International network for natural sciences – research journal
  • mendeley icon
  • linkedin icon
  • google plus icon
  • twitter icon
  • google scholar icon
  • facebook icon

The possibility of transferring resistance genes Mi1.2 and Mi-3 by crossing between wild and susceptible tomato varieties

By: Inad D. Abood, Sarah T. Hasan

Key Words: Mi1.2 gene, Mi-3 gene, Wild tomato, Tomato crossing

Int. J. Biosci. 12(6), 417-429, June 2018.

DOI: http://dx.doi.org/10.12692/ijb/12.6.417-429

Certification: ijb 2018 0085 [Generate Certificate]

Abstract

Eleven wild tomato (Solanum spp.) , obtained from Tomato Genetics Resource Center, Davis, Calif, and two cultivars were screened for resistance to Root-knot nematodes, Meloidogyne spp , by molecular marker analysis and nematode bioassay. DNA based test and nematode bioassay were used to determine the presence of the root-knot nematode resistance gene Mi in these wild species. Molecular markers Mi23 and TG180M were used to detect Mi-1.2 and Mi-3 respectively. The results of molecular markers were showed the presence of Mi1.2 genes in homozygous alleles (Mi/Mi), which indicated it’s resistance to RKNs, in tomato wild species Solanum pervianum (accession numbers LA0153, LA0446), S. arcanum (accession numbers LA0441, LA1346) and S. huaylasense (accession number LA1360) when all these species gave single band (380bp). While TG180M marker was given single band 1124bp in all wild species and varieties which indicated homozygous resistance alleles (Mi-3/Mi-3). The results of molecular markers were agreed with gall index (GI) which not forming any galls in root systems in Solanum pervianum (accession numbers LA0153, LA0446), S. arcanum (accession numbers LA0441, LA1346) while GI was recorded 1.33 in S. huaylasense (accession number LA1360). The results of traditional hybridization between tomato wild species and susceptible tomato varieties were showed the success of hybridization with some species and their failed with other species. Molecular markers were showed inefficiency DNA extracted from hybrid seeds to detection Mi-1 genes in hybrids.

| Views 34 |

The possibility of transferring resistance genes Mi1.2 and Mi-3 by crossing between wild and susceptible tomato varieties

Alexander LJ, Hoover MM. 1955. Disease resistance in wild species of tomato: Report of the National Screening Committee. Res. Bull. Ohio Agricultural Experiment Station 752, 1-76.

Alexander LJ. 1959. Progress report of national screening committee for disease resistance in the tomato for 1954-1957. Plant Disease 43, 55-65. ‏

Ammiraju JS, Veremis JC, Huang X, Roberts PA, Kaloshian I. 2003. The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theoretical and Applied Genetics 106, 478-484.

Bailey DM. 1941. The seedling test method for root-knot-nematode resistance. In proceedings of the American Society for Horticultural Science 38, 573-575.

Bleve-Zacheo T, Melillo MT. 1997. The biology of giant cells. Cellular and molecular aspects of plant-nematode interactions. Springer, Dordrecht 65-79.

Bohn GW. 1951. Fertility relations in L. hirsutum and its hybrids with L. esculentum. Tomato Genet. Coop. Rep 1, 3-4. ‏

Chen HM, Lin CY, Yoshida M, Hanson P, Schafleitner R. 2015. Multiplex PCR for detection of tomato yellow leaf curl disease and root-knot nematode resistance genes in tomato (Solanum lycopersicum L.). International Journal of Plant Breeding and Genetics 9, 44-56.

Chisholm ST, Coaker G, Day B , Staskawicz BJ. 2006. Host-microbe interaction: Shaping the evolution of the plant immune response. Cell 124, 803-814.

Chmielewski T. 1966. An exception to the unidirectional crossability pattern in the genus Lycopersicon. Genet, Pol. 7, 31-39.

Chmielewski T. 1968a. Cytogenetical and taxonomical studies on a new tomato form, Part II. Genet, pol. 9, 97-124.

Chmielewski T. 1968b. New hybrids with L.peruvianum obtained by means of a periclinal chimaera.Tomato Genet. Coop. Rep. 18, 9.

Chmleiewski T. 1962. Cytogenetical and taxonomical studies on a new tomato form, Part I. Genet, pol. 3, 253-264.

Devran Z, Başköylü B, Taner A, Doğan F. 2013. Comparison of PCR-based molecular markers for identification of Mi gene. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science 63, 395-402.

Devran Z, Göknur A, Mesc L. 2016. Development of molecular markers for the Mi-1 gene in tomato using the KASP genotyping assay. Horticulture, Environment, and Biotechnology 57, 156-160.

Doolittle SP. 1954. The use of wild Lycopersicon species for tomato disease control. Phytopathology 44, 409-414. ‏

Doyle JJ, Doyle., JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical bulletin. Botanical Society of America 19, 11-15.

Dropkin VH. 1969. The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne: reversal by temperature. Phytopathology 59, 1632-1637.

Egelund J, Skjøt M, Geshi M, Ulvskov P, Peterson B. 2004. A complementary bioinformatics approach to identify potential plant cell wall glycosyltransferase-encoding genes. Plant Physiology 136, 2609-2620.

El-Mehrach K, Hatimi, A, Gharsallah Chouchane S, Salus MS, Martin CT, Maxwell DP, Vidavski, F. 2005. PCR-based methods for tagging the Mi-1 locus for resistance to root-knot nematode in begomovirus-resistant tomato germplasm. Acta Horticulturae.

Garcia BE, Graham E, Jensen KS, Hanson P, Meja L. , Maxwell DP. 2007. Co-dominant SCAR marker for detection of the begomovirus-resistance Ty-2 locus derived from Solanum habrochaites in tomato germplasm. Report of the Tomato Genetics Cooperative 57, 21-24.

Goggin FL, Jia L, Shah G, Hebert S, Williamson VM, Ullman DE. 2006. Heterologous expression of the Mi-1.2 gene from tomato confers resistance against nematodes but not aphids in eggplant. Molecular Plant-Microbe Interactions 19, 383-388.

Gowen SR, Charles WB. 1968. Screening for root-knot nematode (Meloidogyne incognita) Kofoid and White chitwood resistance in certain lines of Lycopersicon esculentum Mill. for tomato improvement in St. Lucia. American Society for Horticultural Science Caribbean Reg Proc 12, 21-27.

Heath MC. 2000. “Hypersensitive response-related death.” Programmed cell death in higher plants. Springer Netherlands P. 77-90.

Ho J-Y, Weide R, Ma HM, Wordragen MF, Lambert KN, Koornneef M, Zabel P, Williamson VM. 1992. The root-knot nematode resistance gene (Mi) in tomato: Construction of a molecular linkage map and identification of dominant cDNA markers in esistant genotypes. The Plant Journal 2, 971-982.

Hogenboom NG. 1972. Breaking breeding barriers in Lycopersicon. 1. The genus Lycopersicon, its breeding barriers and the importance of breaking these barriers. Euphytica 21, 221-227. ‏

Holmes FO. 1960. Control of important viral diseases of tomatoes by the development of resistant varieties. In Proceedings of Plant Science Seminar, Campbell Soup Co 1-17.

Holtzmann OV. 1965. Effects of soil temperature on resistance of tomato to root-knot nematode (Meloidogyne incognita). Phytopathology 55, 990-992.

Hoover MM, Alexander LJ, Paddock EF, Crum RA, Dodge AF. 1955. Horticultural characters and reaction to two diseases of the Lycopersicon accessions in the North Central Region.‏ .Res. Bull. Ohio Agricultural Experiment Station, Ohio 765, 1-19.

Huang H, McGriffen M, Kaloshian I. 2004. Reproduction of Mi-virulent Meloidogyne incognita isolates on Lycopersicon spp. Journal of Nematology 36, p. 69-75.

Hussey R, Barker KR .1973. A comparison of methods of collecting inocula of Meloidogyne species including a new technique. Plant Dis ease Report    57, 1025-1028.

Hwang CF, Bhakta AV, Truesdell GM, Pudlo WM, Williamson VM. 2000. Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. The Plant Cell 12, 1319-1329.

Johnson AW. 1998. Vegetable Crops. In Pederson G, Windham G, Barker K, eds, Plant-Nematode Interactions. Agronomy Society of America, Madison WI p. 595-635.

Kaloshian I, Yaghoobi J, Liharska T, Hontelez J, Hanson D, Hogan P, Jesse T, Wijbrandi J, Simons G, Vos P, Zabel P, Williamson VM. 1998. Genetic and physical localization of the root-knot nematode resistance locus Mi in tomato. Molecular and General Genetics 257, 376-385.

Kerr EA, Bailey DL. 1964. Resistance to Cladosporium fulvum Cke. obtained from wild species of tomato. Canadian Journal of Botany 42, 1541-1554.‏

Lamm R. 1950. Self-incompatibility in Lycopersicon peruvianum Mill. Hereditas 36, 509-510. ‏

Lewis D, Crowe LK. 1958. Unilateral interspecific incompatibility in flowering plants. Heredity 12, 233-256.‏

Martin FW. 1961a. Complex unilateral hybridization in Lycopersicon hirsutum. Proceedings of the National Academy of Sciences 47, 855-857. ‏

Martin FW. 1961b. The inheritance of self-incompatibility in hybrids of Lycopersicon esculentum Mux. x L.chilense DUN. Genetics 46, 1443-1454.

Martin FW. 1966. Avoiding unilateral barriers in tomato species crosses. Tomato Genet. Coop. Rep 16, 19-20.

McGuire D, Rick C. 1954. Self-incompatibility in species of Lycopersicon sect. Eriopersicon and hybrids with L. esculentum. Hilgardia 23, 101-124.‏

Melillo MT, Leonetti P, Bongiovanni M, Castagnone-Sereno P, Bleve-Zacheo T. 2006. Modulation of reactive oxygen species activities and H2O2 accumulation during compatible and incompatible tomato-root-knot nematode interactions. New Phytologist 170, 501-512.

Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM. 1998. The root-knot nematode resistance gene Mi from tomato is a member of leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10, 1307-1319.

Molinari S, Loffrech E. 2006. The role of Salicylic acid in defense response of tomato to root – knot nematodes. physiol. Physiological and molecular plant pathology 68, 69-78.

Molinari S. 2008. Salicylic acid as an elicitor of resistance to root knot nematodes in tomato. Acta Horticulturae 789, 119-126.

Peacock FC. 1959. The development of a technique for studying the host/parasite relationship of the root-knot nematode Meloidogyne incognita under controlled conditions. Nematologica 4, 43-55.‏

Rashid MH, Al-Mamun MH, Uddin MN. 2017. How Durable is Root Knot Nematode Resistance in Tomato? Plant breeding and biotechnology 5, 143-162. ‏

Reddy YS. Sellaperumal C, Prasanna HC, Yadav A, Kashyap SP, Singh S, Rai N, Singh M, Singh B. 2016. Screening of Tomato Genotypes Against Root-Knot Nematode and Validation of Mi1 Gene Linked Markers. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences pp. 1-8.

Rick CM, Butler L. 1956. Cytogenetics of the tomato. Advance in Genetic 8, 267-382.

Rick CM, Lamm R. 1955. Biosystematic studies on the status of Lycopersicon chilense. American Journal of Botany 42, 663-675. ‏

Rick CM, Smith PG. 1953. Novel variation in tomato species hybrids. The American Naturalist    87, 359-373. ‏

Rick CM. 1963. Barriers to interbreeding in Lycoperscon peruvianum. Evaluation 17, 216-232.

Rick CM. 1967. Exploiting species hybrids for vegetable improvement. Proc. 17th int. hort. Congr   3, 217-229.

Roberts PA, May DM. 1986. Meloidogyne incognita resistance characteristics in tomato genotypes developed for processing. Journal of Nematology18, 353-359.

Santos M, Diánez F, de Cara M, Tello JC. 2004. Enfermedades del tomate. Chapter 4. Tomates: producción y comercio. In: Ediciones de Horticultura. Compendios de Horticultura 15. Reus, Spain pp. 47-61.

SAS. 2012. Statistical Analysis System, User’s Guide. Statistical. Version 9.1th ed. SAS. Inst. Inc. Cary. N.C. USA.

Sasser JN. 1980. Root-knot nematodes: A global menace to crop production. Plant Disease 64, 36-41.

Seah S, Williamson VM, Garcia BE, Mejía L, Salus MS, Martin CT, Maxwell DP. 2007. Evaluation of a co-dominant SCAR marker for detection of the Mi-1 locus for resistance to root-knot nematode in tomato germplasm. Tomato Genetic Cooperative Report 57, 37-40.

Seah S, Yaghoobi J, Rossi M, Gleason CA, Williamson VM. 2004. The nematode-resistance gene, Mi-1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato. Theoretical and Applied Genetics 108, 1635-1642. ‏

Skrdla WH, Alexander LJ, Oakes G, Dodge AF. 1968. Horticultural characters and reaction to two diseases of the world collection of the genus Lycopersicon.‏ Res. Bull. Ohio Agric. Res. Devel. Cent. 1009. pp. 110.

Smith PG. 1944. Embryo culture of a tomato species hybrid. In Proceedings of the American Society for Horticultural Science 44, 413-416.

Szteyn K. 1962. Interspecific crosses in the genus lycopersicum. I. Backcrosses to Lycopersicum glandulosum Euphytica 11, 149-156. ‏

Taylor AL, Sasser JN. 1978. Biology. Identification and control of root – knot nematodes. North Carolina State University Graphics p. 111.‏

Terrell EE, Broome CR, Reveal JL. 1983. Proposal to conserve the name of the tomato as Lycopersicon esculentum P. Miller and reject the combination Lycopersicon lycopersicum (L.) Karsten (Solanaceae). Taxon 32, 310-314.

Veremis JC, Roberts PA. 1996. Relationship between Meloidogyne incognita resistance genes in Lycopersicon perivianum differentiated by heat sensitivity and nematode virulence. Theoretical and Applied Genetics 93, 950-959.

Veremis JC, Roberts PA. 2000. Diversity of heat-stable genotype specific resistance of Meloidogyne in Maranon races of Lycopersicon peruvianum complex. Euphytica 111, 9-16.

Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Hogers R, Frijters A, Groenendijk J, Diergaarde P, Reijans M, Fierens-Onstenk J, de Both M, Peleman J, Liharska T, Hontelez J, Zabeau M. 1998. The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nature biotechnology 16, 1365-1369.

Williamson VM, Hussey RS. 1996. Nematode pathogenesis and resistance in plants. The Plant Cell 8, 1735-1745.

Williamson VM, Kumar A. 2006. Nematode resistance in plants: the battle underground. Trends in Genetics 22, 396-403.

Williamson VM. 1998. Root-knot nematode resistance genes in tomato and their potential for future use. Annual review of phytopathology 36, 277-293.

Williamson VM. 1999. Plant nematode resistance genes. Current opinion in plant biology 2, 327-331.

Yaghoobi J, Kaloshian I, Wen Y, Williamson VM. 1995. Mapping a nematode resistance locus in Lycopersicon peruvianum. Theoretical and Applied Genetics 91, 457-464.

Yaghoobi J, Yates JL, Williamson VM. 2005. Fine mapping of the nematode resistance gene Mi-3 in Solanum peruvianum and construction of a S. lycopersicum DNA contig spanning the locus. Molecular Genetics and Genomics 274, 60-69.

Inad D. Abood, Sarah T. Hasan.
The possibility of transferring resistance genes Mi1.2 and Mi-3 by crossing between wild and susceptible tomato varieties.
Int. J. Biosci. 12(6), 417-429, June 2018.
https://innspub.net/ijb/possibility-transferring-resistance-genes-mi1-2-mi-3-crossing-wild-susceptible-tomato-varieties/
Copyright © 2018
By Authors and International Network for
Natural Sciences (INNSPUB)
https://innspub.net
brand
innspub logo
english language editing
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Publish Your Article
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Submit Your Article
INNSPUB on FB
Email Update