International network for natural sciences – research journal
  • mendeley icon
  • linkedin icon
  • google plus icon
  • twitter icon
  • google scholar icon
  • facebook icon

Agro-Ecological areas in Senegal affect the genetic structure of Callosobruchus maculatus F. The major pest of cowpea

By: Ange Choupette Kafom, Daouda Barry, Tofféne Diome, Adiouma G. R. J. Sarr, Mbacké Sembene

Key Words: C. maculatus, Agroecological areas, Haplotype, Genetic diversity

Int. J. Biosci. 11(6), 116-129, December 2017.

DOI: http://dx.doi.org/10.12692/ijb/11.6.116-129

Certification: ijb 2017 0166 [Generate Certificate]

Abstract

The objective of this study is to characterizethe structure of populations associated with cowpea in several agro-ecological zones of Senegal, using genetic markers (sequencing) associated with Bayesian approaches such as Appoximated bayesian computation. Portions of the Cytochrome b gene of Callosobruchus maculatus L. were sequenced, using samples from agro-ecological areas in Senegal.Sequences show a rather high degree of polymorphism (hd = 0,920±0,00054; Pi= 0,06±0,00021). Results from genetic diversity analysis reveal a higher value of variable sites, number of mutations, haplotypic diversity, nucleotide diversity and number of nucleotide differences in agro-ecological zones of North Peanut Basin (hd =0.978 ± 0.054 ; Pi=0.13825 ± 0.02291) and Senegal River Valley (hd =1.000 ± 0.052 ; Pi=0.03372 ± 0.00777), areas where cowpea is the most widely cultivated in Senegal.The largest number of mutations (134) is observed in the NBA while the lowest value is obtained from SBA (3). Fst value reveals that the more genetically differentiated populations are those of the SBA and HCSO with a very high Fst value (0.75) whereas the minimum value is encountered between the individuals of the river valley and those South Peanut Basin. Recent studies increasingly highlight the effect of climate change in agro-ecological zones on the structure and dynamics of phytophagous insect populations.

| Views 56 |

Agro-Ecological areas in Senegal affect the genetic structure of Callosobruchus maculatus F. The major pest of cowpea

Beaumont MA, Wenyang Z, David JB. 2002. Approximate Bayesian Computation in Population Genetics, Genetics Society of America 162(4), 2025-2035.

Bush GL, Diehl SR. 1982. Host shifts, genetic models of sympatric speciation and the origin of parasitic insect species. 297-305. In: Proceedings 5th International Symposium on Insect-Plant Relationships, J. H. Visser and A. K. Minks, eds. Wageningen. 1982. Pudoc, Wageningen, Netherlands.

Clement M, Posada D, Crandall KA. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9(10), 1657-1660.

Delobel A, Delobel H, Tran M, Sembene M, Han HS.1995. Observations sur les relations trophiques entre les bruches du genre Caryedon (Coléoptère, Bruchidae) et leurs plantes hôtes sauvages au Sénégal. Bulletin De L’institut Fondamental D’afrique Noire, Cheick Anta Diop, Dakar 48(A), 79-88.

Dia CAKM, Diome T, Thiaw C, Diop M, Sembene M. 2014. Impact of storage infrastructures and agroecological areas in genetic demographic evolution of Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) senegalese populations. International Journal of Science and Advanced Technology 4(7), 12-23.

Diome T, Ndong A, Kébé K, Thiaw Cc, Ndiaye A, Doumma A, Sanon A, Kétoh K, Sembène M. 2013. Effect of agro-ecological zones and contiguous basin crops of groundnut (Arachis hypogaea) on the structuring and genetic diversity of Caryedon serratus (Coleoptera: Chrysomelidae, Bruchinae) in the sub-region of West Africa. Journal of Asia-Pacific Entomology 16, 209–217.

http://dx.doi.org/10.12692/ijb/3.9.248-258

Ehrlich PR, Raven PH. 1969. Differentiation of Populations. Science 165(3899), 1228-1232.

http://dx.doi.org/10.1126/science.165.3899.1228

Excoffier L, Lischer HE. 2010. Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resource 10(3), 564-567. Epub 2010 Mar 1.

http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x.

Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2), 479-491.

Fu YX. 1997. Statistical tests of neutrality of mutations against population growth, hitch-hiking, and background selection. Genetics 147(2), 915-925.

Futuyma DJ. 1998. Evolutionary biology, 3rd ed. Sinauer Associates, Sunderland. 9-12.

Futuyma DJ, McCafferty SS. 1990. Phylogeny and the evolution of host plant associations in the leaf beetle genus Ophraella (coleoptera, chrysomelidae), Evolution 44(8), 1885-1913.

http://dx.doi.org/10.1111/j.15585646.1990.tb04298.x

Hall T. 2001. Bio-Edit version 5.0.6. Department of Microbiology, North Carolina State University.

Hanski I. 1999. Metapopulation biology. Oxford University Press, Oxford.

Hanski I, Simberloff D. 1997. The metapopulation approach, its history, conceptual domain, and application to conservation. Dans: Metapopulation Biology, Genetic and Evolution eds. Hanski, I., Gilpin, M.E, Academic Press, San Diego, C A, p. 5-26.

Huelsenbeck JP, Ronquist F. 2001. Mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17(8), 754-755.

Huignard J. 1976. Interactions between the host-plant and mating upon the reproductive activity of Acanthoscelides obtectus (Coleoptera: Bruchidae) from different colombian ecosystems. Oecologica 35 (3), 307-318.

Kébé K. 2013. Diversité génétique, histoire évolutive et bioécologie de Callosobruchus maculatus F. (Coleoptera, Bruchinae) ravageur de graines de niébé (Vigna unguiculata Walp). Thèse de doctorat unique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal, p. 186.

Kébé K, Alvarez N, Tuda Midori, Arnqvist G, Fox CW, Sembéne M, Espindola E. 2017. Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host, Vigna unguiculata. Journal of Biogeography, 1-12.

Kergoat JG, Delobel A, Le Rü B, Silvain JF. 2005. Both host-plant phylogeny and chemestry have shaped the African seed-beetle radiation. Molecular Phylogenetics and Evolution 35, 602-611. https://doi.org/10.1111/j.1558-5646.2007.00038.x

Kimura M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. Journal Molecular Evolution 16(2), 111-120.

Leclerc E, Mailhot Y, Bernatchez L. 2006. Définition des populations de perchaudes  (Perca flavescens) du fleuve Saint-Laurent au Québec: Analyse du patron géographique de la variation génétique et morphologique. MAPAQ, DIT, Rapport de R-D., 155, p. 22.

Nei M. 1987.Molecular Evolutionary Genetics. Columbia University Press. New York.

Nylander JAA. 2004. MrModeltest v2. Evolutionary Biology Centre: Uppsala University Uppsala, Sweden.

Olver CH, Shuter BJ. 1995. Toward a definition of conservations principales for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences 52(7), 1584-1592.

https://doi.org/10.1139/f95-751

Ramirez-Soriano A, Ramos-Onsins SE, Rozas J, Calafell F, Navarro A. 2008. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179(1), 555-567.

https://doi.org/10.1534/genetics.107.083006

Rogers AR, Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic difference. Molecular Biology and Evolution 9 (3), 552-569.

Rozas J, Librado P, Sánchez-Del Barrio JC, Messeguer X, Rozas R. 2012. DnaSP Version 5 Help Contents [Help File]. Available with the program at

http://www.ub.edu/dnasp/

Sembène M, Kébé K, Delobel A, Rasplus JY. 2010. Phylogenetic information reveals the peculiarity of Caryedon serratus (Coleoptera, Chrysomelidae, Bruchinae) feeding on Cassia sieberiana DC (Caesalpinioideae). African Journal of Biotechnology 9(10), 1470-1480.

Sembène M, Rasplus JY, Silvain JF, Delobel A. 2008. Genetic differentiation insympatric populations of the groundnut seed beetle, Caryedon serratus (Coleoptera: Chrysomelidae): new insights from molecular and ecological data, International Journal of Tropical Insect Sciences 28(3), 168-177.

https://doi.org/10.1017/S1742758408094484

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics version 6.0. Molecular Biology and Evolution 30(12), 2725-2729.

https://doi.org/10.1093/molbev/mst197.

Tajima F. 1989. Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3), 585-595.

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22(22), 4673-4680.

Webster MS, Marra PP, Haig SM, Beusch S, Hormes ST. 2002. Links between worlds: unravelling migratory connectivity. Trends in Ecology and Evolution 17(2), 76-83.

https://doi.org/10.1098/rspb.2011.1351

Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38(6), 1358-1370.

https://doi.org/10.2307/2408641

Wright S. 1969. Evolution and the Genetics of Populations: The Theory of Gene Frequencies. The University of Chicago Press, Chicago, Illinois

Ange Choupette Kafom, Daouda Barry, Tofféne Diome, Adiouma G. R. J. Sarr, Mbacké Sembene.
Agro-Ecological areas in Senegal affect the genetic structure of Callosobruchus maculatus F. The major pest of cowpea.
Int. J. Biosci. 11(6), 116-129, December 2017.
https://innspub.net/ijb/agro-ecological-areas-senegal-affect-genetic-structure-callosobruchus-maculatus-f-major-pest-cowpea/
Copyright © 2017
By Authors and International Network for
Natural Sciences (INNSPUB)
https://innspub.net
brand
innspub logo
english language editing
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Publish Your Article
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Submit Your Article
INNSPUB on FB
Email Update