

OPEN ACCESS

Quantitative ethnobotanical survey of medicinal plants used as remedy in Mera, District Charsadda, KP, Pakistan

Abd Ullah¹, Nazim Hassan^{2*}, Rohul Amin³, Adnan Khan¹, Lixuan Shi¹, Mingxia Li¹

¹ School of life sciences, Northeast Normal University, Changchun, Jilin 130024, P. R. China ²Institute of Grassland Science, and Key Laboratory of Vegetation Ecology Northeast Normal University, Changchun, Jilin, China

^sSchool of Forestry Department, Forest Manager Discipline, Beijing Forestry University

Article published on May 13, 2018

Key words: Ethnobotany, Diseases, Use value, Conservation status, Charsadda, Pakistan.

Abstract

Extensive field visits and interviews were carried out in spring and summer 2015, to document information on traditional uses of medicinal plants in Mera, District Charsadda, Kp, Pakistan. A total of 92 plants species from 50 families were reported which were taken against 48 different human ailments in the locality. Family Solanaceae with 7 species was the most leading family followed by Moraceae 6 species and Asteraceae, Brassicaceae, Cucurbitaceae with 4 species each. Herbs (62%) were the most dominant life form followed by trees (30%) and shrubs (8%). The most frequent plant parts used were leaves (33%) followed by fruit (22%), bark (8%), seed (8%), whole plants (7%) and flowers (5%). The highest (0.73) Relative Frequency Citation (RFC) for *Citrus aurantifolia* whereas highest (0.85) Use Value (UV) for *Coriandrum sativum* were observed. Person correlation coefficient (PCC=0.941) showed a strong positive correlation between RFC and UV. This survey will help, to identify high valued medicinal plant species in the locality for further drug discovery. Medicinal Plants with high use value should be subjected to comprehensive phytochemical studies for further drug discovery.

*Corresponding Author: Nazim Hassan 🖂 nazimhassan890@yahoo.com

Introduction

Ethno botany is the relationships between peoples and plants regarding theircultural values etc. Interactions and relationship betweenplants and people is different from area to areadue to their relative importance, cultural values of plant exploration has a key role in pharmaceutical and nutritional industrial sectors (Ladio et al., 2011). Herbal medicines are naturally occurring plant-based medicines. About 80% of the world's populations are still relies on traditional plant-based medicines for primary health care because of their effectiveness, no side effect, easily accessible at affordable prices (Mukerjee and Wahil, 2006; Gangadhar et al., 2012). In the past medicinal plant species were under practice for the recovery of different health disorders in most parts of the world due to its less side effects easily accessible and effectiveness. Plant produce organic compound which provide a source of active chemicalsused for medicinal purposes in herbal medicine form (Bussmann et al., 2006). I hilly areas people use medicinal plant species in the form of herbal medicines for the treatment of different health disorders due to easily availability, effectiveness and trust (Hassan et al., 2017c).

There is a huge crude drug (Tibbia Dawakhana) system in Pakistan with more than 50,000 registered Hakims (William and Zahoor, 1999). They use the plant's leaves, stem, roots, seeds, berries, barks, gums, fruits and flowers etc for medicinal purposes and play a vital role in the treatment of various human and livestock illnesseswithin local healing practices (Hussain and Khaliq, 1996). Rural population has a critical knowledge about medicinally important plants and treat diseases by using certain plant parts either directly or with some other suitable supplements (Nadeem et al., 2013). Because of the rich floral diversity ethnomedicinal studies has been a major subject of interest in Pakistan. A number of workers carried out ethnomedicinal studies throughout out the country including Begum et al., (2005), Hamayun et al., (2006), Manan et al., (2007), Abbasi et al., (2010), Alam et al., (2011), Ghorbani et

al., (2011), Naghibi et al., (2012), Tangjitman et al., (2012), Bibi et al., (2014), Nasab et al., (2014), Begum et al., (2014), Khan et al., (2014) and also some parts of district Charsadda (Begum and Hamayun, 2015; Jan et al., 2016). Therefore, the present study attempted to collect and preserve the ethnomedicinal knowledge of local flora in the form of an ethnomedicinal profile and to furnish the ethnomedicinal awareness in the natives for the upcoming generation. The present work might be helpful for the future researchers in the field of natural drugs discovery.

Materials and methods

Study area

District Charsaddais located in the west of the Khyber Pakhtunkhwa and is bounded by Malakand district on the north, Mardan district on the east, Nowshera and Peshawar districts on the south and on the west by Mohmand Agency. The district lies between 34-03' and 34-38' north latitudes and 71-28' and 71-53' east longitude. The mean maximum temperature in summer and winter is over 40 ° and 18.35 °C respectively. The mean minimum temperature is 25 °C in summer and 4 °C in winter. The highest winter and summer rainfall has been recorded in March and August respectively (Government of Pakistan).

Data collection and documentation

Various field visits were conducted in spring and summer season during 2015-16 for documenting and enlisting the ethno medicinal uses of medicinal flora of Mera (Turangai and Umarzai) District Charsadda, KP, Pakistan. Plants were collected, pressed, dried and preserved properly on herbarium sheet of standard size (Hassan *et al.*, 2017a). The collected plants were photographed using a digital camera. The informants were interviewed about local name, part used, method of preparation, dosage and traditional knowledge and experience of using plants for treatment of different health disorders. All the described information's were recorded by filling semi structure questionnaires (Hassan *et al.*, 2017b). A total of 103 informants with different age classes were randomly selected for interviews. The informants include both male, female and local Hakeem with different age classes (above 40 years age) . The medicinal plants were identified through flora of Pakistan (Nasir and Ali, 1970-1995; Ali and Qaisar, 1993-2015).

Statistical analysis

The data was analyzed using Use Value (UV), Relative Frequency Citation (RFC) and Pearson Correlation Coefficient (PCC) Use Value demonstrates the relative importance of plant species known locally (UV= Σ Ui / N). Relative Frequency Citation indicated the local importance of each species (RFC = FC/ N). while Pearson Correlation Coefficient is the covariance of the two variables divided by the product of their standard deviations. it was measured between RFC and UV using SPSS version 16. (Savikin *et al.*, 2013;Vitalini *et al.*, 2013).

Results and discussion

Medicinal plants and natural plant productshave always been used as first aid remedy throughout the history of mankind for various purposes. In the present survey, a total of 92 medicinal plant speciesfrom 50 families were reported (Table1).

Table 1.Ethnomedicinally important plants of mera Turangzai and Umarzai district Charsadda.

Plant species	Family name	Local	Habit	Part used	FC	RFC	ΣUi	UV	Uses
		name							
Portulaca oleracea L.	Aizonaceae	Warharhi	Н	Shoot	8	0.08	14	0.14	Curative, urinary bladder swellings, kidney disorders
Allium sativum L.	Alliaceae	Ooga	Н	Bulb	51	0.50	78	0.76	Blood pressure, vomiting, diarrhoea
Allium cepa L.	Alliaceae	Piaz	Н	Bulb	36	0.35	47	0.46	Diabetes, carminative, help in digestion, aphrodisiac
Achyranthes aspera L.	Amaranthaceae	Spaiboti	Н	Leaves	19	0.18	45	0.44	Stomach pain, asthma, blood purifier
Coriandrum sativum L.	Apiaceae	Dhanya	Н	Leaves	70	0.69	88	0.85	Laxative, carminative, abdominal pain
Daucuscarota L.	Apiaceae	Gazara	Н	Root	36	0.35	50	0.49	Increase eye vision, tonic
Foeniculum vulgare M.	Apiaceae	Kaaga	Н	Fruit	54	0.52	73	0.71	Vomiting, carminative
Calotropis procera A.	Apocyanaceae	Spalmai	Н	Leaves, Latex	53	0.51	70	0.68	Leaves mixed with oils: Cough, skin itching, Anti-
									poisonous; Latex: wounds healing, Earache
Phoenix dactylifera L.	Arecaceae	Qajoora	Т	Fruit	39	0.38	63	0.61	Laxative, tonic, stimulant. aphrodisiac
Aloe vera L.	Asphodelaceae	Alovera	Н	Leaves	10	0.10	17	0.17	Inflammation of the skin, skin burn
Artemisia vulgaris L.	Asteraceae	Terkha	Н	Whole plant	20	0.19	32	0.31	Analgesic, purgative
Xanthium stramarium. L.	Asteraceae	Jishkay	Н	Leaves, Stem	15	0.15	19	0.18	Leaves: asthma. blood purifier
									Stem ash: analgesic
Sonchus asper L.	Asteraceae	Shodapai	Н	Leaves	18	0.17	26	0.25	Anti-poison, poultice to wounds
Lactuca sativa L.	Asteraceae	Salad	Н	Leaves	25	0.24	33	0.32	Vermifuge, carminative
Bombax ceiba L.	Bombacaceae	Sumbal	Т	Leaves	16	0.16	21	0.20	Stomach, kidney problems
Coronopus didymus L.	Brassicaceae	Sqabooti	Н	Whole plant	14	0.14	16	0.16	Blood purifier, help in digestion
Eruca sativa M.	Brassicaceae	Jamama	Н	Laves, Seed	66	0.64	79	0.77	Diabetes, Skin diseases, cough, anti-ulcer, alopecia
Brassica campestris L.	Brassicaceae	sharsham	Н	Roots, Seed,	28	0.27	46	0.45	Root: emollient, diuretic, chronic cough
									Seed oil: alopecia
Nasturtium officinale R.	Brassicaceae	Talmera	Н	Leaves	32	0.31	50	0.49	Tetanus, diuretic, expectorant, purgative
Cannabis sativa Linn.	Canabaceae	Bhang	Н	Shoot	57	0.55	64	0.62	Shoot powder mixed with milk and nuts to form Tandai (a
									local drink) which is refrigerant, narcotic, headache,
									Anodyne, toothache, tonic
Beta vulgaris L.	Chenopodiaceae	Chaqandar	Н	Root	11	0.11	18	0.17	Lower the blood pressure, carminative
Spinacia oleracea L	Chenopodiaceae	Palak	Н	Leaves	36	0.35	52	0.50	Carminative, constipation, diabetes, diuretic, stomach-
									ache
Chenopodium album L.	Chinopodiaceae	Saarmi	Н	Leaves	18	0.17	46	0.45	Carminative, laxative, vermifuge, diarrhoea
Convolvulus arvens L.	Convolvolaceae	Privatai	Н	Shoot	13	0.13	40	0.39	Purgative, skin disorders, fever
Spinacia oleracea L.	Cucurbitaceae	Torai	Н	Fruit	22	0.21	28	0.27	Ulcer, diuretic
Citrullus colocynthis L.	Cucurbitaceae	Kalkondai	Н	Fruit	17	0.17	30	0.29	Laxative, diabetes, analgesic
Momordica charantia L.	Cucurbitaceae	Karila	Н	Fruit	23	0.22	38	0.37	Diabetes, piles
Cucumis sativus L	Cucurbitaceae	Badrang	Н	Fruit	53	0.51	68	0.66	Refrigerant, carminative
Cupressus sempervirens L.	Cuperaceae	Serva	Т	Cone	8	0.08	12	0.12	Vermifuge, coughs

J. Bio.Env. Sci. 2018

Cuscuta reflexa R.	Cuscutaceae	Banoshai	Н	Stem -	19	0.18	28	0.27	Fever, skin irritation, hepatic problems
Cyperus rotundus L.	Cypraceae	Deela	Н	Leaves	5	0.05	9	0.09	Analgesic, fever
Diospyrus lotus L.	Ebenaceae	Tor Amlok	Т	Fruit	45	0.44	69	0.67	Diarrhoea, anti- diuretic for children
Equisitum arvense L.	Equisetaceae	Bandakay	Н	Whole plant	14	0.14	30	0.29	Inflammation of urinary bladder, remove kidney stones, analgesic
Euphorbia helioscopia L.	Euphorbiaceae	Mandharo	Н	Shoot, Latex	37	0.36	43	0.42	Purgative, vermifuge, skin eruption Latex: cause skin soreness and swellings
Euphorbia prostrate L.	Euphorbiaceae	Zeelay	Н	Leaves	14	0.14	18	0.17	Sun burn, wounds
	Euphorbiaceae	Arkhanda	Т	Leaves	7	0.07	10	0.10	wounds washing and healing, skin disorders
Bauhinia Variegata L.	Fabaceae	Kachnaar	Т	Leaves, Bark, Flower	35	0.34	60	0.58	leaves and flower: analgesic, cough, tonic, diarrhoea Bark: toothache
Cassia Fistula L.	Fabaceae	Landes	Т	Fruit	30	0.29	53	0.51	Boiled in milk for urinary and abdominal disorders, diarrhoea, constipation, fever
Dalbergiasisso R.	Fabaceae	Shawa	Т	Bark	32	0.31	45	0.44	Blood purifier, skin eruption, purgative, skin burn
U U	Labiateae	Veenali	Н	Leaves	33	0.32	48 48	0.47	Leaves powder: Stimulant, stomach and abdominal pain, Carminative, dysentery, diarrhoea, vomiting, constipation.
Mentha spicata L.	Labiateae	Pudina	Н	Leaves	68	0.66	83	0.81	Stimulant, carminative, digestive and skin disorders, mouth wash
Salvia moorcroftiana Wall. Ex Benth.	Labiateae	KharKwag	Н	Leaves	11	0.11	17	0.17	Analgesic, stimulant
	Loganiaceae	Lashorha	Т	Fruit	18	0.17	44	0.43	Aphrodisiac, stimulant, tonic, digestive problems
-	Malvaceae	Binday	Н	Fruit, Leaves	31	0.30	55	0.53	Fruit: Urinary problems, Diuretic, stimulant Leaves: leaves poultice for wound healing
Malva neglecta W.	Malvaceae	Panirak sag	Н	Whole plant	15	0.15	24	0.23	Diuretic, expectorant, laxative
Meliaazedarach L.	Miliaceae	Bakynrha	Т	Leaves	17	0.17	26	0.25	Diabetes, piles
Acacia modesta W	Mimosaceae	Palosa	Т	Branch, Gum	26	0.25	42	0.41	Branch: Toothache Gum: Backaches
Acacia nilotica. L.	Mimosaceae	Kikar	Т	Gum, flower	38	0.37	72	0.70	Gum: Cough, diabetes, diarrhoea, vermifuge Flower: young flowers are mixed with sugar to cure cough.
Broussonetia papyrifera L.	Moraceae	Gultoot	Т	Fruit	34	0.33	42	0.41	Constipation, wounds
Ficuscarica L.	Moraceae	Inzar	Т	Latex, Fruit	43	0.42	66	0.64	Latex: anti constipation, Purgative, urinary bladder disorders, Fruits: stomach and urinary disorders
Ficus religiosa L.	Moraceae	Peepal	Т	Leaves	16	0.16	21	0.20	Cough and diarrhoea
Morus alba L.	Moraceae	Spin toot	Т	Fruit, Leaves	24	0.23	32	0.31	Fruits: Diuretic, expectorant, laxative; Leaves: refrigerant, skin emollient throat infection, allergy
Morusnigra L.	Moraceae	Toor toot	Т	Fruit, Leaves, Bark	22	0.21	37	0.36	Fruits: Tonic, laxative; Leaves: refrigerant, skin emollient; Bark: toothache
Morus lavaegata W.	Moraceae	Shahthooth.	Т	Bark	25	0.24	31	0.30	wounds healing and washing, reduce skin inflammation
Eugenia jamblana L.	Myrtaceae	Jaman		Fruit, Bark, Seed, Leaves	44	0.43	57	0.55	Fruits: Tonic, laxative Leaves: refrigerant, skin emollient
<i>Eucalyptus camaldulensis</i> Dehnh.	Myrtaceae	Lachi	Т	Leaves	17	0.17	23	0.22	Bark: toothache Coughs tonic, leaves oil used for washing and healing wounds and cuts
	Myrtaceae	Amrooth	Т	Fruits, Leaves	44	0.43	57	0.55	Fruits: diarrhoea, laxative, stimulant Leaves: laxative
Boerhavia procumbens Banks ex Roxb.	Nyctaginaceae	Insut	Н	Whole plant	29	0.28	65	0.63	Wounds healing, Piles, Anaemia, Asthma, night blindness, Bronchitis
	Nyctaginaceae	Gul-i-abbasi	Н	Leaves	37	0.36	48	0.47	Wounds washing, Reduce skin and throat inflammation, analgesic
Jasminum officinale L.	Oleaceae	Rambil - chambil	·Н	Flower	6	0.06	11	0.11	Diuretic, headache, skin diseases
		CHAILIDH							

165 | Ullah et al.

J. Bio.Env. Sci. 2018

Papaver somniferum L. Papavera	ceae Afuum	Н	Fruit, Seeds	55	0.53	79	0.77	Latex: Narcotic, anodyne, analgesic, hypnotic
						,		(provide excitement) Cough, fever Seeds: tonic
Piper nigrum L. Piperacea	e Toormirch	Т	Fruits	22	0.21	36	0.35	Purgative, carminative
Platanus orientalis L. Platanace	ae Chinar	Т	Bark	5	0.05	7	0.07	Toothache and diarrhoea
Avena sativa L. Poaceae	Jamdar	Н	Flower	15	0.15	23	0.22	Sedative, tonic
Hordeum volgare L. Poaceae	Warbashi	Н	Seed	18	0.17	22	0.21	Digestive problems, tonic
Rumex dentatus. L. Polygonae	ceae Shalhai	Н	Leaves	13	0.13	15	0.15	Constipation, skin disease
Adiantum capillus veneris L. Pteridace	ae Sumbalai	Н	Leaves	15	0.15	26	0.25	Fever, coughing, abdominal pain, skin itching.
Punica granatum L Punicacea	ae Anar	Т	Fruit	43	0.42	58	0.56	Digestive problems, Blood purifier
Ziziphus jujuba M. Rhamnac	eae Bira	Т	Leaves, Fruit	33	0.32	48	0.47	Bronchitis, diabetes, coughs, dysentery, antiulcer
Ziziphus nummularia B. Rhamnac	eae Karkana	s	Fruit, Seeds	5, 21	0.20	35	0.34	All parts Obesity, digestive and skin disorders, diabetes,
			Bark					Fruits: Sedative, wound healing, dysentery; Seeds:
								abdominal pain
Rosa damascena M. Rosaceae	Sur guli	Н	Flower	48	0.47	61	0.59	Diabetes, eye drops (arqi- gulab) for eye diseases
Rosa indica L. Rosaceae	Gulab	S	Flower	25	0.24	43	0.42	Stomach problems, eye diseases
Citrus medica L. Rutaceae	Naranj	S	Leaves, Fruit	62	0.60	73	0.71	Leaves: leaves green tea prevent vomiting,
								Fruit: Dehydration and constipation
Citrus aurantifolia C Rutaceae	Namboo	S	Fruit, leaves	75	0.73	81	0.79	Vomiting, nausea
Monotheca buxifolia A. Sapotacea	e Gurgura	S	Fruit	11	0.11	15	0.15	Help in digestion, vermifuge
Verbascum thapsus L. Scrophula	ariaceae Kharghwag	Н	Leaves	19	0.18	23	0.22	wounds washing and healings
Ailanthus altissima M. Simaroub	aceae AngrezaySh	а Т	Leaves	9	0.09	11	0.11	Vermifuge, purgative
	nday							
Capsicum annuum L. Solanacea	e Marchaki	Н	Fruit	24	0.23	35	0.34	Diabetes, stimulant
Cestrum nocturnum L. Solanacea	e Rat kerane	s	Flower	35	0.34	47	0.46	Throat inflammation, vomiting
Datura stramonium L. Solanacea	e Datura	Н	Seeds, Leaves	52	0.50	63	0.61	Seed: narcotic, fever toothache; Leaves: headache, wounds
								healing, ant poisonous, epilepsy
Nicotiana Tobbacum L. Solanacea	e Tamako	Н	Leaves	43	0.42	59	0.57	diuretic, narcotic, analgesic, sedative
Solanum nigrum L. Solanacea	e Kachmaco	Н	Leaves	20	0.19	33	0.32	Leaves: wounds washing, expectorant, skin diseases, piles,
								carminative, tonic and diuretic
Withania somnifera L. Solanacea	e Kothilal	Н	Leaves, Bark	17	0.17	26	0.25	Bark: Asthma Tonic
								Leaves: diabetes
Withania coagulance Solanacea	e Akri	s	Berries	12	0.12	18	0.17	Berries: Inflammation of skin, diabetes;
(Stocks) Dunal.			Branch				,	Branch: Toothache
Pterospermum Sterculiad	eae Sarwan	Т	Bark	10	0.10	17	0.17	Backache, chest pain and anti- diabetic
acerifolium L.								
Tamarix indica W. Tamarica	ceae Ghazz	Т	Bark	68	0.66	76	0.74	Plant powder mixed with oils are used for relieving
								wounds, skin fire burns, toothache
Urtica dioica L. Utricacea	e Seezonki	Н	Whole plant	11	0.11	14	0.14	Diuretic and jaundice.
Vitis vinifera L. Vitaceae	Kwar	Н	Fruit	28	0.27	34	0.33	Laxative, aphrodisiac
Fagonia indica Burm.f. Zygophyl	aceae Azghakey	Н	Whole plant	24	0.23	29	0.28	Blood purification, refrigerant
Peganum harmala L. Zygophyl	aceae Spelani	Н	Seed, Leaves	54	0.52	67	0.65	Urinary disorders, Digestive problems, Vermifuge
								Urinary disorder, Diabetes

Family Solanaceae (7.61%) contribute the highest number of species followed by Moraceae (6.52%), Asteraceae, Brassicaceae (4.35), and Cucurbitaceae (4.35%). Only a single plant species (1.09%) has been contributed by family Oleaceae, Oxilidaceae, Papaveraceae, Piperaceae, Platanaceae, Polygonaceae, Pteridaceae, Punicaceae, Sapotaceae, Scrophulariaceae, Simaroubaceae, Tamaricaceae, Sterculiaceae, urticaceae and Vitaceae, Miliaceae, Loganiaceae, Equisetaceae, Bombacaceae, Asphodelaceae, Arecaceae, Apocyanaceae, Amaranthaceae, Aizoaceae, Ebenaceae, Cypraceae, Cuscutaceae, Cuperaceae, Convolvolaceae, and Canabaceae respectively (Table 2).

166 | Ullah et al.

Family name	No. of	%age	Family name	No. of	%age contribution
	Species	contribution		Species	
Aizonaceae	1	1.09	Mimosaceae	2	2.17
Alliaceae	2	2.17	Moraceae	6	6.52
Amaranthaceae	1	1.09	Myrtaceae	3	3.26
Apiaceae	3	3.26	Nyctaginaceae	2	2.17
Apocyanaceae	1	1.09	Oleaceae	1	1.09
Arecaceae	1	1.09	Oxilidaceae	1	1.09
Asphodelaceae	1	1.09	Papaveraceae	1	1.09
Asteraceae	4	4.35	Piperaceae	1	1.09
Bombacaceae	1	1.09	Platanaceae	1	1.09
Brassicaceae	4	4.35	Poaceae	2	2.17
Canabaceae	1	1.09	Polygonaceae	1	1.09
Chenopodiaceae	3	3.26	Pteridaceae	1	1.09
Convolvolaceae	1	1.09	Punicaceae	1	1.09
Cucurbitaceae	4	4.35	Rhamnaceae	2	2.17
Cuperaceae	1	1.09	Rosaceae	2	2.17
Cuscutaceae	1	1.09	Rutaceae	2	2.17
Cypraceae	1	1.09	Sapotaceae	1	1.09
Ebenaceae	1	1.09	Scrophulariaceae	1	1.09
Equisetaceae	1	1.09	Simaroubaceae	1	1.09
Euphorbiaceae	3	3.26	Solanaceae	7	7.61
Fabaceae	3	3.26	Sterculiaceae	1	1.09
Labiateae	3	3.26	Tamaricaceae	1	1.09
Loganiaceae	1	1.09	Utricaceae	1	1.09
Malvaceae	2	2.17	Vitaceae	1	1.09
Miliaceae	1	1.09	Zygophyllaceae	3	3.26

Table 2. Percentage family contribution of reported medicinal plant species.	•
--	---

Table 3. Strong positive Correlation between UV and RFC.

		RFC	UV
RFC	Pearson Correlation	1	.941**
	Sig. (2-tailed)		.000
	Covariance	.028	.032
	Ν	92	92
UV	Pearson Correlation	.941**	1
	Sig. (2-tailed)	.000	
	Covariance	.032	.042
	Ν	92	92
** Correl	ation is significant at the 0.01 level (2-tailed).		

Our study is in connection with Ishtiaq *et al.*, (2007) and Sher *et al.* (2011) who also observed mostly medicinal plants species from family Solanaceae. Inpresent findings herbaceous life form (62%) was dominant followed by trees (30 %) and shrubs

(8%)(Fig. 1).The use of herbs mostly for the preparation of ethno medicines might be due to its easily availability and fruitful results. Our study is in line with (Ibrar *et al.*, 2007; Jan *et al.*, 2011) who also observed that locals used mostly herbs for the

preparation of herbal medicines. Decoction was the most common method for preparation of herbal medicines. Same was also reported by (Hassan *et al.,* 2017c) where the local inhabitants applied the method of decoction for preparation of herbal medicines. Leaves (33%) were mostly used for ethnomedicines preparation followed by, fruits (22%), bark (8%), seeds (8%), whole plants (7%) and flowers (5%) (Fig. 2).

Our study is in connection with (Rahman *et al.*, 2010) where locals taken leaves for the preparation of herbal medicines. Similarly the use of leaves have already been observed at national and international level for the preparation of herbal medicines (Gonzalez *et al.*, 2010, Giday *et al.*, (2010), Khan *et al.*, (2013), Mahmood *et al.*, (2013) and Bano *et al.*, (2014).

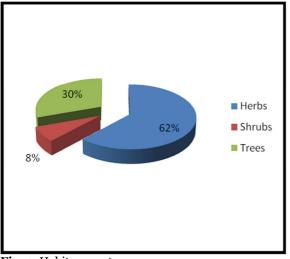


Fig. 1. Habit percentage.

Frequency of citation (FC), relative frequency of citation (RFC) and use value (UV) were also calculated following (Savikin *et al.*, 2013; Vitalini *et al.*, 2013). RFC was observed directly proportional to uses of plant species mentioning by local informants (Fig. 3). In other words, the uses of a particular plant species increases with an increase in the number of informants.

The phytochemical analysis of the plant species having high RFC value might be helpful for the discoveries novel drugs (Molares and Ladio, 2009). Highest RFC values (0.73) for *Citrus aurantifolia* and (0.69) for *Coriandrum sativum* while lowest (0.05) was observed for *Cyperus rotundus* and *Platanus orientalis*. Our study is in connection with (Samoisy *et al.*, 2015) who also scored the highest RFC (RFC=1.02) value for *Citrus aurantifolia*. Use value (UV) was observed high (0.85) for *Coriandrum sativum* and (0.81) for *Menthaspicata* while lowest (0.07) for *Platanus orientalis*. Study like ours was also conducted by (Shafi *et al.*, 2014) wo observed that most commonly used medicinal plants were *Plantago ovata* with use value (UV=0.98), *Fagonia indica* (UV=0.87), and *Cannabis sativa* (UV=0.77), which indicates their extensive use in local herbal medicine.

The high UVs of these plants might be attributable to their wide distribution and the awareness of local healers, which makes that plant specie, first choice for treatment of health disorders.

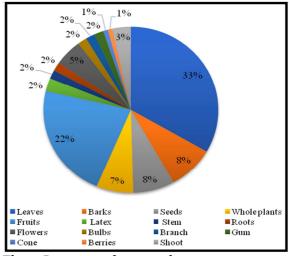


Fig. 2. Percentage of parts used.

Gastrointestinal diseases (33.33%) were observed high treated by medicinal plants followed by skin diseases (13%), urinary problems (12%), respiratory disorders (8.67%), blood disorder (8%), dental problems (3.33%), fever (2.33%), eye diseases (2%), abdominal pain (1.67%) and aphrodisiac (1.33%) (Fig. 4).

Gastrointestinal disorders were high which might be due to unhygienic standards and unclean drinking water. Current study is in line with other studies at national and international level where mostly gastrointestinal disorder were treated by medicinal plants. Miraldi *et al.*, (2001), Ghorbani *et al.*, (2011), Naghibi *et al.*, (2012), Tangjitman *et al.*, (2012) Bibi *et al.*, (2014), Nasab *et al.*, (2014).Some time additives like sugar, salt, honey water and flour is added because some plant species have very bitter and unpleasant smell.

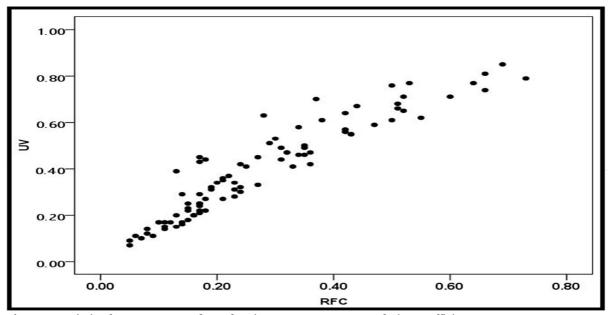


Fig. 3. Association between RFC and UV showing strong Pearson correlation coefficient.

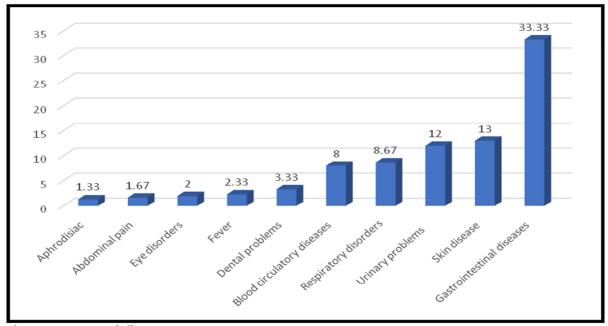


Fig. 4. Percentage of ailments.

Conclusion

The people of the locality use medicinal plant species for the treatment of different health disorders. Harvesting of wild medicinal plant species was observed common in the study area.Further exploration and wise use of plant resources are recommended.

Acknowledgment

169 | Ullah et al.

We are thankful to the people of the locality by sharing their ethno medicinal knowledge and entire support during data collection.

References

Abbasi AM, Khan MA, Ahmad M, Qureshi R, Arshad M, Jahan S, Sultana S. 2010. Ethnobotanical study of wound healing herbs among the tribal communities in Northern Himalaya ranges district Abbottabad, Pakistan. Pakistan Journal of Botany**42(6)**, 3747–3753

Alam N, Shinwari ZK, Ilyas M &Ullah Z. 2011. Indigenous knowledge of medicinal plants of Chagharzai Valley, District Buner, Pakistan. Pakistan Journal of Botany43(2), 773-780.

Ali SI and Qaiser M.1993-2015. Flora of Pakistan 194-210. Department of Botany, University of Karachi, Karachi194-220.

Bano A, Ahmad M, Hadda TB, SaboorA, Sultana S, Zafar M, Ashraf MA. 2014. Quantitative ethnomedicinal study of plants used in the skardu valley at high altitude of Karakoram Himalayan range, Pakistan. Journal of Ethno biology and Ethno med icine **10(1)**, 43.

http://dx.doi.org/10.1186/1746-4269-10-43

Begum HA, Hamayun M. 2015. Ethnomedicinal Study of Medicinal Plants of Village Harichand, District Charsadda, Khyber Pakhtunkhwa, Pakistan. *Scinzer* Journal of Medical - Scinzer Scientific Publications **1(1)**, 17-25.

Begum HA, Jan MM and Hussain F. 2005. Ethnobotanical studies on some medicinal plants of Dehri Julagram, Malak and Agency, Pakistan. International Journal of Biotechnology**2**, 597-602. <u>http://dx.doi.org/10.1186/2046-0481-67-6</u>

Begum S, AbdEIslam NM, Adnan M, Tariq A, Yasmin A, Hameed R. 2014. Ethnomedicines of highly utilized plants in temperate Himalaya region. African Journal of Traditional, Complementary and Alternative Medicines **11(3)**, 132–142.

Bibi T, Ahmad M, Tareen RB, Tareen NM, Jabeen R, Rehman SU and Yaseen G. 2014. Ethnobotany of medicinal plants in district Mastung of Balochistan province-Pakistan. Journal of ethnopharmacology157, 79-89.

http://dx.doi.org/10.1016/j.jep.2014.08.042

Bussmann RW, Sharon D.2000. Traditional medicinal plant use in Northern Peru: tracking two thousand years of case study of a Mapuche community from north western Patagonia. Biodiversity and Conservation **13(6)**,1153-1173.

Ghorbani A, Langenberger G, Feng L, Sauerborn J. 2011. Ethnobotanical study of medicinal plants utilised by Hani ethnicity in Naban river watershed national nature reserve, Yunnan, China. Journal of ethnopharmacology **134(3)**, 651-667.

http://dx.doi.org/10.1016/j.jep.2011.01.011

Giday M, Asfaw Z, Woldu Z. 2010. Ethnomedicinal study of plants used by Sheko ethnic group of Ethiopia. Journal of ethnopharmacology**132**, 75–85.

http://dx.doi.org/org/10.1016/j.jep.2010.07.046

González JA, García-Barriuso M, Amich F. 2010. Ethnobotanical study of medicinal plants traditionally used in the Arribes del Duero, Western Spain. Journal of ethnopharmacology**131(2)**, 343-55.

Hamayun M, Afzal S, Khan MA. 2006. indigenous collection and preservation techniques of some frequently used medicinal plants of Utror and Gabral, district Swat, Pakistan. African Journal of Traditional, Complementary and Alternative Medicines **3(2)**, 57–73. Hassan N, Wang D, Shuaib M, Zhong Z, Nisar M, Ahmad W, Ahmed S, Khan A.2017a. Identification and ethnobotanical survey of profitable medicinal plants used as remedy in Sangina Pakistan. International Journal of Herbal Medicine **5(4)**, 117-123.

Hassan N, Wang D, Zhong Z, Nisar M, Zhu Yu. 2017 c. Determination and analysis of informant consensus factor of medicinal plant species used as remedy in Northern Pakistan. Journal of Biodiversity and Environmental Sciences **11(2)**,117-133.

Hassan N, Nisar M, Kakar SR, Hassan F, Zhong Z, Nong L, Khan MI, Shuaib M, Wang D. 2017b. Determination of Informant Consensus Factor of Medicinal Plants Used as Therapy in District Dir Lower Pakistan. Journal of medicinal plant studies 5(4),183-188.

Hussain F, Khaliq A, Durrani MJ. 1996. Ethnobotanical studies on some plants of Dabargai Hills, Swat: 207-215. In Proceedings of First TrainingWorkshop on Ethnobotany and its Application to Conservation. NARC, Islamabad.

Ibrar M, Hussain F, Sultan, A. 2007. Ethnobotanical studies on plant resources of Ranyal Hills, District Shangla, Pakistan. Pakistan Journal of Botany**39(2)**,329–337.

Ishtiaq M, Hanif W, Khan MA, Ashraf M and Butt AM. 2007. An ethnomedicinal survey and documentation of important medicinal folklore food phytonims of flora of Samahni valley, (Azad Kashmir) Pakistan. Pakistan journal of biological sciences **10(13)**,2241-2256.

Jan G, Khan MA, Farhatullah JF, Ahmad M, Jan M, Zafar M. 2011. Ethnobotanical Studies on Some Useful Plants of DirKohistan Valleys, KPK, Pakistan. Pakistan Journal of Botany **43(4)**, 1849-1852. Jan R, Khan RU, Rehman HU, Khan AZ, Waheed MA, Khan, Shah NA, Khan RU, AsafS, Khan J.2016. Ethnobotanically important flora of Tehsil Tangi, District Charsadda, Pakistan. Journal of Chemical and Pharmaceutical Research8(3), 108-116.

Mahmood A, Mahmood A, Malik RN, Shinwari ZK. 2013. Indigenous knowledge of medicinal plants from Gujranwala district, Pakistan. Journal of Ethnopharmacology **148(2)**, 714-7. http://dx.doi.org/10.1016/j.jep.2013.05.035.

Manan Z, Razzaq A. Islam M, Ikramullah2007. Diversity ofmedicinal plants in Wari Subdivision District Upper Dir, Pakistan. Pakistan Journal of Plant Sciences **13(1)**, 21–28.

Meshram G, Khamkar S, Metangale G. 2012. Antimicrobial screening of Garlic (*Allium sativum*) extracts and their effect on Glucoamylase activity invitro. Journal of Applied Pharmaceutical Science**2(01)**, 106-108.

Miraldi E, Ferri S, Mostaghimi V. 2001. Botanical drugs and preparations in the traditional medicine of West Azerbaijan (Iran). Journal of Ethnopharmacology **75(2)**,77-87. http://dx.doi.org/10.1016/s0378-8741(00)00381-0

Molares S, Ladio A 2009. Ethnobotanical review of the Mapuche medicinal flora: use patterns on aregional scale. Journal of Ethnopharmacology **122(2)**,251–260.

http://dx.doi.org/10.1016/j.jep.2009.01.003

Mosaddegh M, Naghibi F, Moazzeni H, Pirani A and Esmaeili S. 2012. Ethnobotanical survey of herbal remedies traditionally used in Kohghiluyehva Boyer Ahmad province of Iran. Journal of Ethnopharmacology141(1), 80-95.

http://dx.doi.org/10.1016/j.jep.2012.02.004

Mukerjee PK, Wahil. 2006. Integrated approaches towards drug development from Ayurveda and other Indian system of medicine. Journal of Ethnopharmacology**103**,25-35. http://dx.doi.org/10.1016/j.jep.2005.09.024

Musharaf K, Hussain F, Shinwari ZK, Musharaf S. 2013. Ethnobotanical study of common weed flora of sugarcane in District Bannu, (KPK) Pakistan. Journal of Medicinal Plant Studies1(4),49-78.

Nadeem M, Shinwari ZK, Qaiser M. 2013. Screening of folk remedies by genus Artemisia based on Ethnobotanical surveys and traditional knowledge of native communities of Pakistan. Pakistan Journal of Botany **45(1)**,111-117.

Nasab FK, Khosravi AR. 2014. Ethnobotanical study of medicinal plants of Sirjan in Kerman Province, Iran. Journal of Ethnobiology and Ethnomedicines **154(1)**, 190-197. http://dx.doi.org/10.1016/j.jep.2014.04.003

Nasir E, Ali SI. 1970-1995. Flora of West Pakistan and Kashmir. Pakistan Agriculture Research Council, Islamabad Pakistan.

Rahman AHMM, Kabir EZMF, Sima SN, Sultana RS, Nasiruddin M, Naderuzzaman ATM. 2010. Study of an Ethnobotany at the Village Dohanagar, Naogaon. Journal of Advanced Scientific Research**6(9)**, 1466-1473.

Samoisy AK, Mahomoodally MF. 2015. Ethnopharmacological analysis of medicinal plants used against non-communicable diseases in Rodrigues Island, Indian Ocean. Journal of ethnopharmacology173, 20-38.

http://dx.doi.org/10.1016/j.jep.2015.06.036

Savikin K, Zdunić G, Menković N, Zivković J, Cujić N, Tereščenko M, Bigović D. 2013. Ethnobotanical study on traditional use of medicinal plants in South-Western Serbia, Zlatibor district. Journal of ethnopharmacology **146**, 803–810.

https://doi.org/10.1016/j.jep.2013.02.006

Shafi U, Muhammad RK, Naseer AS, Sayed AS, Muhammad M, Muhammad AF. 2014. Ethnomedicinal plant use value in the LakkiMarwat District of Pakistan. Journal of Ethnopharmacolog **158**, 412-422.

https://doi.org/10.1016/j.jep.2014.09.048

Sher Z, Khan Z, Hussain F. 2011. Ethnobotanical Studies of Some Plants of Chagharzai Valley, District Buner, Pakistan. Pakistan Journal of Botany**43(3)**, 1445-1452.

Tangjitman K, Wongsawad C, Kamwong K, Sukkho T, Trisonthi C.2015. Ethnomedicinal plants used for digestive system disorders by the Karen of northern Thailand. Journal of Ethnobiology and Ethnomedicines11(1),27. https://doi.org/10.1186/s13002-015-0011-9

Vitalini S, Iriti M, Puricelli C, Ciuchi D, Segale A, Fico G. 2013. Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy)--an alpine ethnobotanical study. Journal of Ethnopharmacolog**145**, 517–529.

https://doi.org/10.1016/j.jep.2012.11.024

William JT, Ahmad Z.1999. Priorities for Medicinal Plants Research and Development in Pakistan.