces thermoviolaceus OPC-520 and its transcriptional regulation,” Journal of Bacteriology 186(4), 1029-1037.

Turner RD. 1966. The Identification of Molluscan Borers. Report to the Government of India. FAO Report No. TA. 2155, 30.

Turner RD. 1971. Identification of marine wood – boring molluscs. In: Jones, E.B.G. and Eltringham, S.K. (Eds). Marine Borers, Fungi and Fouling Organisms. OECD, Paris 17-64.

Vaaje-Kolstad G, Westereng B, Horn SJ, Liu ZL, Zhai H, Sørlie M, Eijsink VGH. 2010. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330, 219-222.

Van den Brink J, de Vries RP. 2011. Fungal enzyme sets for plant polysaccharide degradation. Applied Microbiology and Biotechnology 91, 1477-1492.

van Zyl WH. 1985. “A study of the cellulases produced by three mesophilic actinomycetes grown on bagasse as substrate,” Biotechnology and Bioengineering 27(9), 1367-1373.

Veiga M, Esparis A, Fabregas J. 1983. “Isolation of cellulolytic actinomycetes from marine sediments,” Applied and Environmental Microbiology 46(1), 286-287.

Watanabe H, Tokuda G. 2010. Cellulolytic systems in insects. Annual Review of Entomology 55, 609-632.

Weng JK, Li X, Bonawitz ND, Chapple C. 2008. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Current Opinions in Biotechnology 19, 166-172.

Wilson DB. 1992. “Biochemistry and genetics of actinomycete cellulases,” Critical Reviews in Biotechnology 12(1-2), 45-63.

Woo HL, Hazen TC, Simmons BA, DeAngelis KM. 2013. Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Systematic and Applied Microbiology 37(1), 60-67.

Yoon JJ, Cha CJ, Kim YS, Son DW, Kim YK. 2007. The brown-rot basidiomycete Fomitopsis palustris has the endoglucanases capable of degrading microcrystalline cellulose. Journal of Microbiology and Biotechnology 17, 800-805.

Zhang PYH, Himmel ME, Mielenz JR. 2006. Outlook for cellulase improvement: screening and selection strategies. Biotechnology Advances 24, 452-481.

M Bosire Carren.
Marine woodborers: A source of Lignocellulolytic enzymes.
Int. J. Agron. Agri. Res. 15(4), 10-29, October 2019.
Copyright © 2019
By Authors and International Network for
Natural Sciences (INNSPUB)
innspub logo
english language editing
    Publish Your Article
    Submit Your Article
Email Update