International network for natural sciences – research journal
  • mendeley icon
  • linkedin icon
  • google plus icon
  • twitter icon
  • google scholar icon
  • facebook icon

Effect of arbuscular mycorrhizal fungi on drought tolerance in durum wheat

By: Sebbane Mahieddine, Hafsi Miloud

Key Words: Durum wheat (Triticum durum Desf.), Arbuscular mycorrhizal fungi, Water use efficiency, Drought tolerance, Genotype specificity.

Int. J. Biosci. 17(4), 99-112, October 2020.

DOI: http://dx.doi.org/10.12692/ijb/17.4.99-112

Certification: ijb 2020 0055 [Generate Certificate]

Abstract

In this study, we evaluated arbuscular mycorrhizal fungi inoculation effect on three durum wheat cultivars grown under well-watered and post heading water deficit conditions. Inoculation improved water use efficiency and drought tolerance. This improvement was shown by a lower proline content, and an increase in the following parameters as soluble sugars content, leaf area development, relative water content, leaf specific weight, root and shoot biomass, spike fertility, and grain yield. Response to inoculation varied by genotype, suggesting a genotypic effect which is involved in root colonization and inoculation response, and may play an important role in maximizing plant profit from this symbiosis. In this study, root colonization was proportional to inoculation response that could be used as a selection index for a better cultivar-inoculum combination to maximize durum production under water stress conditions.

| Views 24 |

| Views 24 |

Effect of arbuscular mycorrhizal fungi on drought tolerance in durum wheat

Al Karaki G, McMichael B, Zak J. 2004. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14(4), 263-269.

Aroca R, Vernieri P, Ruiz-Lozano JM. 2008. Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. Journal of Experimental Botany 59(8), 2029–2041.

Augé RM. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11, 3–42.

Baon JB, Smith SE, Alston AM. 1994. Growth response and phosphorus uptake of rye with long and short root hairs: interactions with mycorrhizal infection. Plant Soil 167, 247–254.

Barrs H, Weatherley P. 1962. A reexamination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences 15, 413–428.

Bárzana G, Aroca R, Antonio Paz J, Chaumont F, Martinez-Ballesta MC, Carvajal M, Ruiz-Lozano JM. 2012. Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Annals of Botany 109, 1009–1017.

Basile N. 1986. Le poids spécifique des feuilles : un indice de production de quatre graminées fourragères. Agronomie, EDP Sciences 6(1), 115-117.

Baum C, El-Tohamy W, Gruda N. 2015. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A Review. Scientia Horticulturae 187, 131–41.

Becerra AG, Cabello M, Zak MR, Bartoloni N. 2009. Arbuscular mycorrhizae of dominant plant species in Yungas forests, Argentina. Mycologia 101(5), 612-621.

Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ahmed N, Zhang L. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in plant science 10, 1–15.

Bernardo L, Carletti P, Badeck F W, Rizza F, Morcia C, Ghizzoni R, Lucini L. 2019. Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiology and Biochemistry 137, 203-212.

Bertheau Y, Gianinazzi-Pearson V, Gianinazzi S. 1980. Développement et expression de l’association endomycorhizienne chez le blé. I. Mise en évidence d’un effet variétal. Annales de l’Amélioration Des Plantes 30, 67-78.

Bhosale KS, Shinde BP. 2011. Influence of arbuscular mycorrhizal fungi on proline and chlorophyll content in Zingiber officinale Rosc grown under water stress. Indian Journal of Fundamental and Applied Life Sciences 1(3), 172–176.

Bruce TJA, Matthes MC, Napier JA, Pickett JA. 2007. Stressful memories of plants: evidence and possible mechanisms. Plant Science 173, 603-608.

Brundrett MC, Tedersoo L. 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist 220(4), 1108-1115.

Brundrett, M. C. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154, 275–304.

Cavagnaro TR. 2008. The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304, 315–325.

Chahbar S, Belkhodja M. 2016. Water deficit effects on morpho-physiologicals parameters in durum wheat. Journal of Fundamental and Applied Sciences 8(3), 1166-1181.

Chaves MM, Oliveira MM. 2004. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany 55, 2365–2384.

Chaves MM, Pereira JS, Maroco JP, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C. 2002. How plants cope with water stress in the field: photosynthesis and growth. Annals of Botany 89(7), 907–916.

Chen X, Song F, Liu F, Tian C, Liu S, Xu H, Zhu X. 2014. Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize at ambient and low temperature regimes. Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize at ambient and low temperature regimes. Thescientific world journal 2014, 956141-956141.

Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E. 2016. Insights on the Impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiology 171(2), 1009-1023.

Chun SC, Paramasivan M, Chandrasekaran M. 2018. Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Frontiers in microbiology 9, 2525-2525.

Clarke J M., TN. McCaig. 1982. Evaluation of techniques for screening for drought resistance in wheat. Crop Science 22, 503–506.

Coccina A, Cavagnaro TR, Pellegrino E, Ercoli L, McLaughlin MJ, Watts-Williams SJ. 2019. The mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grain. BMC plant biology 19(1), 1-14.

De Vita P, Avio L, Sbrana C, Laidò G, Marone D, Mastrangelo AM, Giovannetti M. 2018. Genetic markers associated to arbuscular mycorrhizal colonization in durum wheat. Scientific reports 8(1), 1-12.

Declerck S, Plenchette C, Strullu DG. 1995. Mycorrhizal dependency of banana (Musa acuminata, AAA group) cultivar. Plant Soil 176, 183–187.

Dubois M, Gilles KA, Hamilton PA, Ruberg A, Smith F. 1956. Colorimetric method for determination of sugars and related substances.

Analytical Chemistry 28(3), 350- 356.

Ellouze W, Hamel C, DePauwRM, Knox RE, Cuthbert RD, Singh AK. 2015. Potential to breed for mycorrhizal association in durum wheat. Canadian journal of microbiology 62, 263–271.

Eom AH, Hartnett DC, Wilson, GWT. 2000. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122, 435- 444.

Essiane-Ondo O, Zerbib J, Gianinazzi S, Wipf D. 2019. Wheat landraces with low mycorrhizing ability at field respond differently to inoculation with artificial or indigenous arbuscular mycorrhizal fungal communities. Symbiosis 78(3), 229-240.

Fan QJ, Liu JH. 2011. Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata. Acta Physiol Plant 33, 1533–1542.

Fernández-Lizarazo JC, Moreno-Fonseca LP. 2016. Mechanisms for tolerance to water-deficit stress in plants inoculated with arbuscular mycorrhizal fungi. A review. Agronomía Colombiana 34(2), 179-189.

Fitter AH. 2004. Magnolioid roots–hairs, architecture and mycorrhizal dependency. New Phytologist 164, 15–16.

Frey MN, Moss DN. 1976. Variation in RuDPCase activity in barley. Crop Science 16, 209-213.

Fusconi A. 2014. Regulation of Root Morphogenesis in Arbuscular Mycorrhizae: What Role Do Fungal Exudates, Phosphate, Sugars and Hormones Play in Lateral Root Formation? Annals of Botany 113(1), 19–33.

Garmendia I, Gogorcena Y, Aranjuelo I, Goicoechea N. 2017. Responsiveness of durum wheat to mycorrhizal inoculation under different environmental scenarios. Journal of Plant Growth Regulation 36(4), 855-867.

Hartnett DC, Wilson GWT. 1999. Mycorrhizae influence plant community structure and diversity in a tallgrass prairie. Ecology 80, 1187-1195.

Hazzoumi Z, Moustakime Y, Joutei KA. 2015. Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L.). Chemical and Biological Technologies in Agriculture 2(1), 1-11.

Ianson DC, Allen MF. 1986. The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal spores from arid soils. Mycologia 78, 164–168.

Igiehon NO, Babalola OO. 2017. Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Applied Microbiology and Biotechnology 101(12), 4871-4881.

Jacobson KM. 1997. Moisture and substrate stability determine VA-mycorrhizal fungal community distribution and structure in an arid grassland. Journal of Arid Environments 35, 59–75.

Jakobsen I, Leggett ME, Richardson AE. 2005. Rhizosphere microorganisms and plant phosphorus uptake. Phosphorus: Agriculture and the environment 46, 437-494.

Joyce PA, Aspinall D, Paley LG. 1992. Photosynthesis and the accumulation of proline in response to water deficit. Functional Plant Biology 19(3), 249-261.

Kadkol GP, Sissons M. 2016. Durum Wheat: Overview. Encyclopedia of Food Grains. 2nd ed. Elsevier Ltd.

Köhl L, Lukasiewicz CE, Van der Heijden MG. 2016. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural

soils. Plant, cell & environment 39(1), 136-146.

Kucey RMN, Janzen HH. 1987. Effect of VAM and reduced nutrient availability on growth and phosphorus and micronutrient uptake of wheat and field beans under greenhouse conditions. Plant and Soil 104, 71–78.

Li T, Hu Y, Hao Z, Li H, Wang Y, Chen B. 2013. First cloning and characterisation of two functional aquaporin genes from am arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist 197, 617–630.

Maherali H. 2014. Is There an Association between Root Architecture and Mycorrhizal Growth Response? New Phytologist 204(1), 192–200.

Manske GGB, Ortiz-Monasterio JI, Van Ginkel M, González RM, Rajaram S, Molina E.  2000. Traits associated with improved P- uptake efficiency in CIMMYT’s semidwarf spring bread wheat grown on an acid Andisol in Mexico. Plant Soil 221(2), 189–204.

Mathur S, Tomar RS, Jajoo A. 2019. Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynthesis research 139(1-3), 227-238.

McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. 1990. A new method which gives an objective measure of colonization of roots by vesicular- arbuscular mycorrhizal fungi. New Phytologist 115, 495–501.

Müller LM, Harrison MJ. 2019. Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis. Current opinion in plant biology 50, 132-139.

Newsham KK, Fitter AH, Watkinson AR. 1995. Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology and Evolution 10, 407–411.

Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M. 2009. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytologist 184, 424–437.

Ortaş I, Rafique M, Ahmed İAM. 2017. Application of Arbuscular Mycorrhizal Fungi into Agriculture. In: Wu QS. (eds) Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer, Singapore, 305-327.

Panwar JDS. 1993. Response of VAM and Azospirillum inoculation to water status and grain yield in wheat under water stress condition. Indian Journal of Plant Physiology 36, 41-43.

Paradis R, Dalpé Y, Charest C. 1995. The combined effect of arbuscular mycorrhizas and short-term cold exposure on wheat. New Phytologist 129, 637–642.

Pellegrino E, Öpik M, Bonari E, Ercoli L. 2015. Responses of wheat to arbuscular mycorrhizal fungi: A meta- analysis of field studies from 1975 to 2013. Soil Biology and Biochemistry 84, 210–217.

Pinheiro C, Chaves MM, Ricardo CP. 2001. Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus L. Journal of Experimental Botany 52, 1063–1070.

Pinheiro RG, Rao MV, Palyath G, Murr DP, Fletcher RA. 2000. Changes in the activities of antioxidant enzymes and their relationship to genetic and paclobutrazol – induced chilling tolerance of maize seedlings. Plant Physiology 114(2), 695-704.

Porcel R, Barea JM, Ruiz-Lozano JM. 2003. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytologist 157, 135–143.

Porcel R, Ruiz-Lozano JM. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany 55, 1743-1750.

Rachmilevitch S, Lambers H, Huang B. 2006. Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species. Journal of Experimental Botany 57, 623–631.

Rapparini F, Peñuelas J. 2014. Mycorrhizal fungi to alleviate drought stress on plant growth. In Use of Microbes for the Alleviation of Soil Stresses 1, 21-42. Springer, New York, NY.

Redecker D, Morton JB, Bruns TD, 2000. Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Molecular Phylogenetics and Evolution 14, 276–284.

Ruíz-Sánchez M, Armada E, Muñoz Y, de Salamone IEG, Aroca R, Ruíz-Lozano JM, Azcón R. 2011. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. Journal of plant physiology 168(10), 1031-1037.

Ruiz-Sánchez M, Aroca R, Muñoz Y, Polón R, Ruiz-Lozano JM. 2010. The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. Journal of plant physiology 167, 862–869.

Santander C, Aroca R, Ruiz-Lozano JM, Olave J, Cartes P, Borie F, Cornejo P. 2017. Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 27(7), 639-657.

Schneider CA, Rasband WS, Eliceiri KW.

  1. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671 – 675.

Schnepf A, Roose T, Schweiger P. 2008. Impact of growth and uptake patterns of arbuscular mycorrhizal fungi on plant phosphorus uptake–a modelling study. Plant Soil 312, 85–99.

Schonfeld MA, Johnson RC, Carver BF, Mornhinweg DW. 1988. Water relations in winter wheat as drought resistance indicators. Crop Science 28, 526-531.

Schweiger PF, Robson AD, Barrow NJ. 1995. Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytologist 131, 247–254.

Sepp SK, Davison J, Jairus T, Vasar M, Moora M, Zobel M, Öpik M. 2019. Non‐random association patterns in a plant–mycorrhizal fungal network reveal host–symbiont specificity. Molecular ecology 28(2), 365-378.

Sharma S, Sharma S, Aggarwal A, Sharma V, Singh MJ, Kaushik S. 2017. Mass Multiplication of Arbuscular Mycorrhizal Fungi. In: Aggarwal A and Yadav K Ed. Mycorrhizal Fungi. New Delhi, India: Astral international (P) Ltd., 155–174.

Sheng M, Tang M, Zhang F. 2011. Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21, 423–430.

Siddique M, Hamid A, Islam M. 2000. Drought stress effects on water relations of wheat. Botanical bulletin of Academia Sinica 41, 35–39.

Singh AK, Hamel C, Depauw RM, Knox RE. 2012. Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada. Canadian journal of microbiology 58(3), 293-302.

Smith SE, Read DJ. 2008. Mycorrhizal symbiosis, 3rd ed. Academic Press, Oxford. p 800.

Smith SE, Smith FA. 2011. Roles of Arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62, 227–250.

Soriano JM, Villegas D, Sorrells ME, Royo C. 2018. Durum wheat landraces from east and west regions of the Mediterranean basin are genetically distinct for yield components and phenology. Frontiers in Plant Science 9, 1-9.

Szabados L, Arnould S. 2010. Proline: A Multifunctional Amino Acid. Trends in Plant Science 15(2), 89–97.

Tawaraya K. 2003. Arbuscular mycorrhizal dependency of different plant species and cultivars, Soil Science and Plant Nutrition 49(5), 655-668.

Thirkell TJ, Pastok D, Field KJ. 2020. Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration. Global change biology 26(3), 1725-1738.

Trematerra P, Throne J. 2012. Insect and mite pests of durum wheat. Durum wheat, chemistry and technology, Second Edition. AACC International Inc., St. Paul, MN, USA, 73-83.

Troll W, Lindesly J. 1955. A photometric method for the determination of proline. Journal of Biological Chemistry 215, 655-660.

Van Der Heijden MGA, Boller T, Wiemken A, Sanders IR. 1998. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79, 2082-2091.

Vierheilig H, Coughlan AP, Wyss URS, Piché Y. 1998. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Applied and environmental microbiology 64(12), 5004-5007.

Wu QS, Xia RX. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 63, 417–425.

Yooyongwech S, Phaukinsang N, Cha-um S, Supaibulwatana K. 2013. Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant growth regulation 69(3), 285-293.

Zhang Q, Yang R, Tang J, Yang H, Hu S, Chen X. 2010. Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS one 5(8), e12380.

Zhu X, Song F, Xu H. 2010.  Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20, 325–332.

Zlatev Z, Lidon F. 2012. An overview on drought induced changes in plant growth, water relations and photosynthesis. Emirates Journal of Food and Agriculture 24(1), 57-72.

Zou YN, Wu QS, Huang YM, Ni QD, He XH. 2013. Mycorrhizal-mediated lower proline accumulation in Poncirus trifoliata under water deficit derives from the integration of inhibition of proline synthesis with increase of proline degradation. PLoS One 8, 1–8.

Sebbane Mahieddine, Hafsi Miloud.
Effect of arbuscular mycorrhizal fungi on drought tolerance in durum wheat.
Int. J. Biosci. 17(4), 99-112, October 2020.
https://innspub.net/ijb/effect-arbuscular-mycorrhizal-fungi-drought-tolerance-durum-wheat/
Copyright © 2020
By Authors and International Network for
Natural Sciences (INNSPUB)
https://innspub.net
brand
innspub logo
english language editing
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Publish Your Article
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Submit Your Article
INNSPUB on FB
Email Update