Welcome to International Network for Natural Sciences I INNSpub

Paper Details

Research Paper | December 1, 2021

| Download 3

The phytoprotective effects of curcuma (Curcuma longa) against cadmium chloride-induced oxidative stress, hematological and biochemical disturbances in rats

Mouna Boulanouar, Ouassila Aouacheri, Saad Saka

Key Words:

Int. J. Biosci.19(6), 52-68, December 2021

DOI: http://dx.doi.org/10.12692/ijb/19.6.52-68


IJB 2021 [Generate Certificate]


Heavy metals are not biodegradable and tend to be accumulated in organisms and cause numerous diseases and metabolic disorders. The evaluation of the effect of curcuma on the modulation of toxic effects induced by cadmium-chloride is the objective of our study. Forty male rats were randomly divided into four groups and treated daily for 30 consecutive days. The first group (0-0) served as control, received a normal diet and gavage with water. The second group (0-Cur) received a 2% of curcuma-diet. The third group (Cd-0) feeds on a normal diet and is treated per os with 5 mg/kg of cadmium. The fourth group (Cd-Cur) received both an oral dose of cadmium (5 mg/kg) and a 2% of curcuma-diet. Hematological, biochemical and oxidative parameters were estimated. Cd-exposure caused a significant increase in serum biomarkers compared to the control group. In addition, Cd-intoxication caused a disturbance in the hematological profile and oxidative stress biomarkers. However, feeding a curcuma-supplemented diet revealed a reduction of the intensity of oxidative stress induced by the cadmium and restored all the studied parameters as compared to control. The findings suggest that curcuma has the capacity to ameliorate and reverse cadmium-induced toxicity.


Copyright © 2021
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

The phytoprotective effects of curcuma (Curcuma longa) against cadmium chloride-induced oxidative stress, hematological and biochemical disturbances in rats

Abdelaziz I, Elhabiby M, Ashour A. 2012. Toxicity of cadmium and protective effect of bee honey, vitamins C and B complex. Human and Experimental Toxicology 32(4), 362-370. http://dx.doi.org/10.1177/0960327111429136.

Abdel-Shafy S, Alanazi AD, Gabr HSM, Allam AM, Abou-Zeina HAA, Masoud RA, Soliman DE, Alshahrani MY. 2020. Efficacy and safety of ethanolic Curcuma longa extract as a treatment for sand tampan ticks in a rabbit model. Veterinary World 13(4), 812-820. http://dx.doi.org/10.14202/vetworld.2020.812-820.

Aebi H. 1984. Catalase in vitro. Methods in Enzymology 105, 121-126. http://dx.doi.org/10.1016/S0076-6879(84)05016-3.

 Akinyemi AJ, Adeniyi PA. 2018. Effect of essential oils from ginger (Zingiber officinale) and turmeric (Curcuma longa) rhizomes on some inflammatory biomarkers in cadmium induced neurotoxicity in rats. Journal of Toxicology 2018, 1-7. http://dx.doi.org/10.1155/2018/4109491.

Akram M, Shahab-Uddin, Ahmed A, Usmanghani K, Abdul Hannan, Mohiuddin E, Asif M. 2010. Curcuma longa and curcumin: A review article. Romanian Journal of Biology – Plant Biology 55(2), 65-70.

Almášiová V, Lukačínová A, Holovská K, Cigánková V, Ništiar F. 2012. Effect of lifetime low dose exposure to cadmium on lipid metabolism of wistar rats. Journal of Microbiology, Biotechnology and Food Sciences 2(1), 293-303.

Andjelkovic M, Buha Djordjevic A, Antonijevic E, Antonijevic B, Stanic M, Kotur-Stevuljevic J, Bulat Z. 2019. Toxic effect of acute cadmium and lead exposure in rat blood, liver and kidney. Journal of International Journal of Environmental Research and Public Health 16(2), 274. http://dx.doi.org/10.3390/ijerph16020274.

Anetor JI, Uche CZ, Ayita EB, Adedapo SK, Adeleye JO, Anetor GO, Akinlade SK. 2016. Cadmium level, glycemic control, and indices of renal function in treated type ii diabetics: implications for polluted environments. Frontiers in Public Health 4, 1-6. http://dx.doi.org/10.3389/fpubh.2016.00114.

Aouacheri O, Saka S. 2020. Cytoprotective effects of Zingiber officinale against the oxidative stress induced by lead acetate toxicity in rats. Phytothérapie 1, 1-9.http://dx.doi.org/10.3166/phyto-2020-0221.

Attia AMM, Ibrahim FMM, Abd EL-Latif NA, Aziz SW. 2014. Antioxidant effects of curcumin against cadmium chloride-induced oxidative stress in the blood of rats. Journal of Pharmacology and Phytotherapy 6(3), 33-40. http://dx.doi.org/10.5897/JPP2014.0316.

Berroukche A, Abderrahmene L, Terras M. 2015.Antagonist effects of cadmium and zinc on the histological structures of the lungs,liver and kidneys in the wistar rats. Environnement, Risques et Santé 14(2), 163-171.

Bradford MM. 1976. A rapid and sensitive method for the quantities of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry 72, 248-54. http://dx.doi.org/10.1006/abio.1976.9999.

Branca JJV, Fiorillo C, Carrino D, Paternostro F, Taddei N, Gulisano M, Pacini A, Becatti M. 2020. Cadmium-induced oxidative stress: focus on the central nervous system. Antioxidants 9(6), 492. http://dx.doi.org/10.3390/antiox9060492.

Damiano S, Andretta E, Longobardi C, Prisco F, Paciello O, Squillacioti C, Mirabella N, Florio S, Ciarcia R. 2020.Effects of curcumin on the renal toxicity induced by ochratoxin a in rats. Antioxidants 9(4), 332. http://dx.doi.org/10.3390/antiox9040332.

Domijan AM, Ralić J, Radić Brkanac S, Rumora L, Žanić-Grubišić T. 2014. Quantification of malondialdehyde by HPLC-FL – application to various biological samples. Biomedical Chromatography 29(1), 41-46. http://dx.doi.org/10.1002/bmc.3361.

Elshama S, Abdalla ME, Mohamed AM. 2018. Role of natural antioxidants in treatment of toxicity. Journal of Toxicological Analysis 1(1), 3.

Fiati Kenston SS, Su H, Li Z, Kong L, Wang Y, Song X, Lin X. 2018. The systemic toxicity of heavy metal mixtures in rats. Toxicological Research 7(3), 396-407. http://dx.doi.org/10.1039/c7tx00260b.

Flohé L, Günzler WA. 1984. Assays of glutathione-peroxidase. Methods in Enzymololy 105, 114-121.  http://dx.doi.org/10.1016/S0076-6879(84)05015-1.

Gabr SA, Alghadir AH, Ghoniem GA. 2019. Biological activities of ginger against cadmium-induced renal toxicity. Saudi Journal of Biological Sciences 26(2), 382-389. http://dx.doi.org/10.1016/j.sjbs.2017.08.008.

Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. 2020. The Effects of cadmium toxicity. International Journal of Environmental Research and Public Health 17(11), 3782. http://dx.doi.org/10.3390/ijerph17113782.

Hewlings SJ, Kalman DS. 2017. Curcumin: A Review of its’ effects on human health. Foods 6(10), 92. http://dx.doi.org/10.3390/foods6100092.

Habig WH, Pabst MJ, Jakoby WB.1974 .Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249, 7130-7139.

Houlot R. 1984. Techniques d’histologie et de cytologie. Paris: Edition Maloine.

Ighodaroab OM, Akinloyeb OA. 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine 54(4), 287-293. http://dx.doi.org/10.1016/j.ajme.2017.09.001.

Ikram N, Khalid H, Samina T. 2004. Review article cytokines. International Journal of Pathology 1, 47-58.

Jozefczak M, Remans T, Vangronsveld J, Cuypers A. 2012. Glutathione is a key player in metal-induced oxidative stress defenses. International Journal of Molecular Sciences 13, 3145-3175. http://dx.doi.org/10.3390/ijms13033145.

Kang MY, Cho SH, Lim YH, Seo JC, Hong YC. 2013. Effects of environmental cadmium exposure on liver function in adults. Occupational and Environmental Medicine 70(4), 268-273. http://dx.doi.org/10.1136/oemed-2012-101063.

Kara H, Karatas F, Canatan H, Servi K. 2005. Effects of exogenous metallothionein on acute cadmium toxicity in rats. Biological Trace Element Research 104(3), 223-232.

Kehili N, Saka S, Aouacheri O. 2017. The phytoprotective effect of nigella (Nigella sativa) against the toxicity induced by cadmium in rats. Phytothérapie 1, 1-10. http://dx.doi.org/10.1007/s10298-017-1099-y.

Kim K. 2012. Blood cadmium concentration and lipid profile in Korean adults. Environmental Research 112, 225-229. http://dx.doi.org/10.1016/j.envres.2011.12.008.

Kotha RR, Luthria DL. 2019. Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 24(16), 2930. http://dx.doi.org/10.3390/molecules24162930.

Kukongviriyapan U, Apaijit K, Kukongviriyapan V. 2016. Oxidative stress and cardiovascular dysfunction associated with cadmium exposure: beneficial effects of curcumin and tetrahydrocurcumin. Tohoku Journal of Experimental Medicine 239(1), 25-38. http://dx.doi.org/10.1620/tjem.239.25.

Kumar A, Pandey R, Siddiqi NJ, Sharma B. 2019. Oxidative stress biomarkers of cadmium toxicity in mammalian systems and their distinct ameliorative strategy. Journal of Applied Biotechnology and Bioengineering 6(3), 126-135. http://dx.doi.org/10.15406/jabb.2019.09.00184.

Kumaş M, Eşrefoğlu M, Bayindir N, Iraz M, Ayhan S, Meydan S. 2016. Protective effects of curcumin on cadmium-induced renal injury in young and aged rats.Bezmiâlem Science 3, 92-98. http://dx.doi.org/10.14235/bs.2016.788.

Kyung Il Song, Jun Yeon Park, Seungyong Lee, Dahae Lee, Hyuk-Jai Jang, Su-Nam Kim, Hyeonseok Ko, Hyun Young Kim, Jae Wook Lee,Gwi Seo Hwang, Ki Sung Kang, Noriko Yamabe. 2015. Protective effect of tetrahydrocurcumin against cisplatin-induced renal damage: in Vitro and in Vivo Studies. Planta Medica 81, 286-291.

Liu J, Qu W, Kadiiska MB. 2009. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicology and Applied Pharmacology 238(3), 209-214. http://dx.doi.org/10.1016/j.taap.2009.01.029.

Soliman MM, Nassan MA, Ismail TA. 2014. Immunohistochemical and molecular study on the protective effect of curcumin against hepatic toxicity induced by paracetamol in Wistar rats. BMC Complementary and Alternative Medicine 14(1), http://dx.doi.org/10.1186/1472-6882-14-457.

Momeni H, Eskandari N. 2019. Curcumin protects the testis against cadmium-induced histopathological damages and oxidative stress in mice. Human and Experimental Toxicology 1-9. http://dx.doi.org/10.1177/0960327119895564.

Nair U, Bartsch H, Nair J. 2007. Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: a review of published adduct types and levels in humans. Free Radical Biology and Medicine 43, 1109-1120. http://dx.doi.org/10.1016/j.freeradbiomed.2007.07.012.

Nzengue Y, Steiman R, Rachidi W, Favier A, Guiraud P. 2012. Oxidative stress induced by cadmium in the C6 cell line. Biological Trace Element Research 146(3), 410-409. http://dx.doi.org/10.1007/s12011-011-9265-9.

Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95, 351-358.http://dx.doi.org/10.1016/0003-2697(79)90738-3.

Rathore S, Mukim M, Sharma P, Devi S, Nagar JC, Khalid M. 2020. Curcumin: A Review for Health Benefits. International Journal of Research and Review 7(1), 273-290.

Saidi M, Aouacheri O, Saka S. 2020. Protective effect of curcuma against chromium hepatotoxicity in rats. Phytothérapie 18, 148-155. http://dx.doi.org/10.3166/phyto-2019-0114.

Saidi M, Aouacheri O, Saka S, Tebboub I, Ailane L. 2019. Nephron-protective effects of curcuma on oxidative damage and oxidative stress in rat under sub-chronic poisoning of chromium. International Journal of Biosciences 15(1), 241-250. http://dx.doi.org/10.12692/ijb/15.1.241-250.

Saka S, Aouacheri O. 2017. The investigation of the oxidative stress-related parameters in high doses methotrexate-induced Albino wistar rats. Journal of Bioequivalence and Bioavailability 9(2), 372-376. http://dx.doi.org/10.4172/jbb.1000327.

Saka S, Aouacheri W, Abdennour C. 2002. The capacity of glutathione reductase in the cell protection from toxic effect of heated oils. Biochimie 84, 661-665.

Shahat MMA, Fouda MMA, Sultan HAA, Ali IO. 2018. Evaluation of the protective roles of synthetic zeolite on some physiological and biochemical parameters after cadmium toxicity of crayfish (Procambarus clarkii). Egyptian Journal of Hospital Medicine 72(11), 5517-5526. http://dx.doi.org/10.12816/EJHM.2018.11458.

Sharma S, Anu. 2017. Effect of Curcuma longa supplementation on lipid peroxidation, serum amylase, lipase activities in mice exposed to cadmium. International Journal of Advanced Research 5(12), 786-792. http://dx.doi.org/10.21474/IJAR01/6020.

Sharma S, Ahuja C. 2019. Ameliorating efficacy of curcumin on cadmium induced thyroid dysfunction in albino rats. International Journal of Biological Sciences 6(1), 187-195. http://dx.doi.org/10.26438/ijsrbs/v6i1.187195.

Shimada H, Funakoshi T, Waalkes MP. 2000. Acute, non-toxic cadmium exposure inhibits pancreatic protease activities in the mouse. Toxicological Sciences 53, 474-480. http://dx.doi.org/10.1093/toxsci/53.2.474.

Shome S, Talukdar AD, Choudhury MD, Bhattacharya MK, Upadhyaya H. 2016. Curcumin as potential therapeutic natural product: a nanobiotechnological perspective. Journal of Pharmacy and Pharmacology 68(12), 1481-1500. http://dx.doi.org/10.1111/jphp.12611.

Somparn N, Kukongviriyapan V, Kukongviriyapan U, Senggunprai L, Prawan A. 2015. Protective effects of tetrahydrocurcumin and curcumin against doxorubicin and cadmium-induced cytotoxicity in chang liver cells. Tropical Journal of Pharmaceutical Research 14(5), 769-776. http://dx.doi.org/10.4314/tjpr.v14i5.4.

Tang KK, Liu XY, Wang ZY, Qu KC, Fan R. 2019. Trehalose alleviates cadmium-induced brain damage via ameliorating oxidative stress, autophagy inhibition, and apoptosis. Metallomics 11, 2043-2051. http://dx.doi.org/10.1039/c9mt00227h.

Stohs, SJ, Chen O, Ray SD, Ji J, Bucci LR, Preuss HG. 2020. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A Review. Molecules 25(6), 1397. http://dx.doi.org/10.3390/molecules25061397.

Unsal V, Dalkıran T, Çiçek M, Kölükçü E. 2020. The role of natural antioxidants against reactive oxygen species produced by cadmium Toxicity: A Review. Advanced Pharmaceutical Bulletin 10(2), 184-202. http://dx.doi.org/10.34172/apb.2020.023.

Upreti KK, Das M, Kuman A, Singh GB, Khanna SK. 1989. Biochemical toxicology of argemone oil. IV: Short-term oral feeding response in rats. Toxicology 58, 285-289.

Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology 39, 44-84. http://dx.doi.org/10.1016/j.biocel.2006.07.001.

Vijaya P, Sharma S. 2018. Protective effects of natural antioxidant supplementation on cadmium induced toxicity in albino mice. Journal of Innovations in Pharmaceutical and Biological Sciences 5(2), 16-21.

Weckbecker G, Cory JG. 1988. Ribonucleotide reductase activity and growth of glutathione-depended mouse leukaemia L1210 cells in vitro. Cancer Letters 40, 257-264. http://dx.doi.org/10.1016/0304-3835(88)90084-5.

Yuan G, Dai S, Yin Z. 2014. Toxicological assessment of combined lead and cadmium: acute and sub-chronic toxicity study in rats. Food and Chemical Toxicology 65, 260-268. http://dx.doi.org/10.1016/j.fct.2013.12.041.

Zwolak I. 2020. The role of selenium in arsenic and cadmium toxicity: an updated review of scientific literature. Biological Trace Element Research 193(1), 44-63. http://dx.doi.org/10.1007/s12011-019-01691-w


Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background