International network for natural sciences – research journal
  • mendeley icon
  • linkedin icon
  • google plus icon
  • twitter icon
  • google scholar icon
  • facebook icon

Scorpion’s Biodiversity and Proteinaceous Components of Venom

By: Nukhba Akbar, Ashif Sajjad, Sabeena Rizwan, Sobia Munir, Khalid Mehmood, Syeda Ayesha Ali, Rakhshanda, Ayesha Mushtaq, Hamza Zahid

Key Words: Scorpion, Envenomation, Protein, Toxins, Anti-microbial.

Int. J. Biosci. 18(2), 146-162, February 2021.

DOI: http://dx.doi.org/10.12692/ijb/18.2.146-162

Certification: ijb 2021 0162 [Generate Certificate]

Abstract

Scorpions are a primitive and vast group of venomous arachnids. About 2200 species have been recognized so far. Besides, only a small section of species is considered disastrous to humans. The pathophysiological complications related to a single sting of scorpion are noteworthy to recognize scorpion’s envenomation as a universal health problem. The medical relevance of the scorpion’s venom attracts modern era research. By molecular cloning and classical biochemistry, several proteins and peptides (related to toxins) are characterized. The revelation of many other novel components and their potential activities in different fields of biological and medicinal sciences revitalized the interests in the field of scorpion’s venomics. The current study contributes and attempts to escort some general information about the composition of scorpion’s venom mainly related to the proteins/peptides. Also, the diverse pernicious effects of scorpion’s sting due to the numerous neuro-toxins, hemolytic toxins, nephron-toxins and cardio-toxins as well as the contribution of such toxins/peptides as a potential source of anti-microbial and anti-cancer therapeutics are also covered in the present review.

| Views 42 |

| Views 42 |

Scorpion’s Biodiversity and Proteinaceous Components of Venom

Aboutorabi A, Naderi N, Gholamipour Pourbadiee H, Zolfagharian H, Vatanpour H. 2016. Voltage-gated sodium channels modulation by bothutous schach scorpion venom. Iranian journal of

pharmaceutical sciences 12(3), 55-64.

https://dx.doi.org/10.22034/ijps.2016.23841

Abroug F, ElAtrous S, Nouria S, Haguiga H, Touzi N, Bouchoucha S. 1999. Serotherapy in scorpion envenomation: a randomised controlled trial. The Lancet 354(9182), 906-909.

https://doi.org/10.1016/S0140-6736(98)12083-4

Abroug F, Ouanes-Besbes L, Tilouche N, Elatrous S. 2020. Scorpion envenomation: state of the art. Intensive care medicine 46, 401–410.

https://doi.org/10.1007/s00134-020-05924-8

Ahsan MM, Tahir HM, Naqi JA. 2015. First report of scorpion envenomization in District Sargodha, Punjab, Pakistan. BIOLOGIA (PAKISTAN), 61(2), 279-285.

Al-Asmari AK, Kunnathodi F, Al Saadon K, Idris MM. 2016. Elemental analysis of scorpion venoms. Journal of venom research 7, 16.

AlAsmari AK, Islam M, AlZahrani AM. 2016. In vitro analysis of the anticancer properties of scorpion venom in colorectal and breast cancer cell lines. Oncology letters 11(2), 1256-1262.

https://doi.org/10.3892/ol.2015.4036

Alexander AJ, Ewer D. 1958. Temperature adaptive behaviour in the scorpion, Opisthophthalmus latimanus Koch. Journal of Experimental Biology 35(2), 349-359.

Almaaytah A, Albalas Q. 2014. Scorpion venom peptides with no disulfide bridges: a review. Peptides, 51, 35-45.

https://doi.org/10.1016/j.peptides.2013.10.021

Almeida DD, Scortecci KC, Kobashi LS, Agnez-Lima LF, Medeiros SR, Silva-Junior AA, de F Fernandes-Pedrosa M. 2012. Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey. BMC genomics, 13(1), 1-11.

https://doi.org/10.1186/1471-2164-13-362

Almeida F, Pimenta A, De Figueiredo S, Santoro M, Martin-Eauclaire M, Diniz C, De Lima M. 2002. Enzymes with gelatinolytic activity can be found in Tityus bahiensis and Tityus serrulatus venoms. Toxicon 40(7), 1041-1045.

https://doi.org/10.1016/S0041-0101(02)00084-3

Armstrong EP, Bakall M, Skrepnek GH, Boyer LV. 2013. Is scorpion antivenom cost-effective as marketed in the United States? Toxicon 76, 394-398.

https://doi.org/10.1016/j.toxicon.2013.09.001

Bahloul M, Chaari A, Dammak H, Samet M, Chtara K, Chelly H, Bouaziz M. 2013. Pulmonary edema following scorpion envenomation: mechanisms, clinical manifestations, diagnosis and treatment. International journal of cardiology, 162(2), 86-91.

https://doi.org/10.1016/j.ijcard.2011.10.013

Bahloul M, Hamida CB, Chtourou K, Ksibi H, Dammak H, Kallel H, Rekik N. 2004. Evidence of myocardial ischaemia in severe scorpion envenomation. Intensive care medicine 30(3), 461-467.

https://doi.org/10.1007/s00134-003-2082-7

Bawaskar HS, Bawaskar PH. 2011. Efficacy and safety of scorpion antivenom plus prazosin compared with prazosin alone for venomous scorpion (Mesobuthus tamulus) sting: randomised open label clinical trial. British medical journal 342, c7136.

https://doi.org/10.1136/bmj.c7136

BERG RA, Tarantino MD. 1991. Envenomation by the scorpion Centruroides exilicauda (C sculpturatus): severe and unusual manifestations. Pediatrics 87(6), 930-933.

Boto A, Pérez de la Lastra JM, González CC. 2018. The road from host-defense peptides to a new generation of antimicrobial drugs. Molecules 23(2), 311.

https://doi.org/10.3390/molecules23020311

Bouaziz M, Bahloul M, Kallel H, Samet M, Ksibi H, Dammak H, Hamida CB. 2008. Epidemiological, clinical characteristics and outcome of severe scorpion envenomation in South Tunisia: multivariate analysis of 951 cases. Toxicon 52(8), 918-926. https://doi.org/10.1016/j.toxicon.2008.09.004

Boyer LV, Theodorou AA, Berg RA, Mallie J, Chávez-Méndez A, García-Ubbelohde W, Alagón A. 2009. Antivenom for critically ill children with neurotoxicity from scorpion stings. New England Journal of Medicine 360(20), 2090-2098.

https://doi.org/10.1056/NEJMoa0808455

Brazón J, Guerrero B, D’Suze G, Sevcik C, Arocha-Piñango CL. 2014. Fibrin (ogen) olytic enzymes in scorpion (Tityus discrepans) venom. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 168, 62-69.

https://doi.org/10.1016/j.cbpb.2013.11.007

Brownell P, Polis GA. 2001. Scorpion biology and research: Oxford University Press.

Brownell PH. 1977. Compressional and surface waves in sand: used by desert scorpions to locate prey. Science, 197(4302), 479-482.

https://doi.org/10.1126/science.197.4302.479

Brownell PH, Leo Van Hemmen J. 2001. Vibration sensitivity and a computational theory for prey-localizing behavior in sand scorpions. American Zoologist 41(5), 1229-1240.

https://doi.org/10.1093/icb/41.5.1229

Bucaretchi F, Fernandes LC, Fernandes CB, Branco MM, Prado CC, Vieira RJ, Hyslop S. 2014. Clinical consequences of Tityus bahiensis and Tityus serrulatus scorpion stings in the region of Campinas, southeastern Brazil. Toxicon 89, 17-25.

https://doi.org/10.1016/j.toxicon.2014.06.022

Calmette A. 1907. Les venins: les animaux venimeux et la sérothérapie antivenimeuse: Masson et cie.

Chippaux JP. 2012. Emerging options for the management of scorpion stings. Drug design, development and therapy 6, 165.

https://doi.org/10.2147/DDDT.S24754

Chippaux JP, Goyffon M. 2008. Epidemiology of scorpionism: a global appraisal. Acta tropica 107(2), 71-79.

https://doi.org/10.1016/j.actatropica.2008.05.021

Chowell G, Díaz-Dueñas P, Bustos-Saldaña R, Mireles AA, Fet V. 2006. Epidemiological and clinical characteristics of scorpionism in Colima, Mexico (2000–2001). Toxicon 47(7), 753-758.

https://doi.org/10.1016/j.toxicon.2006.02.004

Cid-Uribe JI, Veytia-Bucheli JI, Romero-Gutierrez T, Ortiz E, Possani LD. 2020. Scorpion venomics: a 2019 overview. Expert review of proteomics 17(1), 67-83.

https://doi.org/10.1080/14789450.2020.1705158

Cordeiro FA, Amorim FG, Anjolette FA, Arantes EC. 2015. Arachnids of medical importance in Brazil: main active compounds present in scorpion and spider venoms and tick saliva. Journal of Venomous Animals and Toxins including Tropical Diseases 21(1), 24.

https://doi.org/10.1186/s40409-015-0028-5

Costa CLSDO, Fé NF, Sampaio I, Tadei WP. 2016. A profile of scorpionism, including the species of scorpions involved, in the State of Amazonas, Brazil. Revista da Sociedade Brasileira de Medicina Tropical 49(3), 376-379.

https://doi.org/10.1590/0037-8682-0377-2015

De la Vega RCR, Schwartz EF, Possani LD. 2010. Mining on scorpion venom biodiversity. Toxicon 56(7), 1155-1161.

https://doi.org/10.1016/j.toxicon.2009.11.010

de Oliveira-Mendes BBR, Miranda SEM, Sales-Medina DF, de Freitas Magalhães B, Kalapothakis Y, de Souza RP, Kalapothakis E. 2019. Inhibition of Tityus serrulatus venom hyaluronidase affects venom biodistribution. PLoS neglected tropical diseases 13(4), e0007048.

https://doi.org/10.1371/journal.pntd.0007048

Di Z, Edgecombe GD, Sharma PP. 2018. Homeosis in a scorpion supports a telopodal origin of pectines and components of the book lungs. BMC evolutionary biology 18(1), 1-7.

https://doi.org/10.1186/s12862-018-1188-z

Dunlop J, Braddy S. 2001. Scorpions and their sister-group relationships. In: V. Fet, & PA. Selden Ed. Scorpions. British Arachnological Society, p 1-24.

Ferreira MG, Duarte CG, Oliveira MS, Castro KL, Teixeira MS, Reis LP, Soto-Blanco B. 2016. Toxicity of crude and detoxified Tityus serrulatus venom in anti-venom-producing sheep. Journal of veterinary science 17(4), 467-477.

Fleissner G. 1974. Circadiane Adaptation und Schirmpigmentverlagerung in den Sehzellen der Medianaugen vonAndroctonus australis L.(Buthidae, Scorpiones). Journal of comparative physiology, 91(4), 399-416.

https://doi.org/10.1007/BF00694470

Fleisner G, Fleissner G. 1985. Neurobiology of a circadian clock in the visual system of scorpions Neurobiology of arachnids.  In: Barth FG, Ed. Neurobiology of Arachnids. Berlin, Heidelberg: Springer, p 351-375. Springer.

https://doi.org/10.1007/978-3-642-70348-5_18

Fletcher PL, Fletcher MD, Weninger K, Anderson TE, Martin BM. 2010. Vesicle-associated membrane protein (VAMP) cleavage by a new metalloprotease from the Brazilian scorpion Tityus serrulatus. Journal of Biological Chemistry, 285(10), 7405-7416.

https://doi.org/10.1074/jbc.M109.028365

Foelix R. 1985. Mechano-and chemoreceptive sensilla Neurobiology of arachnids.  In: Barth F.G.

(eds) Neurobiology of Arachnids. Berlin, Heidelberg: Springer, p 118-137. Springer.

https://doi.org/10.1007/978-3-642-70348-5_7

Frost LM, Butler DR, O’Dell B, Fet V. 2001. A coumarin as a fluorescent compound in scorpion cuticle. In: Fet V, Selden PA, Ed., p 363-368.

Gaffin DD, Bumm LA, Taylor MS, Popokina NV, Mann S. 2012. Scorpion fluorescence and reaction to light. Animal Behaviour 83(2), 429-436.

https://doi.org/10.1016/j.anbehav.2011.11.014

Gefen E. 2011. The relative importance of respiratory water loss in scorpions is correlated with species habitat type and activity pattern. Physiological and Biochemical Zoology 84(1), 68-76.

https://doi.org/10.1086/657688

Goyffon M. 1978. Sur l’existence d’une activité électrique rythmique spontanée du système nerveux céphalique de Scorpion. Comparative Biochemistry and Physiology 59(1), 65-73.

https://doi.org/10.1016/0306-4492(78)90013-8

Hadley NF. 1974. Adaptational biology of desert scorpions. Journal of Arachnology 2(1), 11-23.

https://www.jstor.org/stable/3704992

Hakim M, Xiao-Peng T, Shi-Long Y, Qiu-Min L, Ren L. 2016. Protease inhibitor in scorpion (Mesobuthus eupeus) venom prolongs the biological activities of the crude venom. Chinese journal of natural medicines 14(8), 607-614.

https://doi.org/10.1016/S1875-5364(16)30071-1

Hancock RE, Haney EF, Gill EE. 2016. The immunology of host defence peptides: beyond antimicrobial activity. Nature Reviews Immunology, 16(5), 321-334.

https://doi.org/10.1038/nri.2016.29

Huang Y, Huang J, Chen Y. 2010. Alpha-helical

cationic antimicrobial peptides: relationships of structure and function. Protein & cell 1(2), 143-152.

https://doi.org/10.1007/s13238-010-0004-3

Isbister GK, Bawaskar HS. 2014. Scorpion envenomation. New England Journal of Medicine, 371(5), 457-463.

https://doi.org/10.1056/NEJMra1401108

Jeyaprakash A. Hoy MA. 2009. First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. Experimental and Applied Acarology 47(1), 1-18.

https://doi.org/10.1007/s10493-008-9203-5

Kalarani V, Mohan PM, Davies RW. 1992. Thermal acclimation and metabolism of the hepatopancreas in the tropical scorpion, Heterometrus fulvipes. Journal of thermal biology, 17(3), 141-146.

Kalra B, Gefen E. 2012. Scorpions regulate their energy metabolism towards increased carbohydrate oxidation in response to dehydration. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 162(4), 372-377.

https://doi.org/10.1016/j.cbpa.2012.04.013

Khattabi A, Soulaymani-Bencheikh R, Achour S, Salmi LR. 2011. Classification of clinical consequences of scorpion stings: consensus development. Transactions of the Royal Society of Tropical Medicine and Hygiene 105(7), 364-369.

https://doi.org/10.1016/j.trstmh.2011.03.007

Kraepelin K. 1899. Das Tierreich. 8. Lieferung. Scorpiones und Pedipalpi. Verlag von R. Friedländer und Sohn.

Louati H, Krayem N, Fendri A, Aissa I, Sellami M, Bezzine S, Gargouri Y. 2013. A thermoactive secreted phospholipase A2 purified from the venom glands of Scorpio maurus: Relation between the kinetic properties and the hemolytic activity. Toxicon,

72, 133-142.

https://doi.org/10.1016/j.toxicon.2013.06.017

Lourenço W. 1998. Panbiogéographie, les distributions disjointes et le concept de famille relictuelle chez les scorpions. Biogeographica (Paris), 74(3), 133-144.

Lourenço W. 2000. Panbiogéographie, les familles des scorpions et leur répartition géographique. Biogeographica 76(1), 21-39.

Lourenço W. 2001. The scorpion families and their geographical distribution. Journal of Venomous Animals and Toxins 7(1), 03-23.

https://doi.org/10.1590/S010479302001000100002

Lourenço W. 2015. Scorpion diversity and distribution; past and present patterns. In: Gopalakrishnakone P., Possani L., F. Schwartz E., Rodríguez de la Vega R Ed. Scorpion Venoms. Toxinology, Springer, Dordrecht 4, p 3-23.

https://doi.org/10.1007/978-94-007-6404-0_15

Lourenço WR. 2012. Fluorescence in scorpions under UV light; can chaerilids be a possible exception? Comptes Rendus Biologies 335(12), 731-734
https://doi.org/10.1016/j.crvi.2012.11.001

Lourenço WR. 2015. What do we know about some of the most conspicuous scorpion species of the genus Tityus? A historical approach. Journal of Venomous Animals and Toxins including Tropical Diseases, 21(1), 20.

https://doi.org/10.1186/s40409-015-0016-9

Lourenço WR. 2016. Scorpion incidents, misidentification cases and possible implications for the final interpretation of results. Journal of Venomous Animals and Toxins including Tropical Diseases 22(1), 21.

https://doi.org/10.1186/s40409-016-0075-6

Lourenço WR. 2018. The evolution and distribution of noxious species of scorpions (Arachnida: Scorpiones). Journal of Venomous Animals and Toxins including Tropical Diseases,

24(1), 1.

https://doi.org/10.1186/s40409-017-0138-3

Morey SS, Kiran K, Gadag J. 2006. Purification and properties of hyaluronidase from Palamneus gravimanus (Indian black scorpion) venom. Toxicon, 47(2), 188-195.

https://doi.org/10.1016/j.toxicon.2005.10.014

Murthy KK. 2000. The scorpion envenoming syndrome: a different perspective. The physiological basis of the role of insulin in scorpion envenoming. Journal of Venomous Animals and Toxins 6(1), 04-51.

https://doi.org/10.1590/S010479302000000100002

Naqvi R. 2015. Scorpion sting and acute kidney injury: case series from Pakistan. Journal of Advances in Medicine and Medical Research 9(10), 1-6.

https://doi.org/10.9734/BJMMR/2015/19611

Ortiz E, Gurrola GB, Schwartz EF, Possani LD. (2015). Scorpion venom components as potential candidates for drug development. Toxicon 93, 125-135.

https://doi.org/10.1016/j.toxicon.2014.11.233

Otero R, Navío E, Céspedes F, Núñez M, Lozano L, Moscoso E, Fernández D. 2004. Scorpion envenoming in two regions of Colombia: clinical, epidemiological and therapeutic aspects. Transactions of the Royal Society of Tropical Medicine and Hygiene 98(12), 742-750.

https://doi.org/10.1016/j.trstmh.2003.12.018

Pandi K, Krishnamurthy S, Srinivasaraghavan R, Mahadevan S. 2014. Efficacy of scorpion antivenom plus prazosin versus prazosin alone for Mesobuthus tamulus scorpion sting envenomation in children: a randomised controlled trial. Archives of disease in childhood 99(6), 575-580.

http://dx.doi.org/10.1136/archdischild-2013-305483

Pimenta RJG, Brandão-Dias PFP, Leal HG, Carmo AOd, Oliveira-Mendes BBRD, Chávez- Olórtegui C, Kalapothakis E. 2019. Selected to survive and kill: Tityus serrulatus, the Brazilian yellow scorpion. PloS one 14(4), e0214075.

https://doi.org/10.1371/journal.pone.0214075

Pipelzadeh MH, Jalali A, Taraz M, Pourabbas R, Zaremirakabadi A. 2007. An epidemiological and a clinical study on scorpionism by the Iranian scorpion Hemiscorpius lepturus. Toxicon 50(7), 984-992.

https://doi.org/10.1016/j.toxicon.2007.07.018

Polis GA. 1980. Seasonal patterns and age-specific variation in the surface activity of a population of desert scorpions in relation to environmental factors. The Journal of Animal Ecology 49(1), 1-18.

https://doi.org/10.2307/4275

Polis GA. 1990. The biology of scorpions. In: Polis, Gary A, Ed. Stanford, California: Stanford University., p 587.

Polis GA, Farley RD. 1979. Behavior and ecology of mating in the cannibalistic scorpion, Paruroctonus mesaensis Stahnke (Scorpionida: Vaejovidae). Journal of Arachnology 7(1), 33-46.

https://www.jstor.org/stable/3704952

Poon-King T. 1963. Myocarditis from scorpion stings. British medical journal 1(5327), 374.

https://dx.doi.org/10.1136%2Fbmj.1.5327.374

Quintero-Hernández V, Jiménez-Vargas J, Gurrola G, Valdivia H, Possani L. 2013. Scorpion venom components that affect ion-channels function. Toxicon 76, 328-342.

https://doi.org/10.1016/j.toxicon.2013.07.012

Rao VR, Perez-Neut M, Kaja S, Gentile S. 2015. Voltage-gated ion channels in cancer cell proliferation. Cancers 7(2), 849-875.

https://doi.org/10.3390/cancers7020813

Restano-Cassulini R, Garcia W, Paniagua-Solís JF, Possani LD. 2017. Antivenom evaluation by electrophysiological analysis. Toxins, 9(3), 74.

https://doi.org/10.3390/toxins9030074

Romero-Gutierrez T, Peguero-Sanchez E, Cevallos MA, Batista CV, Ortiz E, Possani LD. 2017. A deeper examination of Thorellius atrox scorpion venom components with omic technologies. Toxins 9(12), 399.

https://doi.org/10.3390/toxins9120399

Ruppert E, Fox R, Barnes R. 2004. Invertebrate Zoology . In: Ruppert, Edward E. Invertebrate zoology: a functional evolutionary approach. Belmont, Thomson Brooks / Cole., p 76-97.

Saini T, Gupta S, Kumhar M. 2012. Scorpion bite causing acute severe myocarditis: A rare complication. Indian J Clin Pract, 23(3), 166-168.

Schofield R. 2001. Metals in cuticular structures. In: Brownell P, Polis GA, Ed. Scorpion biology and research. NewYork, Oxford University Press., p 234-256.

Shultz JW. 2007. A phylogenetic analysis of the arachnid orders based on morphological characters. Zoological Journal of the Linnean Society 150(2), 221-265.

https://doi.org/10.1111/j.1096-3642.2007.00284.x

Stachel SJ, Stockwell SA, Van Vranken DL. 1999. The fluorescence of scorpions and cataractogenesis. Chemistry & biology 6(8), 531-539.

https://doi.org/10.1016/S1074-5521(99)80085-4

Stahnke HL. 1957. A new species of scorpion of the Vejovidae: Paruroctonus mesaensis. Entomol. News, 68, 253-259.

Stockmann R. 2015. Introduction to scorpion biology and ecology.  In: Gopalakrishnakone P, Ferroni Schwartz E, Possani L, Rodríguez de la Vega R. Ed. Scorpion Venoms. Springer, p 25-59.

Stockwell SA. 1989. Revision of the phylogeny and  higher classification of scorpions (Chelicerata). Ph. D.  Thesis, University of Berkeley.

Taylor MS, Cosper CR, Gaffin DD. 2012. Behavioral evidence of pheromonal signaling in desert grassland scorpions Paruroctonus utahensis. The Journal of Arachnology 40(2), 240-244.

https://doi.org/10.1636/Hi11-75.1

Wang X, Gao B, Zhu S. 2017. Exon shuffling and origin of scorpion venom biodiversity. Toxins 9(1), 10.

https://doi.org/10.3390/toxins9010010

Ward MJ, Ellsworth SA, Nystrom GS. 2018. A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon 151, 137-155.

https://doi.org/10.1016/j.toxicon.2018.07.007

Whitmore DH. Gonzalez R, Baust JG. 1985. Scorpion cold hardiness. Physiological zoology 58(5), 526-537. https://doi.org/10.1086/physzool.58.5.30158580

Yokota SD, Shoemaker VH. 1981. Xanthine excretion in a desert scorpion, Paruroctonus mesaensis. Journal of comparative physiology, 142(4), 423-428.

https://doi.org/10.1007/BF00688971

Yugandhar B, Radha Krishna Murthy K, Sattar S. 1999. Insulin administration in severe scorpion envenoming. Journal of Venomous Animals and Toxins 5(2), 200-219.

https://doi.org/10.1590/S010479301999000200007

Zhang L, Shi W, Zeng XC, Ge F, Yang M, Nie Y, Guoji E. 2015. Unique diversity of the venom peptides from the scorpion Androctonus bicolor revealed by transcriptomic and proteomic analysis. Journal of proteomics 128, 231-250.

https://doi.org/10.1016/j.jprot.2015.07.030

Nukhba Akbar, Ashif Sajjad, Sabeena Rizwan, Sobia Munir, Khalid Mehmood, Syeda Ayesha Ali, Rakhshanda, Ayesha Mushtaq, Hamza Zahid.
Scorpion’s Biodiversity and Proteinaceous Components of Venom.
Int. J. Biosci. 18(2), 146-162, February 2021.
https://innspub.net/ijb/scorpions-biodiversity-and-proteinaceous-components-of-venom/
Copyright © 2021
By Authors and International Network for
Natural Sciences (INNSPUB)
https://innspub.net
brand
innspub logo
english language editing
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Publish Your Article
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Submit Your Article
INNSPUB on FB
Email Update