Finding the average abundance of ABO and Rh blood groups in all 3 Tehsil of District Karak, KP, Pakistan

Arshad Abbas¹, Muhammad Arsalan¹, Shafi Ullah Gul¹, Naqeeb Ullah², Hameed Ur Rehman³*, Rafiq Hussain¹, Faiz Ur Rehman¹, Aftab Ahmad¹, Sundas Navid⁶, Azizullah⁷, Waqas Ahmad⁷

¹Department of Zoology, GPGC, Karak, KP, Pakistan
²Directorate of Post-Harvest and Food Technology Agriculture Research Institute ARI, Sariab Road Quetta
³Department of Chemistry, Kohat University of Science and Technology, KPK, Pakistan
⁴Department of Zoology, Kohat University of Science and Technology, KUST, Kohat, KP, Pakistan
⁵Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi
⁶Centre for interdisciplinary Research in Basic Sciences, International Islamic university Islamabad (IIUI)
⁷Department of Zoology, Hazara University Mansehra, Pakistan

Key words: ABO and Rh blood groups, blood bank, blood donors.

http://dx.doi.org/10.12692/ijb/13.5.378-383 Article published on November 28, 2018

Abstract

The present study was conducted to find out the relative abundance of ABO blood groups and Rh factor in male population in three tehsil of district Karak namely Tehsil Karak, Tehsil Takht E Nasrati and Tehsil Banda Daud Shah. The blood groups and Rh factor ascertainment was find out through antigen-antibody clotting test. Total of 645 blood groups were checked of unknown people in a blood checking camp. The blood group B⁺ was found to be most abundant in the whole district with relative abundance of 207 donors and percentage of 32.09% followed by O⁺ (159, 24.65%), A⁺ (141, 21.86%) and AB⁺ (63, 9.76%). The Rh⁺ was more abundant with 570 donors and percentage of 88.37% and Rh⁻ has 75 donors and percentage of 11.62%. The blood groups with Rh⁻ are A⁻ (26, 4.03%), B⁻ (25, 3.87%), AB⁻ (12, 1.86%) and O⁻ (12, 1.86%).

*Corresponding Author: Hameed Ur Rehman E-mail: 03449002451h@gmail.com
Introduction
ABO and Rh (Rhesus) blood group systems are of significant importance regarding blood transfusion and organ transplantation. These blood groups have a role in genetic markers in anthropological studies and in population genetics. Red blood cells have glycoprotein and glycolipid on their surface which forms the blood group antigens.

The antigen production is genetically controlled. The ABO system has four main groups that as A, B, AB and O and these are due to the presence of antigens A and B, for O there is no antigen. These antigens are controlled by three allelic genes A, B, and O that are present on the long arm of chromosome 9 (Conteras, 2001; Knowles, 2002). In addition, there is also present antigen H which is a precursor to A and B antigen but not stated as recognizable antigen on red blood cells (Brown et al., 1992). Blood group antigens are inherited from parents in a mendelian fashion that express early inside the mother uterus and remain unchanged for the whole life (Firkin et al., 1989). About 700 red blood cell antigens are studied that are arranged into 30 blood group systems by the International Society of Blood Transfusion (International Society of Blood Transfusion (ISBT), 2008).

Although lots of blood groups are discovered but ABO blood group system is still the most important blood group system in transfusion medicines (Yamamto, 2000). Another importance of such studies is that some diseases are more common in one type blood group donor (Brecher et al., 2011). People having blood group O are at high risk of peptic ulcer (Alkout et al., 2000). Women having A blood group are found to have endometrial and ovarian cancers more commonly than women of other blood groups (Marinaccio et al., 1995). People with A blood group usually they have significant risk for coronary heart disease (CHD) (Wazirali et al., 2005). The main goal of the work is to perform a survey of the frequency of clinically important blood group antigen in donor population to:
First, ease the blood transfusion service.
Second, compare the data of this donor population group with other regions.
Third, make a way easy for Future genetic research.

Material and methods
The present study was carried out in three tehsils of district Karak i.e. Tehsil Karak, tehsil takht e nasrati and tehsil banda daud shah, where we arrange blood checking camp in different areas, especially in colleges for volunteers students for blood bank of Karak and in the present study we checked 645 unknown blood donors. This work takes about 6 month’s time from January 1st to July 1st.

All the volunteer students and peoples coming for blood checking and donation were selected as per NACO (National AIDS Control Organization guidelines) (which were physically and mentally fit for blood donation. After blood checking and donation the donors Data were than recorded in a record book for again donation when ever eligible that as his Name, Blood group, Address and contact number.

The blood samples were collected by finger prick on a slide and than blood groups and Rh factor were checked through antigen-antibody agglutination test. The blood phenotypes were checked by putting the corresponding antisera on a blood e.g antisera B to be putted on a blood sample if it clot than it means the blood is B and so on with antisera A and D.

Results and discussion
In the current study total of 645 blood groups were checked. The blood group B+ was found to be most abundant in the whole district with relative abundance of 207 donors and percentage of 32.09% followed by O+ (159, 24.65%), A+ (141, 21.86%) and AB+ (63, 9.76%). The Rh- was more abundant with 570 donors and percentage of 88.37% and Rh+ has 75 donors and percentage of 11.62%.

The blood groups with Rh- are A- (26, 4.03%), B- (25, 3.87%), AB- (12, 1.86%) and O- (12, 1.86%).
The present trend is B> O > A > AB this is not unique but is usual result according to Asia as over all research done on abundance of blood groups and Rh factors in Asia shows the trend B ≥ O > A > AB.

The same trend of B ≥ O > A > AB is found in many areas of Pakistan, Punjab (Afzal et al., 1977), Swat (Khattak et al., 2008), Rawalakot (Poonch) (AJ&K), Rawalpindi/Islamabad (Khan et al., 2009 and 2006), Gilgit (Islam & Robert, 2010), Mirpur (AJ & K) (Chishti et al., 2012) and Khalid & Qureshi (2006), Lahore (Parveen 1987) and Siddiqui et al. (2011), Rawalpindi/Islamabad (Shakir et al. 2012), Multan (Mahmood et al. (2005) and Lodhi (1960)), Faisalabad (Hameed et al. (2002)), the trend is different in some areas having A > B ≥ O > AB in Sakardu and Peshawar (Alam 2005 and PMRC (1982)) here A blood group is abundant in the adjacent areas too that is Kalam, Kafirs, Kalash and Chitral and also this trend persist in the Hindukush region of Afghanistan and Pakistan. In Bannu (Khan et al. (2004)) the trend is B > A > O > AB and in most areas including Sindh (Bhatti & Sheikh, 1999), Abbotabad/Hazara (Khaliq et al. 1984), Baluchistan (Hussain et al. (2001)), Gujrat (Annees & Shabbir (2005)), Bahawalpur (Yousaf et al. (1988)), Mandi Bahauddin (Annees et al. (2007)) and Punjab (Bahawalpur, Multan, Faisalabad, Lahore and Rawalpindi) (Rahman & Lodhi 2004)).

These differences in the trend are due to various factors such as external environment, genetic variations, racial background, genetic variations and mother-child compatibility (Bernhard, 1980; Onde & Kensee, 1995). Besides the transfusions, cardiovascular diseases, organ transplantation, erythroblastosis in neonates the ABO blood system also help in prediction of national suicide rate and indicates genetic marker of obesity (Mollison PL (1979) and Hein HO et al (2005)). A person genetic history can be known by studying their blood groups (Sokolov R (1993)).
In our study of ABO blood groups and Rh positivity samples showed that the blood group B positive was most prevalent followed by group O, A and AB. Opposite to this the blood group O is the most prevalent group in Egypt (Bahaj AA (2003)). Likewise blood group a in Russia (Tomilin VV, Gurtovaia SV (1999)).

In Australians O and A while in Africans B group is commonest (Mollison PL, Engelfriet CP (1993)).

In our study of ABO blood groups and Rh positivity samples showed that the blood group B positive was most prevalent followed by group O, A and AB. Opposite to this the blood group O is the most prevalent group in Egypt (Bahaj AA (2003)). Likewise blood group a in Russia (Tomilin VV, Gurtovaia SV (1999)).

In Australians O and A while in Africans B group is commonest (Mollison PL, Engelfriet CP (1993)).

In our study of ABO blood groups and Rh positivity samples showed that the blood group B positive was most prevalent followed by group O, A and AB. Opposite to this the blood group O is the most prevalent group in Egypt (Bahaj AA (2003)). Likewise blood group a in Russia (Tomilin VV, Gurtovaia SV (1999)).

In Australians O and A while in Africans B group is commonest (Mollison PL, Engelfriet CP (1993)).

In our study of ABO blood groups and Rh positivity samples showed that the blood group B positive was most prevalent followed by group O, A and AB. Opposite to this the blood group O is the most prevalent group in Egypt (Bahaj AA (2003)). Likewise blood group a in Russia (Tomilin VV, Gurtovaia SV (1999)).

In Australians O and A while in Africans B group is commonest (Mollison PL, Engelfriet CP (1993)).

Rh negative blood group percentage in the whole district is 12% however little higher percentage is reported by other studies (Khattak ID et al (2008), Frances TF et al (2002)).

Rh negative blood group percentage in the whole district is 12% however little higher percentage is reported by other studies (Khattak ID et al (2008), Frances TF et al (2002)).

Rh negative blood group percentage in the whole district is 12% however little higher percentage is reported by other studies (Khattak ID et al (2008), Frances TF et al (2002)).

The study of blood group frequency helps in case of blood bank and patient in emergency so it is the need of the time that person blood group should be written on his/her identity card or licenses.

The study of blood group frequency helps in case of blood bank and patient in emergency so it is the need of the time that person blood group should be written on his/her identity card or licenses.

The study of blood group frequency helps in case of blood bank and patient in emergency so it is the need of the time that person blood group should be written on his/her identity card or licenses.

More research work is needed on the mentioned topic so to overcome the problem of blood transfusion.

More research work is needed on the mentioned topic so to overcome the problem of blood transfusion.

More research work is needed on the mentioned topic so to overcome the problem of blood transfusion.

Conclusion
The trend of the present study is B>O>A>AB. So it is clear from the trend that Karak is very rich in case of B and O blood groups and also the Rh positive dominates the Rh negative as usual.

Conclusion
The trend of the present study is B>O>A>AB. So it is clear from the trend that Karak is very rich in case of B and O blood groups and also the Rh positive dominates the Rh negative as usual.

Conclusion
The trend of the present study is B>O>A>AB. So it is clear from the trend that Karak is very rich in case of B and O blood groups and also the Rh positive dominates the Rh negative as usual.

Acknowledgment
I am very thankful to my colleague M. Arsalan and my honorable supervisor Mr, Shafi ullah Gul and also to the honorable Mr. Hameed Ur Rehman who help and guide me throughout my research.

Acknowledgment
I am very thankful to my colleague M. Arsalan and my honorable supervisor Mr, Shafi ullah Gul and also to the honorable Mr. Hameed Ur Rehman who help and guide me throughout my research.

Acknowledgment
I am very thankful to my colleague M. Arsalan and my honorable supervisor Mr, Shafi ullah Gul and also to the honorable Mr. Hameed Ur Rehman who help and guide me throughout my research.

References

References

References


Perveen N. 1987. ABO and sub-groups of A in the Lahore population; Pakistan journal of Medical Association. 37, 200-201.


http://ibgrl.blood.co.uk/isbt.


