

International Journal of Biosciences | IJB |

ISSN: 2220-6655 (Print), 2222-5234 (Online) http://www.innspub.net Vol. 13, No. 1, p. 319-336, 2018

REVIEW PAPER

OPEN ACCESS

A review on photocatalytic, antimicrobial, cytotoxic and other biological activities of phyto-fabricated copper nanoparticles

Wali Muhammad, Bilal Haider Abbasi*, Syed Salman Hashmi, Muhammad Haroon, Muzamil Shah

Department of Biotechnology, Quaid-i-Azam University Islamabad 45320, Pakistan

Key words: Copper nanoparticles, Green synthesis, Characterization, Antimicrobial activity, Disease organizations.

http://dx.doi.org/10.12692/ijb/13.1.319-336

Article published on July 30, 2018

Abstract

Since its advent, nanotechnology has become an indispensable area of research and innovation, introducing revolutionary changes in current research areas like engineering, medical sciences, drug discovery and formulations, optoelectronics and biosensors. Metallic nanoparticle synthesis has become a requisite of modern experimentation however, much of the research involves either silver or gold nanoparticles. Considering the fact, it is imperative to explore the potentials of other metallic nanoparticles as well. Current review focuses on exploration of potentials of Copper nanoparticles in various domains of research. The review highlights common synthesis methods of Copper nanoparticle synthesis and the superiority of green route over other approaches. Characterization techniques and multifarious biological potentials of Copper nanoparticles have also been reviewed. Researchers have recognized green synthesis route as the best alternative to traditional methods utilized for synthesizing copper nanoparticles. Green synthesized Copper nanoparticles have also been found to have superior antioxidant, antimicrobial, antifungal, cytotoxic and photocatalytic potentials. As of now, the exact mechanism behind synthesis and biological activities of Copper nanoparticles is not known. Identification of the exact mechanism can revolutionaries the discipline of nanotechnology.

^{*}Corresponding Author: Bilal Haider Abbasi ⊠ bhabbasi@qau.edu.pk

Introduction

The domain of nanotechnology has emerged from established areas of science like physics, chemistry, biology and engineering sciences. Nanotechnology involves intervention of novel strategies with the help of which atoms and small particles are manipulated. Nanoparticles (NPs), the product key nanotechnology, are particles having dimensions ranging from 1-100 nm (Farias, Silva et al. 2014). The properties of NPs show immense variations to those of bulk materials due to their extremely small size (Petit, Lixon et al. 1993, Kaviya, Santhanalakshmi With 2011). the advancement nanotechnology, size controlled synthesis of nanoparticles can be carried out to furnish NPs that possess properties suiting a particular purpose. The properties that NPs possess are due to two core reasons, novel quantum impact and increased surface to volume ratio. As compared to their bulk counterparts, the pre-eminent surface to volume proportions in NPs imitates enhanced catalytic reactivity. Likewise such small dimensions of NPs signifies the influence of quantum impact on quality and properties of material (Hewakuruppu, Dombrovsky et al. 2013). Since its dawn, NPs have dominated different areas of science. The use of NPs have been reported in areas like catalysis; (Husen and Siddigi 2014), Photonics; (Ren, Hu et al. 2009, Ahamed, Alhadlaq et al. 2014), gadgets; (Kamal, Khan et al. 2016), bio labeling; (Chen, Wang et al. 2012), detection; and surface upgraded Raman Scattering; (Cioffi, Torsi et al. 2005, Abboud, Saffaj et al. 2014, Ahamed, Alhadlaq et al. 2014, Sutradhar, Saha et al. 2014, Naika, Lingaraju et al. 2015), drug delivery (Longano, Ditaranto et al. 2012, Wali, Sajjad et al. 2017), etc. Copper Nanoparticles (Cu-NPs) have caught the eye of scientists lately owing to their biocidal properties and numerous applications in wound dressings (Giannousi, Avramidis et al. 2013, Kanhed, Birla et al. 2014, Shende, Ingle et al. 2015, Bramhanwade, Shende et al. 2016). Modern technologies like catalytic process, gas sensors, solar cells and high temperature super-conductors have also benefitted from Cu-NPs (Schilling, Bradford et al. 2010, Song, Vijver et al. 2015). This review

climaxes green synthesis of Cu-NPs and describes how to characterize, and what are different activities of these used NPs.

Copper Nanoparticles (CuNPs)

Biosynthesis of Copper Nanoparticles (CuNPs)

Researchers in antecedent decades were hell bent on exploring greener and safer synthesis approaches for Nano metallic particles (Raveendran, Fu et al. 2003, Iravani and Zolfaghari 2013, Mittal, Chisti et al. 2013) with significant focus on methods that involved microorganisms (Mandal, Bolander et al. 2006) and other biological beings other than plants and plants extract (Thakkar, Mhatre et al. 2010). Plants and plant material based synthesis approaches were not properly explored. It wasn't until recent decade when researchers realized the potential of plants for metallic NP synthesis and the plethora of advantages that it has to offer, the foremost being circumvention of need to maintain cell cultures. An added advantage of utilizing plants as factories for NP synthesis is bypassing the chances of pathogenicity. This review describes the plant and plant extract methods so as to optimize the most appropriate method for the synthesis of Cu-NPs. The general scheme of synthesis route is shown in Figure 1.

Extracts from a variety of plants have been used for preparing Cu-NPs with diverse range of sizes and shapes owing to the nature of extract and synthesis conditions. Cu-NPs are highly oxidant in nature that gives rise to unforeseen issues related to NP stability, aggregation and oxidation resistance. This hindered the focus on Cu- NPs synthesis as compared to other metals initially. Later on (Pedersen, Wang et al. 2008) it was concluded that Cu-NPs are oxidized only upon the surface at room temperature. NPs like gold and silver on the other hand (Rafigue, Shaikh et al. 2017) are much better in withstanding oxidation as compared to Cu. Still, Cu-NPs synthesis can be an attractive contender for nano based research owing to copiousness and inexpensiveness. development in nanotechnology, aggregation and oxidation issues can also be addressed conveniently through capping agents like polymers (Balogh and

Tomalia 1998, Crooks, Zhao et al. 2001) and natural ligands.

The best solution in practice these days is synthesis of Cu-NPs by utilizing plants and plant based products that can serve as both capping and reducing agents. S. Renganathan et al, demonstrated the plant based synthesis approach for Cu-NPs by using Capparis zeylanica leaf extract. CuSO₄ solution was used as precursor salt while the leaf extract served as reducing agent for NP synthesis. The reaction was carried out for 12 h which resulted in Cu-NPs with cubical shape and size ranging from 50-100 nm. The antimicrobial potential of Cu-NPs was investigated against pathogenic bacterial strains including Escherichia coli, Staphylococcus aureus Pseudomonas aeruginosa (Subhankari and Nayak 2013). Shende et al, studied that Citrus medica Linn fruit extract can be used to reduce the CuSO₄ solution (Shende, Ingle et al. 2015). The synthesized nanoparticles were crystalline in nature with size range 20nm. The synthesized NPs showed good antimicrobial activites. (Shende, Ingle et al. 2015) Angrasan & Subbaiya carried out that Vitis vinifera leaves extract can be used to reduce the CuSO₄ solution. The synthesized NPs were characterized by UV-Vis and FTIR. The established nanoparticles showed potential anti-microbial activity against Escherichia coli, Staphylococcus aureus, Pneumonia, Salmonella typhii and Bacillus subtilis (Angrasan and Subbaiya 2014). G. Caroling et al, elaborated that Guava fruit extract has the potential to reduce the CuSO₄ solution. The prepared NPs were spherical in shape with size range 15-30nm. These prepared NPs showed anti-microbial activity against Escherichia coli, Staphylococcus aureus (Rafique, Shaikh et al. 2017). Kala, A et al, illustrated the production of Cu-NPs using Datura innoxia. The leaves extract of this plant were used which synthesized spherical NPs with the size of 5-15nm. These prepared NPs showed potential activity against rice pathogens (Kala, Soosairaj et al. 2016). Gopinath et al, synthesized Cu-NPs using leaf extract of Nerium Oleander. He and his fellows mentioned that these NPs have great potential to reduce CuSO₄ solution. The synthesized

NPs were characterized by different techniques and hence showed that NPs are spherical in shape. The established NPs showed good bacterial activity against five different organism like Salmonella typhii, Klebsiella Pneumonia, Escherichia coli. Staphylococcus aureus and Bacillus subtilis (Gopinath, Subbaiya et al. 2014). Saranyaadevi et al, carried out that Capparis zeylanica leaf extract can be used to reduce the CuSO₄ solution. The prepared NPs were characterized by UV-visible spectroscopy, FTIR, XRD, SEM, EDX and TEM. The study showed that the synthesized NPs were cubical in shape and with the size range from 50-100nm. The synthesized NPs showed high bacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli (Saranyaadevi, Subha et al. 2014). M Jayandran et al, produced CuNPs using leaf extract of Curcumin. The synthesized NPs showed potential to reduce copper oxide. The prepared NPs characterized through techniques of UV-visible spectroscopy, XRD, TEM. The synthesized nanoparticles showed that its average size is 60-100nm. The NPs were found both in cubic and rod shape. This study also showed potential bacterial activity against Staphylococcus aureus, Bacillus subtillis, Escherichia coli, Staphylococcus Bacillus (Jayandran, Haneefa et al. 2015).

Subbaiya and MasilamaniSelvam also reported plant based Cu NP synthesis using *Hibiscus rosa-sinensis* leaf extract as reducing agent. CuNO₃ was used as precursor salt and the mixture of salt solution and plant extract was kept for 48 h in dark. The resulting Cu-NPs were spherical in nature and showed great potential as antimicrobial agent against pathogenic *Bacillus subtilis* and *E. coli*. The study concluded that the Cu-NPs produced may serve as efficient drug for lung cancer therapy (Rafique, Shaikh *et al.* 2017). Harne, S *et al*, carried out that latex of *Calotropis*

Harne, S *et al*, carried out that latex of *Calotropis* procera L. can be used to reduce the Cu (CH₃COO)₂ solution. These NPs were synthesized and were characterized through the techniques of XRD, FTIR, TEM and EDX. This study showed that established NPs are polydispers spherical in shape and also presented that its average is 15±1.7nm. Cytotoxicity

studies showed excellent viability at 120 μM concentration of copper nanoparticles (Harne, Sharma \emph{et al.} 2012).

Correspondingly, many other plants and their extracts were used to synthesize the Cu-NPs. A

comprehensive study is given in Table 1,2,3,4, which describes varied characterization techniques and also shows different activities of each Cu-NPs.

Table 1. Photocatalytic degradation of various harmful dyes through Biosynthesized Cu-NPs.

Plant	Part used	Size	Morphology	Characterization	Activity	Ref
Euphorbia esula L	Leaves	20-110nm	Spherical	UV-visible spectroscopy, XRD, FTIR and TEM	Catalytic activity in the reduction of 4-NP at room	(Nasrollahzadeh, Sajadi <i>et al.</i> 2014)
					temperature in aqueous medium	
Thymus vulgaris L.	Leaves	56 nm	Spherical	UV spectrum, FTIR, XRD, FESEM, EDS,	, Excellent catalytic activity,	(Issaabadi, Nasrollahzadeh et
				TEM, SEM	convenient reusability and long- term stability	al. 2017)
Azadirachta indica	-	-	-	UV-Vis spectroscopy, FTIR, TEM	Excellent catalytic activity in	(Thirumurugan, Harshini et
					the presence of NaBH ₄ .	al. 2017)
Fortunella japonica	Fruit	5-10 nm	Spherical	UV-Vis spectroscopy, AFM, HR-TEM,	, Act as a catalyst and showed	(Singh, Kumar et al. 2017)
				XRD, Raman spectroscopy, FTIR	good degradation percentage of	
					4-NP pollutant	
Banana	Peel	60 nm	Spherical	XRD, EDX, FE-SEM, FTIR, UV-Vis	, ,	(Aminuzzaman, Kei et al.
				spectroscopy	degradation of Congo red (CR) under direct sunlight	2017)
Abutilon indicum	Leaves	16.78 nm	Spherical	XRD, EDX, SEM, UV-Vis spectroscopy	Good photo-catalytic, antimicrobial and antioxidant activities.	(Ijaz, Shahid et al. 2017)
Rheum palmatum L.	Root	10-20 nm	Spherical	UV-Vis spectroscopy, FTIR, SEM, XRD, TEM	, Catalytic activity for reduction of 4-NP, MB, and RhB	(Bordbar, Sharifi-Zarchi <i>et al.</i> 2017)
Centella asiatica (L.)	Leaves	2-5 μm	-	UV-Vis spectroscopy, SEM, IR spectroscopy and EDX	Used as catalyst for photocatalytic degradation of methyl orange (Organic pollutant)	
Broccoli	-	~4.8 nm	Spherical	UV-Vis, FTIR, TEM, DLS, XRD and cyclic voltammetry	l High catalytic activity against 4- NP	(Prasad, Kanchi et al. 2016)
Cavendish banana	Peel	91.0 nm	Irregular	XRD, SEM, FT-IR, EDX and PSA	Photocatalytic activity/	(Leong 2016)
			and		degradation of red and green	
			dumbbell		dye	
Euphorbia prolifera	Leaves	5-17 nm	Spherical	FESEM, EDS, elemental mapping, TEM	Excellent catalytic activity for	(Momeni, Nasrollahzadeh et
				and XRD	the degradation of MB and CR	al. 2016)
					in the presence of NaBH ₄	

Potential Applications of Copper Nanoparticles (Cu-NPs)

Cu-NPs have attracted several researchers owing to their catalytic and optical properties (Nasrollahzadeh, Sajadi *et al.* 2015) as well as their applications in engineering domains like electrical technology and mechanics (Kim, Lim *et al.* 2008, Salavati-Niasari, Davar *et al.* 2008). Cu NPs are imperative locum tenens for other NPs like silver, gold and platinum due to their applicability in thermal conducting materials and microelectronics (Eastman, Choi *et al.*

2001, Lu, Sui et al. 2001). When it comes to plant extract based NPs, the synthesized nanoparticles have added advantage of possessing medicinal properties acquired from capping agents present in plant extract. This enhances their potential applications in targeted drug delivery, medication, and cosmetics (Rafique, Shaikh et al. 2017). The antibiotic potential of Cu-NPs have paved the way for their applications in wound dressings, (Borkow and Gabbay 2009, Rubilar, Rai et al. 2013) while on industrial level, Cu NPs have been used in solar cells, (Atarod, gas sensors,

Nasrollahzadeh et al. 2015, Nasrollahzadeh, Maham et al. 2015) superconductors with tolerance for high temperature and catalytic process (Carnes and Klabunde 2003, Li, Liang et al. 2008, Yuhas and Yang 2009). Cu-NPs because of their brilliant physical properties are used in antibiotics. The stability of Cu NPs upon matrix and their disincentive and bactericidal properties makes them suitable candidates for coating the equipment used in hospitals, (Li and Peterson 2006) antimicrobial materials, (Wang, Chen et al. 2002, Guduru, Murty et al. 2007) super strong materials, (Male, Hrapovic et al. 2004, Kang, Mai et al. 2007) sensors (Vukojević, Trapp et al. 2005, Xu, Zhao et al. 2006, Kantam, Jaya et al. 2007) and catalysts. (Athanassiou, Grass et al. 2006, Pecharromán, Esteban-Cubillo et al. 2006, Rodriguez, Liu et al. 2007).

Table 2. Antibacterial activities of Biosynthesized Cu NPs.

Plant	Part used	Size	Morphology	Characterization	Activity	Ref
Vitis vinifera	Leaves	-	-	UV-Vis spectroscopy and FTIR	Anti-microbial activity against E.	(Angrasan and Subbaiya
					coli, S. aureus, pneumonia, S.	2014)
					typhii and B. subtilis	
Nerium Oleander	Leaves	-	-	UV-Vis spectroscopy and FTIR	Good bacterial activity against S.	(Gopinath, Subbaiya et
					typhii, K. Pneumonia , E. coli, S.	al. 2014)
					aureus and B. subtilis	
Capparis zeylanica	Leaves	50-100 nm	Cubical Structure	UV-Vis spectroscopy, FTIR, XRD	, Bacterial activity against S. aureus,	(Saranyaadevi, Subha et
				SEM, EDX and TEM	P. aeruginosa and E. coli	al. 2014)
Curcumin	Leaves	60- 100 nm	Cubic and Rods	UV-Vis spectroscopy, XRD, TEM	Bacterial activity against S. aureus,	(Jayandran, Haneefa et
					B. subtilis and E. coli	al. 2015)
Magnolia Kobus L.	Leaves	37-110nm	Spherical	UV-Vis spectroscopy, Inductively	Bacterial activity against E. coli	(Lee, Song et al. 2013)
				Coupled Plasma spectrometry (ICP)	,	
				EDS, XPS, and HRTEM		
Malva sylvestris	Leaves	14 nm	Crystalline	UV-Vis spectroscopy, FTIR, SEM, XRD	Antibacterial activity against	(Awwad, Albiss et al.
					Shigella and listeria bacteria	2015)
Aloe vera	Leaves	20-30 nm	Spherical	UV-Vis spectra, TEM, SEM, XRD	, Antibacterial activity against fish	(Kumar, Shameem et al.
				EDS	bacterial pathogens	2015)
Garcinia	Leaves	20-25 nm	Spherical	TGA, SEM, XRD, TEM, DTA	Highly antibacterial against E.	(Prabhu, Rao et al. 2015)
mangostana					coli and S. aureus.	
Ocimum sanctum	Leaves	79 nm.	Spherical	SEM, XRD, TEM, FTIR	Showed good antibacterial activity	(Sadanand, Rajini et al.
					against <i>E-coli</i> bacteria	2016)
Terminalia bellirica	Fruit	2-7 nm.	Spherical	UV-Vis spectrophotometry, FTIR	, Antibacterial activity against <i>E.coli</i>	(Sadanand, Rajini et al.
				HRTEM, XRD, TGA		2016)
Citrus medica	Fruit	20nm	Crystalline	UV-Vis spectrophotometry, NTA and	Antibacterial activity against E.colu	(Shende, Ingle et al.
				XRD	and K. pneumonia	2015)

The small size of NPs adds to the bactericidal potential of NPs. The reactivity of Cu-NPs is also enhanced owing to its high surface to volume ratio allowing facile and close interaction with other membranes of microorganisms with highratio (Narayanan and El-Sayed 2004). The antimicrobial potency of NPs is enhanced due to the fact that metal ions are released in colloidal solution. The colloidal solution of Cu-NPs had been reported to possess considerable antimicrobial potential when compared with standard antibiotics like chloramphenicol. Their potency as replacement for standard antibiotics was

evident against several bacterial and fungal strains studied by different researches (Ramyadevi, Jeyasubramanian et al. 2012, Rafique, Shaikh et al. 2017). Dispersed CuNPs with size ranging between 2-5 nm have been reported to possess good antibacterial potential with the capacity to retrench microbial concentration by as much as 99.9% (Wang, Chen et al. 2002). Implantation of Cu NPs having around 6 nm diameter in films of polyvinyl methyl ketone showed that development of microbial colonies was clearly inhibited (Guduru, Murty et al. 2007). The floor functionalization of these particles with cur

cumin can also provide any other method for utilizing the curcuminoids toward practicable medicine transportation and therapeutics. (Jayandran, Haneefa *et al.* 2015) Various *in-vitro* techniques including the disk diffusion technique has been extensively used to elucidate the potential of Cu-NPs as antibacterial agents against plethora of bacterial strains and phyto pathogenic fungi. Several reports are present on inhibitory effects of Cu NPs against human pathogenic microbial strains like *E.coli*, *K. pneumoniae*, *P. aeruginosa*, *Propionibacterium*

acnes and Salmonella typhii. Inhibition of fungal strains infecting plants like Fusarium culmorum, F. oxysporum and F. graminearum have also been reported (Shende, Ingle et al. 2015). Both copper and Silver NPs have been extensively studied for their bactericidal applications by implanting these NPs on suitable support like carbon, polymers, polyurethane foam and sepiolite (Li, Lee et al. 2006). Yoon reported efficient antibiotic potential of Cu-NPs in a comparative study with silver NPs against E.coli and В. subtilis (Yoon, Byeon al. 2007). et

Table 3. Cytotoxic and Anticancer Potency of Biosynthesized Cu NPs.

Plant	Part used	Size	Morphology	Characterization	Activity	Ref
Calotropis procera L.	Latex	15±1.7 nm	Polydisperse spherical	XRD, FTIR, TEM and EDAX	Cytotoxicity Studies showed excellent viability at 120 μM concentration of Cu NPs	(Harne, Sharma et al. 2012)
Eclipta prostrata	Leaves	31±1.2 nm	Spherical, hexagonal and cubical	UV-Vis spectra, FTIR, XRD, HRTEM, SEM	Have high antioxidant and cytotoxic activity	(Chung, Abdul Rahuman et al. 2017)
Ormocarpum cochinchinense	Leaves	2 μm and 1μmin	Cluster structure	UV-Vis Spectroscopy, FTIR, XRD, SEM,TEM, SAED	Significant cytotoxicity effect on human colon cancer	(Gnanavel, Palanichamy <i>et al.</i> 2017)
Prosopis cineraria	Leaves	18.9 to 32.09 nm	Spherical	UV-Vis absorbance, FTIR, XRD, FESEM, and EDX	Antimicrobial and anticancer activity	(Jinu, Gomathi et al. 2017)
Black bean	Seed	~26.6 nm	Spherical		Significant activity to reduce cervical carcinoma colonies	(Nagajyothi, Muthuraman <i>et al</i> . 2017)
Acalypha indica	Leaves	26-30 nm	Spherical	1 117	Antimicrobial effect against <i>E. coli</i> . <i>P. fluorescence</i> and <i>C. albicans</i> . Potency against MCF-7 human breast cancer cell line	
Solanum tuberosum	Starch	54 nm	Spherical	UV-Vis spectrophotometry, XRD, SEM	Antimicrobial activity, anticancer properties against standard strains and MCF-7 cell line	• •
Coleus aromaticus	Leaf	17-40nm and 21- 48 nm	Spherical	HR-TEM, XRD, EDS, DLS, FTIR, FESEM	An efficient platform for intracellular mi-RNAs delivery and improving therapeutic outcomes for lung cancer.	

The application of both of these NPs as disinfectants in clinical wastewater containing contagious microorganisms have also been reported (Lin, Vidic *et al.* 1996, Yu-sen, Vidic *et al.* 1998). Zain reported improved antibacterial efficacy in case of Ag-Cu bimetallic NPs as compared to Ag and Cu NPs alone (Zain, Stapley *et al.* 2014). The alloys of Copper NPs have been reported for their applications in catalysis process like gas detoxification water gas shift catalysts (Barrabés, Just *et al.* 2006, Bracey, Ellis *et al.* 2009). Changes in surface properties, conformation and size

of NPs may aid in controlling catalytic properties of NPs (Niu and Crooks 2003, Hoover, Auten *et al.* 2006). High yield even in mild reaction conditions is main reason for popularity of Cu NPs in comparison to traditional catalysts (Phong, Khuong *et al.* 2011).

Characterization of Copper Nanoparticles

Several techniques can be used for the characterization of synthesized nanomaterial. Some of the most common characterization tools are UV–Visible Spectroscopy (UV-vis), Fourier transform

infrared spectrum analysis (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

UV-Visible Spectroscopy (UV-Vis): A variety of metallic salt precursors have been used for synthesis of numerous NPs through different methods.

Literature shows that NP synthesis process usually takes 24 hours. Following the completion of reaction, different nanoparticles give SPR (Surface Plasmon Resonance) bands e.g. Cu NPs peaks can be observed between 200-800nm. These peaks can be efficiently measured using UV-Vis spectroscopy (Shobha, Moses *et al.* 2014).

Table 4. Miscellaneous biomedical applications of Biosynthesized Cu-NPs.

Plant	Part used	Size	Morphology	Characterization	Activity	Ref
Commelina nudiflora	Whole plant	45-100 nm	Spherical	UV-Vis spectrophotometer, FESEM,	Strong antioxidant, antifungal and	(Kuppusamy, Ilavenil
				EDX, XRD	antibacterial activity	et al. 2017)
Cassia auriculata	Leaf	23 nm	Spherical,	UV-Vis, EDS, SEM, TEM and DLS	Drug delivery vehicle for anti-rheumatic	(Shi, Tang et al. 2017)
			polydispers		agents.	
Rubus glaucus	Fruit/ Leaf	43.3 nm	Spherical	UV-Vis spectrophotometry, DLS,	Antioxidant potency evaluated against	(Kumar, Smita et al.
				TEM, SAED, XRD	DPPH	2015)
Carica papaya	Leaf	~150 nm	Star-like	UV-Vis, SEM, TEM, HR-TEM,	Water purification, degrade chlorpyrifos	(Rosbero and Camacho
			structure	EDX, XRD	in water	2017)
Cissus quadrangularis	Leaf	30 ± 2 nm	Spherical	UV-Vis spectroscopy, XRD, FTIR,	Anti-fungal activity against A. niger and	(Devipriya and Roopan
				SEM, TEM, EDAX	A. flavus	2017)
Saraca indica	Leaf	40-70 nm	Spherical	UV-Vis, FTIR, XRD, EDX, XPS,	Applications in fluorescence emitting	(Prasad, Patra et al.
				SEM, TEM and HRTEM	materials.	2017)
Eichhornia crassipes	Leaf	28 ± 4 nm	Spherical	UV-Vis spectroscopy, FTIR,	Highest inhibitory effect against plant	(Vanathi, Rajiv et al.
				FESEM, EDX	fungal pathogens	2016)
Punica granatum	Peel	40 nm	Spherical	UV-Vis spectroscopy, FTIR, SEM,	Mortality efficacy against green peach	(Ghidan, Al-Antary et
				XRD	Aphid	al. 2016)

The formation of NPs can be monitored by observing the changes in peak formation with increasing time or increasing concentration of reactants (Precursor salt or Biological extract), each effecting the UV-vis absorption spectrum as the reaction proceeds and concentration of NPs increase (Yin, Wu *et al.* 2005, Swarnkar, Singh *et al.* 2011, Abboud, Saffaj *et al.* 2014).

The X-ray diffraction (XRD) Analysis: XRD is the most widely used technique for studying the metallic nature of NPs. This is done by analyzing the unit cell for its translational symmetry, shape and size.

The electron density within the unit cell can also be studied using XRD. All this information can be gathered from peak locations generated through XRD. The peak intensities are also used for specifically identifying the location of atoms (Shobha, Moses *et al.* 2014).

Fourier Transform Infrared

(FTIR) Spectroscopy: FTIR spectroscopic analysis is carried out to record the infrared intensity against the wavelength of emitted light. When it comes to nanoparticles, FTIR is a useful tool for identifying the nature of functional groups present in biological extracts that took part in capping and reduction of synthesized NPs.

The spectra obtained through FTIR provides the details of optical properties of NPs that may include the extinction cross-section, resonance wavelength and the scattering to absorption ratio (Shobha, Moses *et al.* 2014).

Microscopic techniques: Microscopic techniques are used to identify the morphological features of NPs. The micrographic image obtained using these techniques unfolds details about the shape and size of metallic nano particles in the series (Subhankari and

Nayak 2013).SEM image also reveals the details about uniformity of NP size and shape and aggregation state of NPs (Shobha, Moses *et al.* 2014).

Energy dispersive X-ray: EDX, also known as energy dispersive X-ray analysis (EDXA) is used for elemental analysis or composition of different elements in a sample. During EDX, a beam of electrons are focused upon the sample resulting in emission of X-rays. The X-rays emitted are then analyzed qualitatively and quantitatively.

Quantitative analysis involves identification of elemental concentration in a sample be analyzing the peak intensities while qualitative analysis, involves identification of different X-ray peaks and their positions specified within the spectrum.

Elements with atomic numbers ranging from 4-92 can be easily detected through EDX. Since the number of emitted X-rays is in direct proportion with elemental concentration of each element in sample (Shobha, Moses *et al.* 2014).

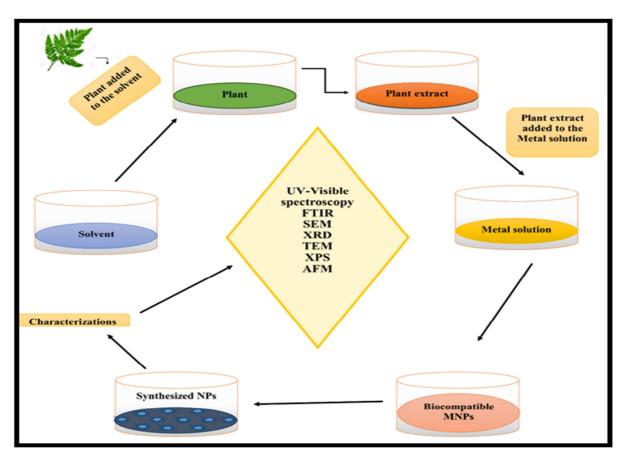


Fig. 1. Biosynthesis of Nanoparticles (NPs).

Antimicrobial activity of copper nanoparticles

This section deals with antimicrobial activity studies conducted using different concentrations of copper nanoparticles against human pathogenic bacteria belonging to various genera and species. Using 100 ml of copper oxide nanoparticles of 46 nm synthesized by Tabernaemontana divaricate at concentration of 50 ug/ml in well plate method showed 17 mm zone of inhibition against urinary tract pathogen *E.coli*(Sivaraj, Rahman *et al.* 2014). Twenty

microliter of copper nanoparticles of 5–45 nm synthesized using brown alga *Bifurcaria bifurcata* showed inhibition zone of 14 and 16 mm, respectively, against *Enterobacter aerogenes* and *Staphylococcus aureus* (Abboud, Saffaj *et al.* 2014). Copper oxide nanoparticles synthesized by tea leaf or coffee powder extract exhibited inhibition zone of 5–16 mm against *Shigella dysenteriae*, *Vibrio cholerae*, *Streptococcus pneumoniae*, *Staphylococcus aureus* and *E.coli* at concentration from 1 to 200 lg/ disc (Sutradhar, Saha

et al. 2014). Using 40 ml of Vitis vinifera synthesized copper nanoparticles showed inhibition zone from 8 to 18 mm against Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Salmonella typhii and Staphylococcus aureus (Angrasan and Subbaiya 2014). Minimum inhibitory concentration of copper nanoparticles ranged from 31.25 to 250 lg/ml against E.coli, Enterococcus faecalis, Pseudomonas aeruginosa, Shigella flexneri, Salmonella typhimurium, Proteus vulgaris, Staphylococcus aureus and Klebsiella Pneumoniae (Ahamed, Alhadlaq et al. 2014). Gloriosa superba synthesized nanoparticles of 5-10 nm exhibited antibacterial activity against Klebsiella aerogenes, Pseudomonas desmolyticum, E.coli Staphylococcus aureus (Naika, Lingaraju et al. 2015).

Using 20 ml of copper nanoparticles of 33 nm synthesized by Citrus medica showed inhibitory activity against E.coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Propionibacterium acnes and Salmonella typhii(Shende, Ingle et al. 2015), while 100 ml of copper nanoparticles of 26.51 nm synthesized using Garcinia mangostana at 0.2-1.0 lg/ml concentrations showed antibacterial activity against E.coli and Staphylococcus aureus(Prabhu, Rao et al. 2015). Monodisperse copper nanoparticles of 50 nm have minimum inhibitory concentration ranging between 1.875 and 3.75 lg/ml against standard and clinical strains of Staphylococcus, including methicillin resistant $Staphylococcus\ aureus$ and Candida species (Kruk, Szczepanowicz et al. 2015). Copper oxide nanoparticles of 54 nm synthesized using Solanum tuberosum showed minimum inhibitory concentration and minimum bactericidal concentration ranging between 200 and 1000 lg/ml against Bacillus cereus, Enterococcus, E.coli, Pseudomonas aeruginosa, Shigella sonnei and Staphylococcus epidermidis (Alishah, Pourseyedi et al. 2017). Good antimicrobial activity shown by copper nanoparticles against the pathogenic bacteria belonging to various genera and species suggests their use as antimicrobial agent. Copper nanoparticles with antimicrobial activity can be employed for the production of a broad range of polymer/copper Nano

composites to be used in the preparation of antibacterial paints/coatings for application in household, biomedical and aerospace industries. Moreover, copper nanoparticles immobilized into polymer matrix can be employed in the food packaging for retarded deterioration, enhanced shelf life, ensuring good quality and safety of packaged food.

Disease organization bу means of copper nanoparticles

Many fungal and bacterial pathogens cause diseases in cultivated crops and thus resulting in yield losses. The antimicrobial activity exhibited by copper nanoparticles against plethora of pathogenic microorganisms (both bacteria and fungi) has piqued the interest in utilization of Cu NPs as agents for disease control in agriculture. Studies carried on in-vitro antifungal activity of copper nanoparticles reported the maximal antifungal activity against Curvularia lunata MTCC 2030 followed by Alternaria alternata MTCC6572, Fusarium oxysporum MTCC1755 and Phoma destructive DBT66(Kanhed, Birla et al. 2014). Copper nanoparticles manufactured using Citrus medica also manifested inhibitory activity against plant pathogenic fungi, Fusarium culmorum, F. oxysporum and F. graminearum (Shende, Ingle et al. 2015). In another study, copper nanoparticles displayed maximum antifungal activity against Fusarium equiseti with 25 mm zone of inhibition followed by F. oxysporum and F. culmorum (Bramhanwade, Shende et al. 2016). Copper nanoparticles of 20-50 nm at a concentration of 450 ppm could inhibit 93.98% growth of the Fusarium specie after 9 days of incubation(Viet, Nguyen et al. 2016). Copper-based fungicide has been used in disease inhibition and treatment in many plant species (Borkow and Gabbay 2005). Field studies under protected cultivation using three different copper-based nanoparticles of indistinguishable sizes, i.e. 11-14 nm and shapes, Cu₂O, CuO and Cu/Cu₂O, respectively, against Phytophthora infestans on Lycopersicon esculentum revealed that copper-based NPs were more efficient than the four registered copper-based agrochemicals. Along with

propitious potency, it was also found that copperbased nanoparticles did not instigate any irreparable damage/deleterious effect to the plants(Giannousi, Avramidis *et al.* 2013). In exploring copper nanoparticles for disease management, it is just the dawn of an era which has to go long way for safeguarding the plants from disparate diseases in imperishable manner.

Conclusions

Green synthesis of nanoparticles, once considered as an emerging field is a well-established domain of research in nanotechnology with surplus applications. Copper nanoparticles offers a range of applications in medicine, drug delivery, wound dressing, bio labelling, water purification optics, catalysis, structural engineering and several other domains of science and technology. Copper nanoparticles have also been found to have potent antibacterial and antifungal activities and can hence prove to be an effective alternative source to destroy drug resistant microbial species. Due to such diversified range of applications, Copper nanoparticles can prove as suitable and inexpensive alternatives to costly nanoparticles like gold. However, the exact mechanism with which the phytochemicals reduces and stabilizes these nanoparticles is yet to be understood. Complete understanding of this mysterious process will help enable the scientists to use targeted phytochemicals to reduce and cap nanoparticles followed by usage of intentionally designed nanoparticles for specific purposes. This will also help in designing nanoparticles with desired shape and size.

Abbreviations

Cu: Copper, Cu-NPs: Copper Nanoparticles, DLS: Dynamic light scattering, EDAX: Energy dispersive X-ray analysis, EDS: Energy-dispersive spectroscopy, FTIR: Fourier transform infrared spectroscopy, HRTEM: High resolution transmission electron microscopy, NPs: Nanoparticles, UV-VIS: Ultraviolet visible spectroscopy, SEM: Scanning electron microscopy, XRD: X-ray Diffraction, TEM: Transmission electron microscopy.

Acknowledgements

The authors are thankful to Renown Scientist, Dr Bilal Haider Abbasi for his support and courage.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Abboud Y, Saffaj A, Chagraoui A, El Bouari, Brouzi O, Tanane, Ihssane B. 2014. "Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata)." Applied Nanoscience 4(5),571-576.

http://dx.doi.org/10.1007/s13204-013-0233-x

Ahamed M,Alhadlaq HA, KhanM, Karuppiah P, Al-DhabiNA. 2014. "Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles." Journal of Nanomaterials **2014,** 17. http://dx.doi.org/10.1155/2014/637858

Alishah H, PourseyediS, EbrahimipourSY, MahaniSE, RafieiN.2017. "Green synthesis of starch-mediated CuO nanoparticles: preparation, characterization, antimicrobial activities and in vitro MTT assay against MCF-7 cell line." Rendiconti Lincei **28(1)**,65-71.

http://dx.doi.org/10.1007/s12210-016-0574-y

Aminuzzaman M, KeiLM, LiangWH. 2017. Green synthesis of copper oxide (CuO) nanoparticles using banana peel extract and their photocatalytic activities. AIP Conference Proceedings, AIP Publishing.

https://doi.org/10.1063/1.4979387

Angrasan J, SubbaiyaR. 2014. "Biosynthesis of copper nanoparticles by Vitis vinifera leaf aqueous extract and its antibacterial activity." International Journal Current Microbiology Applied Science**3(9)**, 768-774.

Atarod M, NasrollahzadehM, SajadiSM.2015. "Green synthesis of a Cu/reduced graphene oxide/Fe 3 O 4 nanocomposite using Euphorbia wallichii leaf extract and its application as a recyclable and heterogeneous catalyst for the reduction of 4-nitrophenol and rhodamine B." RSC Advances **5(111)**, 91532-91543.

https://doi.org/10.1039/C5RA17269A

Athanassiou EK, GrassRN, Stark WJ. 2006. "Large-scale production of carbon-coated copper nanoparticles for sensor applications." Nanotechnology 17(6),1668.

Awwad A, AlbissB, SalemN. 2015. "Antibacterial activity of synthesized copper oxide nanoparticles using Malva sylvestris leaf extract." Sikkim Manipal University Medical Journal**2**, 91-101.

Balogh L, Tomalia DA. 1998. "Poly (amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters." Journal of the American Chemical Society **120(29)**,7355-7356.

Barrabés N, JustJ, Dafinov A, MedinaF, FierroJ, SueirasJ, SalagreP, CesterosY. 2006.

"Catalytic reduction of nitrate on Pt-Cu and Pd-Cu on active carbon using continuous reactor: The effect of copper nanoparticles." Applied Catalysis B: Environmental **62(1),**77-85.

https://doi.org/10.1016/j.apcatb.2005.06.015

Bordbar M, Z Sharifi-Zarchi and B Khodadadi.

2017. "Green synthesis of copper oxide nanoparticles/clinoptilolite using Rheum palmatum L. root extract: high catalytic activity for reduction of 4-nitro phenol, rhodamine B, and methylene blue." Journal of Sol-Gel Science and Technology **81**(3): 724-733.

https://doi.org/10.1007/s10971-016-4239-1

Borkow G,Gabbay J. 2005. "Copper as a biocidal tool." Current medicinal chemistry **12**(18): 2163-2175.

Borkow G, GabbayJ. 2009. "Copper, an ancient remedy returning to fight microbial, fungal and viral infections." Current Chemical Biology **3(3)**,272-278.

Bracey CL, Ellis PR HutchingsGJ. 2009. "Application of copper—gold alloys in catalysis: current status and future perspectives." Chemical Society Reviews **38(8)**,2231-2243.

https://doi.org/10.1039/B817729P

Bramhanwade K, ShendeS, BondeS, GadeA, RaiM. 2016. "Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases."

Environmental chemistry letters 14(2),229-235.

Carnes CL, Klabunde KJ. 2003. "The catalytic methanol synthesis over nanoparticle metal oxide catalysts." Journal of Molecular Catalysis A: Chemical **194(1)**,227-236.

https://doi.org/10.1016/S1381-1169(02)00525-3

Chen Y, WangD, ZhuX, Zheng X, Feng L. 2012. "Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process." Environmental science & technology 46(22),12452-12458.

https://doi.org/10.1021/es302646q

Chung IM, Abdul RahumanA, MarimuthuS, Vishnu KirthiA, AnbarasanK, Padmini P, RajakumarG. 2017. "Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities." Experimental and Therapeutic Medicine.

https://doi.org/10.3892/etm.2017.4466

Cioffi N, TorsiL, Ditaranto N, TantilloG, GhibelliL, Sabbatini L, Bleve-ZacheoT, D'AlessioM, Zambonin PG, TraversaE. 2005. "Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties." Chemistry of Materials 17(21),5255-5262.

Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK.2001. "Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis." Accounts of chemical research 34(3),181-190.

Devi HS, SinghTD. 2014. "Synthesis of copper oxide nanoparticles by a novel method and its application in the degradation of methyl orange." Adv Electron Electr Eng **4(1)**,83-88.

Devipriya D, RoopanSM. 2017. "Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus." Materials Science and Engineering: C.

https://doi.org/10.1016/j.msec.2017.05.130

Eastman JA, Chois, LiS, YuW, ThompsonL. 2001. "Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles." Applied physics letters **78(6)**, 718-720.

Farias CB, SilvaAF, RufinoRD, LunaJM, SouzaJEG, SarubboLA. 2014. "Synthesis of silver nanoparticles using a biosurfactant produced in low-cost medium as stabilizing agent." Electronic Journal of Biotechnology 17(3), 122-125.

Ghidan AY, Al-AntaryTM, Awwad AM. 2016. "Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: Effect on green peach Aphid." Environmental Nanotechnology, Monitoring & Management **6**, 95-98.

https://doi.org/10.1016/j.enmm.2016.08.002

Giannousi K, Avramidis I, Dendrinou-Samara

C. 2013. "Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans." RSC Advances **3(44)**,21743-21752.

https://doi.org/10.1039/C3RA42118J

Gnanavel V, Palanichamy V, RoopanSM. 2017. "Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116)." Journal of Photochemistry and Photobiology B: Biology 171, 133-138.

https://doi.org/10.1016/j.jphotobiol.2017.05.001

Gopinath M, SubbaiyaR, Selvam MM, SureshD. 2014. "Synthesis of copper nanoparticles from Nerium oleander leaf aqueous extract and its antibacterial activity." Int J Curr Microbiol Appl Sci 3(9),814-818.

Guduru RK, Murty KL, Youssef KM, Scattergood RO, Koch CC. 2007. "Mechanical behavior of nanocrystalline copper." Materials Science and Engineering: A 463(1),14-21.

Harne S, SharmaA, DhaygudeM, JoglekarS, KodamK, Hudlikar M. 2012. "Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells." Colloids and Surfaces B: Biointerfaces 95, 284-288.

https://doi.org/10.1016/j.colsurfb.2012.03.005

Hewakuruppu YL, DombrovskyLA, ChenC, Timchenko V, Jiang X, Baek S, TaylorRA. 2013. "Plasmonic "pump-probe" method to study semitransparent nanofluids." Applied optics **52(24)**, 6041-6050.

Hoover NN, AutenBJ, ChandlerBD. 2006. "Tuning supported catalyst reactivity with dendrimertemplated Pt– Cu nanoparticles." The Journal of Physical Chemistry B **110(17)**, 8606-8612.

Husen A, SiddiqiKS. 2014. "Phytosynthesis of nanoparticles: concept, controversy and application." Nanoscale research letters **9(1)**,229.

Ijaz F, ShahidS, KhanSA, Ahmad W, ZamanS.2017. "Green synthesis of copper oxide

nanoparticles using Abutilon indicum leaf extract: Antimicrobial, antioxidant and photocatalytic dye degradation activitie." Tropical Journal of Pharmaceutical Research **16(4)**, 743-753.

http://dx.doi.org/10.4314/tjpr.v16i4.2

Iravani S, ZolfaghariB. 2013. "Green synthesis of silver nanoparticles using Pinus eldarica bark extract." BioMed research international 2013.

Issaabadi Z, Nasrollahzadeh M, SajadiSM. 2017. "Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity." Journal of Cleaner Production **142**, 3584-3591.

Jayandran M, Haneefa MM, Balasubramanian

V. 2015. "Green synthesis of copper nanoparticles using natural reducer and stabilizer and an evaluation of antimicrobial activity." J Chem Pharm Res. 7, 251-259.

Jinu U, GomathiM, SaiqaI, GeethaN, Benelli G, Venkatachalam P. 2017. "Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7)." Microbial Pathogenesis 105, 86-95.

https://doi.org/10.1016/j.micpath.2017.02.019

Kala A, SoosairajS, MathiyazhaganS, RajaP. 2016. "Green synthesis of copper bionanoparticles to control the bacterial leaf blight disease of rice." Current Science (00113891) 110(10).

Kamal T, KhanSB, AsiriAM. 2016. "Synthesis of zero-valent Cu nanoparticles in the chitosan coating layer on cellulose microfibers: evaluation of azo dyes catalytic reduction." Cellulose **23(3)**, 1911-1923.

Kang X, MaiZ, ZouX, Cai P, Mo J. 2007. "A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon

nanotube-modified glassy carbon electrode." Analytical biochemistry **363(1)**,143-150.

https://doi.org/10.1016/j.ab.2007.01.003

Kanhed P, BirlaS, Gaikwad S, Gade A, BSeabra A, Rubilar O, Duran N, Rai M. 2014. "In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi." Materials Letters 115, 13-17.

https://doi.org/10.1016/j.matlet.2013.10.011

Kantam ML, JayaVS, LakshmiMJ,ReddyBR, ChoudaryB, Bhargava S. 2007. "Alumina supported copper nanoparticles for aziridination and cyclopropanation reactions." Catalysis Communications 8(12), 1963-1968.

Kaviya S, Santhanalakshmi J, ViswanathanB. 2011. "Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with D-sorbitol: study of antibacterial activity." Journal of nanotechnology **2011**.

Kim MH, Li, LeeEP, XiaY. 2008. "Polyol synthesis of Cu 2 O nanoparticles: use of chloride to promote the formation of a cubic morphology." Journal of Materials Chemistry **18(34)**, 4069-4073.

https://doi.org/10.1039/B805913F

Kruk T, SzczepanowiczK, StefańskaJ, Socha RP, WarszyńskiP. 2015. "Synthesis and antimicrobial activity of monodisperse copper nanoparticles." Colloids and Surfaces B: Biointerfaces 128, 17-22.

https://doi.org/10.1016/j.colsurfb.2015.02.009

Kumar B, Smita K, Cumbal L, Debut A, Angulo Y. 2015. "Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf." Journal of Saudi Chemical Society.

Kumar PV, Shameem U, Kollu P, Kalyani R, Pammi S. 2015. "Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its

antibacterial activity against fish bacterial pathogens." BioNanoScience 5(3), 135-139.

Kuppusamy Ρ, IlavenilS, SrigopalramS, Maniam GP, Yusoff MM, Govindan N, Choi KC. 2017. "Treating of palm oil mill effluent using Commelina nudiflora mediated copper nanoparticles as a novel bio-control agent." Journal of Cleaner Production 141, 1023-1029.

Lee HJ, Song JY, KimBS. 2013. "Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity." Journal of Chemical Technology and Biotechnology 88(11), 1971-1977.

Leong MK. 2016. Green Synthesis, Characterization of Copper (II) Oxide Nanoparticles and Their Photocatalytic Activity, UTAR.

Li CH, Peterson G. 2006. "Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)." Journal of Applied Physics 99(8): 084314.

https://doi.org/10.1063/1.2191571

Li Y, Liang J, Tao Z, Chen J. 2008. "CuO particles and plates: synthesis and gas-sensor application." Materials Research Bulletin 43(8), 2380-2385.

Li Z, Lee D, Sheng X, Cohen RE, Rubner MF. 2006. "Two-level antibacterial coating with both release-killing and contact-killing capabilities." Langmuir **22(24)**, 9820-9823.

Lin YSE, Vidic RD, Stout JE, Victor LY. 1996. "Individual and combined effects of copper and silver ions on inactivation of Legionella pneumophila." Water Research 30(8),1905-1913.

Longano D, Ditaranto N, Cioffi N, Di Niso F, Sibillano T, Ancona A, Conte A, Del Nobile M, Sabbatini L, Torsi L. 2012. "Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging." Analytical and bioanalytical chemistry 403(4), 1179-1186.

Lu L, Sui M, Lu K. 2001. "Cold rolling of bulk nanocrystalline copper." Acta materialia 49(19), 4127-4134.

https://doi.org/10.1016/S1359-6454(01)00248-8

Male KB, Hrapovic S, Liu Y, Wang D, Luong "Electrochemical detection **JH.**2004. carbohydrates using copper nanoparticles and carbon nanotubes." Analytica Chimica Acta **516(1)**, 35-41. https://doi.org/10.1016/j.aca.2004.03.075

Mandal D, Bolander ME, MukhopadhyayD, SarkarG, MukherjeeP. 2006. "The use of microorganisms for the formation of metal nanoparticles and their application." Applied microbiology and biotechnology 69(5),485-492. https://doi.org/10.1007/s00253-005-0179-3

Mittal AK, Chisti Y, BanerjeeUC. 2013. "Synthesis of metallic nanoparticles using plant extracts." Biotechnology advances 31(2), 346-356.

Momeni SS, Nasrollahzadeh M, RustaiyanA. 2016. "Green synthesis of the Cu/ZnO nanoparticles mediated by Euphorbia prolifera leaf extract and investigation of their catalytic activity." Journal of colloid and interface science 472, 173-179.

https://doi.org/10.1016/j.jcis.2016.03.042

Nagajyothi P, MuthuramanP, Sreekanth T, KimDH, Shim J. 2017. "Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells." Arabian Journal of Chemistry 10(2),215-225.

https://doi.org/10.1016/j.arabjc.2016.01.011

Naika HR, LingarajuK, Manjunath K, Kumar D, Nagaraju G, Suresh D, Nagabhushana H. 2015. "Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial

activity." Journal of Taibah University for Science 9(1), 7-12.

Narayanan R, El-Sayed MA. 2004. "Effect of nanocatalysis in colloidal solution on the tetrahedral and cubic nanoparticle shape: Electron-transfer reaction catalyzed by platinum nanoparticles." The Journal of Physical Chemistry B 108(18), 5726-5733.

Nasrollahzadeh M, Maham M, SajadiSM. 2015. "Green synthesis of CuO nanoparticles by aqueous extract of Gundelia tournefortii and evaluation of their catalytic activity for the synthesis of Nmonosubstituted ureas and reduction of 4nitrophenol." Journal of colloid and interface science **455**, 245-253.

https://doi.org/10.1016/j.jcis.2015.05.045

Nasrollahzadeh M, Sajadi SM, KhalajM. 2014. "Green synthesis of copper nanoparticles using aqueous extract of the leaves of Euphorbia esula L and their catalytic activity for ligand-free Ullmanncoupling reaction and reduction of 4-nitrophenol." RSC Advances 4(88),47313-47318.

https://doi.org/10.1039/C4RA08863H

Nasrollahzadeh M, SajadiSM, Rostami-VartooniA, KhalajM. 2015. "Natrolite zeolite supported copper nanoparticles as an efficient heterogeneous catalyst for the 1, 3-diploar cycloaddition and cyanation of aryl iodides under ligand-free conditions." Journal of colloid and interface science 453, 237-243.

https://doi.org/10.1016/j.jcis.2015.04.047

Niu Y, RM Crooks. 2003. "Dendrimerencapsulated metal nanoparticles their applications to catalysis." Comptes Rendus Chimie **6(8)**,1049-1059.

Pecharromán C, Esteban-CubilloA, MonteroI, MoyaJS, AguilarE, Santarén J, Alvarez A. 2006. "Monodisperse and Corrosion-Resistant Metallic Nanoparticles Embedded into Sepiolite Particles for Optical and Magnetic Applications." Journal of the American Ceramic Society 89(10), 3043-3049.

Pedersen DB, Wang S, LiangSH. 2008. "Charge-Transfer-Driven Diffusion Processes in Cu@ Cu-Oxide Core- Shell Nanoparticles: Oxidation of 3.0±0.3 nm Diameter Copper Nanoparticles." The Journal of Physical Chemistry C 112(24),8819-8826.

Petit C, Lixon P, Pileni MP. 1993. "In situ synthesis of silver nanocluster in AOT reverse micelles." The Journal of Physical Chemistry 97(49), 12974-12983.

Phong NTP, Khuong VQ, Tho TD, Van DuC, MinhNH. 2011. "Green synthesis of copper nanoparticles colloidal solutions and used as pink disease treatment drug for rubber tree." Proceedings of IWNA 288, 10-12.

Prabhu Y, RaoKV, SaiVS, PavaniT. 2015. "A facile biosynthesis of copper nanoparticles: a microstructural and antibacterial activity investigation." Journal of Saudi Chemical Society.

Prasad KS, Patra A, Shruthi G, Chandan S. 2017. "Aqueous Extract of Saracai ndica Leaves in the Synthesis of Copper Oxide Nanoparticles: Finding a towards Going Green." Journal Nanotechnology 2017.

https://doi.org/10.1155/2017/7502610

Prasad PR, Kanchi S, NaidooE. 2016. "In-vitro evaluation of copper nanoparticles cytotoxicity on prostate cancer cell lines and their antioxidant, sensing and catalytic activity: One-pot green approach." Journal of Photochemistry and Photobiology B: Biology 161, 375-382.

https://doi.org/10.1016/j.jphotobiol.2016.06.008

Rafique M, ShaikhAJ, RasheedR, Tahi MB, BakhatHF, Rafique MS, RabbaniF. 2017. "A review on synthesis, characterization and applications of copper nanoparticles using green method." Nano **12(04),**1750043.

Ramyadevi J, JeyasubramanianK, MarikaniA, Rajakumar G, RahumanAA. 2012. "Synthesis and antimicrobial activity of copper nanoparticles." Materials letters 71, 114-116.

http://dx.doi.org/10.1016/j.matlet.2011.12.055

Raveendran P, Fu J, Wallen SL. 2003. "Completely "green" synthesis and stabilization of metal nanoparticles." Journal of the American Chemical Society 125(46),13940-13941.

Ren G, Hu D, ChengEW, Vargas-ReusMA, Reip P, AllakerRP. 2009. "Characterisation of copper oxide nanoparticles for antimicrobial applications." International journal of antimicrobial agents 33(6), 587-590.

Rodriguez JA, LiuP, Hrbek J, Evans, PerezM. 2007. "Water Gas Shift Reaction on Cu and Au Nanoparticles Supported on CeO₂ (111) and ZnO (000\$\bar 1\$): Intrinsic Activity and Importance of Interactions." Angewandte Support Chemie International Edition 46(8), 1329-1332.

Rosbero TMS, DH Camacho. 2017. "Green preparation and characterization of tentacle-like silver/copper nanoparticles for catalytic degradation of toxic chlorpyrifos in water." Journal of Environmental Chemical Engineering.

http://dx.doi.org/10.1016/j.jece.2017.05.009

Rubilar O, RaiM, Tortella G, DiezMC, Seabra AB, DuránN. 2013. "Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications." Biotechnology letters **35(9)**,1365-1375.

V, Sadanand RajiniN, Rajulu AV, SatyanarayanaB. 2016. "Preparation of cellulose in situ generated composites with copper nanoparticles using leaf extract and their properties." Carbohydrate polymers 150: 32-39.

http://dx.doi.org/10.1016/j.carbpol.2016.04.121

Salavati-Niasari M, Davar F, MirN. 2008. "Synthesis and characterization of metallic copper nanoparticles via thermal decomposition." Polyhedron **27(17)**, 3514-3518.

Saranyaadevi K, Subha V, Ravindran RE, Renganathan S. 2014. "Synthesis and characterization of copper nanoparticle using Capparis zeylanica leaf extract." Int J ChemTech Res 6(10),4533-4541.

Schilling K, BradfordB, CastelliD, DufourE, NashJF, PapeW, SchulteS, TooleyI, van den BoschJ, SchellaufF. 2010. "Human safety review of "nano" titanium dioxide and zinc oxide." Photochemical & Photobiological Sciences 9(4),495-509.

http://dx.doi.org/10.1039/B9PP00180H

Shende S, IngleAP, Gade A, RaiM. 2015. "Green synthesis of copper nanoparticles by Citrus medica Linn.(Idilimbu) juice and its antimicrobial activity." World Journal of Microbiology and Biotechnology **31(6)**,865-873.

Shi LB, TangPF, Zhang W, ZhaoYP, Zhang LC, ZhangH. 2017. "Green synthesis of CuO nanoparticles using Cassia auriculata leaf extract and in vitro evaluation of their biocompatibility with rheumatoid arthritis macrophages (RAW 264.7)." Tropical Journal of Pharmaceutical Research 16(1),

http://dx.doi.org/10.4314/tjpr.v16i1.25

Shobha G, Moses V, nandaS A. 2014. "Biological Synthesis of Copper Nanoparticles and its impact." International Journal of Pharmaceutical Science Invention **3(8)**,2319-6718.

Singh S, KumarN, KumarM, Agarwal A MizaikoffB. 2017. "Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles." Chemical Engineering Journal 313, 283-292.

Sivaraj R, RahmanPK, RajivP, Salam HA, VenckateshR. 2014. "Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy **133**, 178-181.

http://dx.doi.org/10.1016/j.saa.2014.05.048

Song L, Vijver MG, PeijnenburgWJ. 2015. "Comparative toxicity of copper nanoparticles across three Lemnaceae species." Science of the Total Environment 518, 217-224.

Subhankari I, NayakP. 2013. "Synthesis of copper nanoparticles using Syzygium aromaticum (Cloves) aqueous extract by using green chemistry." World J Nano Sci Technol 2(1): 14-17.

Sutradhar P, Saha M, MaitiD. 2014. "Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity." Journal of Nanostructure in Chemistry 4(1), 86.

Swarnkar R, Singh S, GopalR. 2011. "Effect of aging on copper nanoparticles synthesized by pulsed laser ablation in water: structural and optical characterizations." Bulletin of Materials Science 34(7),1363-1369.

Thakkar KN, MhatreSS, ParikhRY. 2010. "Biological synthesis of metallic nanoparticles." Nanomedicine: Nanotechnology, **Biology** Medicine 6(2),257-262.

http://dx.doi.org/10.1016/j.nano.2009.07.002

A, **Thirumurugan** HarshiniE, MarakathanandhiniBD, Kannan SR MuthukumaranP. 2017. Catalytic Degradation of Reactive Red 120 by Copper Oxide Nanoparticles Synthesized by Azadirachta indica. Bioremediation Sustainable **Technologies** for Cleaner Environment, Springer: 95-102.

Vanathi P, Rajiv P, Sivaraj R. 2016. "Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens." Bulletin of Materials Science 39(5),1165-1170.

Viet P V, Nguyen HT, Cao TM, Hieu LV. 2016. copper "Fusarium antifungal activities of nanoparticles synthesized by a chemical reduction method." Journal of Nanomaterials 2016, 6.

http://dx.doi.org/10.1155/2016/1957612

Vukojević S, Trapp O, Grunwaldt JD, Kiener CF, Schüth. 2005. "Quasi-homogeneous methanol synthesis over highly active copper nanoparticles." Angewandte Chemie 117(48), 8192-8195.

Wali M, Sajjad A, Sumaira S. 2017. "Green Synthesis of Gold Nanoparticles and Their Characterizations Using Plant Extract of Papaver somniferum." Nano Sci Nano Technol 11(2), 118.

Wang Y, Chen M, Zhou F, Ma E. 2002. "High tensile ductility in a nanostructured metal." Nature 419(6910), 912.

Wu D, Wang W, He X, Jiang M, Lai C, Hu X, Wang M, Xi J. 2017. "Biofabrication of nano copper oxide and its aptamer bioconjugate for delivery of mRNA 29b to lung cancer cells." Materials Science and Engineering: C.

http://dx.doi.org/10.1016/j.msec.2017.04.081

Xu Q, Zhao Y, Xu JZ, Zhu JJ. 2006. "Preparation functionalized copper nanoparticles fabrication of a glucose sensor." Sensors and Actuators B: Chemical 114(1), 379-386.

Yin M, Wu CK, Lou Y, Burda C, Koberstein JT, Zhu Y, O'Brien S. 2005. "Copper oxide nanocrystals." Journal of the American Chemical Society 127(26), 9506-9511.

Yoon KY, Byeon JH, Park JH Hwang J. 2007. "Susceptibility constants of Escherichia coli and

Bacillus subtilis to silver and copper nanoparticles." Science of the Total Environment 373(2), 572-575.

Yu-sen EL, Vidic R D, Stout JE, McCartney C A, Victor LY. 1998. "Inactivation of Mycobacterium avium by copper and silver ions." Water Research **32(7),** 1997-2000.

Yuhas BD, YangP. 2009. "Nanowire-based alloxide solar cells." Journal of the American Chemical Society **131(10)**,3756-3761.

Zain NM, Stapley A, ShamaG. 2014. "Green synthesis of silver and copper nanoparticles using Ascorbic acid and Chitosan for antimicrobial applications." Carbohydrate polymers 112, 195-202. http://dx.doi.org/10.1016/j.carbpol.2014.05.081