International network for natural sciences – research journal
  • mendeley icon
  • linkedin icon
  • google plus icon
  • twitter icon
  • google scholar icon
  • facebook icon

Iron (Fe) bio-concentration in purun tikus (Eleocharis dulcis) planted on the constructed wetland treating the coal acid mine drainage

By: Nopi Stiyati Prihatini, Soemarno

Key Words: Acid mine drainage, Purun tikus, vertical flow Constructed wetland, Iron (Fe), Bio concentration.

Int. J. Biosci. 11(3), 69-75, September 2017.

DOI: http://dx.doi.org/10.12692/ijb/11.3.69-75

Certification: ijb 2017 0074 [Generate Certificate]

Abstract

Acid mine drainage (AMD) is a wastewater from coal mining activities. The constructed wetland (CW) is one of the passive treatment technologies used in treating the AMD. This study used Vertical Subsurface Constructed Wetland (VSSF-CW) with Puruntikus (Eleocharis dulcis). E. dulcis is one of the natural plants in the sulphate acid swamp in South Kalimantan. E.dulcisis the potential bio filter, because it can grow and adapt well to the acidic growth media. The VSSF-CW is the engineered system designed using subsurface flow and is made by utilizing the natural processes; include wetland plant, soil, and a population of wetland microbe in treating wastewater. This study is intended to determine the ability Purun tikus planted in the Constructed Wetland in concentrateIron (Fe) from the coal acid mine water in its tissues. This research was carried out with two (2) kinds of media, the first VSSF-CW using mixed media of acid sulfate soil and manure; the second VSSF -CW using mixed media of acid sulfate soil and compost. The results showed that VSSF-CW with two kinds of media is capable of lowering the concentration of Fe effluent, respectively amounted to 98.26% and 91.17%. Bio concentration factor values (BCF) of Fe in Purun tikus (Eleocharis dulcis) that planted on VSSF-CW showed that E. dulcis is a Fe accumulator plant.

| Views 114 |

Iron (Fe) bio-concentration in purun tikus (Eleocharis dulcis) planted on the constructed wetland treating the coal acid mine drainage

Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV. 2012. Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids-A review. Environmental and Experimental Botany 75(1),  307-324.

Cobbett CS. 2000. Phytochelatin biosynthesis and function in heavy-metal detoxification. Current Opinion in Plant Biology 3 (3),  211-216.

Farooqi IH, Basheer F, Chaudhari RJ. 2008. Constructed Wetland System (CWS) for Wastewater Treatment. The 12th World Lake Conference.

Herniwanti, Yanuwiadi B, Priatmadi BJ, Soemarno. 2014. Comparison of Characteristic Aquatic Local Plants for Phytoremediation with Different Media of Acid Mine Drainage Passive Treatment. J. Appl. Environ. Biol. Sci. 4(3),  167-176.

Hirata K, Tsuji N, Miyamoto K. 2005. Bio-synthetic regulation of phytochelatins, heavy metal-binding peptides. Journal of Bioscience and Bioengineering 100 (6),  593-599.

Hirata K, Tsujimoto Y, Namba T, Ohta TT, Hirayanagi N, Miyasaka H, Zenk MH, Miyamoto K. 2001. Strong induction of phytochelatin synthesis by zinc in marine green alga, Dunaliella tertiolecta. J. Bioscience and Bioscience 92 (1),  24-29.

Hoffmann H, Platzer C, Winker M, Muench Ev. 2011. Technology review of constructed wetlands. Subsurface flow constructed wetlands for greywater and domestic wastewater treatment. Germany, Federal Ministry for Economic Cooperation and Development; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sustainable sanitation – ecosan program.

Hua SC. 2003. The use of constructed wetlands for wastewater treatment. Malaysia, Wetlands International.

Islam MS, Ueno Y, Sikder MT, Kurasaki M. 2013. Phytofiltration of Arsenic and Cadmium from The Water Environment Using Micranthemum umbrosum (J.F. Gmel) S.F. Blake as a Hyperaccumulator. International Journal of Phytoremediation 15,  1010-1021.

Johnson DB, Hallberg KB. 2005. Acid mine drainage remediation options: a review. Science of the Total Environment 338, 3- 14.

Kosolapov DB, Kuschk P, Vainshtein MB, Vatsourina AV, Wießner A, Kästner M, Müller RA. 2004. Microbial Processes of Heavy Metal Removal from Carbon-Deficient Effluents in Constructed Wetlands. Eng. Life Sci 4, 403-411.

https://doi.org/10.1002/elsc.200420048

Liu YG, Zhang HZ, Zeng GM, Huang BR, Li X. 2006. Heavy Metal Accumulation in Plants on Mn Mine Tailings. Pedosphere 16 (1),  131-136.

Munawar A. 2007. Pemanfaatan Sumberdaya Biologis Lokal Untuk Pengendalian Pasif Air Asam Tambang: Lahan Basah Buatan (Utilization of local biological resources in the passive tretment method of acid mine drainage: Constructed Wetlands). Jurnal Ilmu Tanah dan Lingkungan (Jour. of Soil and Environment Sciences) 7(1),  31-42.

Prihatini NS, Nirtha I, Iman MS. 2016a. Role of Purun Tikus in Vertical Subsurface Flow Constructed Wetland in Treating Manganese (Mn) From Coal Mine Drainage. Tropical Wetland Journal 2(1),  1 – 7.

Prihatini NS, Priatmadi BJ, Masrevaniah A, Soemarno. 2015. Performance of The Horizontal Subsurface-flow Constructed Wetland With Different Operational Procedures. International Journal of Advances in Engineering & Technology 7(6),  1620-1629.

Prihatini NS, Priatmadi BJ, Masrevaniah A, Soemarno. 2016b. Effects of the Purun Tikus (Eleocharis dulcis (Burm. F.) Trin. ex Hensch) Planted in the Horizontal Subsurface Flow-Constructed Wetlands (HSSF-CW) on Iron (Fe) Concentration of the Acid Mine Drainage. J. Appl. Environ. Biol. Sci. 6(1),  258-264.

Raden I, Pulungan S, Dahlan M, Thamrin. 2010. Kajian Dampak Penambangan Batubara Terhadap Pengembangan Sosial Ekonomi dan Lingkungan di Kabupaten Kutai Kartanegara. Jakarta, Badan Penelitian dan Pengembangan Kementrian Dalam Negeri.

Rezvani M, Zaefarian F. 2011. Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis. Australian Journal of Agricultural Engineering 2(4),  114-119.

Tommy MP. 2009. Bioremediasi Merkuri (Hg) Dengan Tumbuhan Air Sebagai Salah Satu Alternatif Penanggulangan Limbah Tambang Emas Rakyat. Agritek 17(5 ),  918-931.

USEPA. 1993. Constructed Wetland for Wastewater Treatment and Wildlife Habitat, 17 Case Studies. Washington DC, USEPA.

Vymazal J. 2010. Constructed Wetlands for Wastewater Treatment. Water Air Soil Pollut 2,  530-549.

https://doi.org/10.3390/w2030530

Vymazal J, Kropfelova L. 2008. Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow.  Czech Republic, Springer Science

Yadav SK. 2010. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany 76(2),  167-

179.

Yang X, Feng Y, He Z, Stoffella PJ. 2005. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology 18(4),  339-353.

Younger PL, Banwart SA, Hedin RS. 2002. Passive Treatment of Polluted Mine Waters. Environmental Pollution 5,  311-396.

Zayed A, Gowthaman S, Terry N. 1998. Phytoaccumulation of trace elements by wetland plants: 1. Duckweed. Environ Qual 27(3),  715-721.

Nopi Stiyati Prihatini, Soemarno.
Iron (Fe) bio-concentration in purun tikus (Eleocharis dulcis) planted on the constructed wetland treating the coal acid mine drainage.
Int. J. Biosci. 11(3), 69-75, September 2017.
https://innspub.net/ijb/iron-fe-bio-concentration-purun-tikus-eleocharis-dulcis-planted-constructed-wetland-treating-coal-acid-mine-drainage/
Copyright © 2017
By Authors and International Network for
Natural Sciences (INNSPUB)
https://innspub.net
brand
innspub logo
english language editing
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Publish Your Article
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Submit Your Article
INNSPUB on FB
Email Update