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Abstract 

   
There are limited available data about the effect of deficit irrigation on Hot pepper, therefore this study 

investigated the effect of deficit irrigation on some physiological and biochemical parameters in leaves of Hot 

pepper (Capsicum annuum cv. Battle) during plant growth to evaluate the critical period of irrigation for this 

cultivar for good growth. The plants were grown in a 1:1 v/v sand-to-cotton stalk compost and subjected to four 

irrigation treatments: 100% of water holding capacity (control), 85%, 70% and 55% of water holding capacity 

which were considered deficit irrigation treatments. All treatments were given to the plants at the first day of 

transplanting and continued during the whole growing season. Our results demonstrated that deficit irrigation 

had a negative effect on physiological parameters. Increasing irrigation deficiency exhibited a reduction in 

chlorophyll content and net photosynthetic rate, the maximum values were obtained at 30 and 40 days after 

transplanting respectively. And a corresponding increases in the activity of antioxidant enzymes. The maximum 

activity of SOD and CAT enzymes was obtained at 30 and 40 days after transplanting respectively, while the 

maximum activity of POD was obtained at 45 and 60 days after transplanting. The root activity also increased as 

deficit irrigation was increased. Lipid peroxidation membrane (MDA) had lower values at 30 and 40 days after 

transplanting. We concluded that ‘Battle’ hot pepper is sensitive to deficit irrigation and the period from 30 to 45 

days after transplanting is considered critical period of irrigation this cultivar under our condition. 
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Introduction 

Hot pepper (Capsicum annuum L.) is one of the 

vegetable crops commonly grown in the greenhouse 

and consumed in China, USA, East Indies, Korea, and 

many other countries, for the nutritional value fruit 

contents, which are an excellent source of antioxidant 

compounds and natural colors, like carotenoids and 

vitamin C (Howard et al., 2000; Russo and Howard, 

2002; Navarro et al., 2006; Shao et al., 2008). In the 

greenhouse, water availability is an important factor 

affecting plant growth and yield, because hot pepper 

is considered one of the most susceptible horticultural 

crops to water stress (Shao et al., 2010). The 

physiological and biochemical responses to water 

stress may vary considerably among species. In 

general, strategies of drought-avoidance or drought 

tolerance can be recognized; both involving diverse 

plant mechanisms that allow plants to respond and 

survive water deficit. 

 

Deficit irrigation is a strategy that allows a crop to 

sustain some degree of water deficit in order to 

reduce costs and potentially increase income. Deficit 

water is one of the major environmental factors that 

can limit the growth, and physiological characteristics 

of plants and recent global climate change has made 

this situation more serious (Martínez et al., 2003; 

Ren et al., 2007; Tadina et al., 2007;  Wu et al., 

2009). Plants usually experience a fluctuating water 

supply during their life cycle due to continuously 

changing climatic factors. Deficit water induces 

several physiological, biochemical and molecular 

responses in several Crop plants, which would help 

them to adapt to such limiting environmental 

conditions (Arora et al., 2002; Chaves et al., 2003). 

Water deficit induces oxidative damage leading in the 

formation of active (AOS) and reactive oxygen species 

(ROS) (Farooq et al., 2009 a, b). Production of these 

species is started with reduction of O2 leading in the 

synthesis of singlet oxygen (1O2), superoxide (O2−), 

hydroxyl radical (OH−) or hydrogen peroxide (H2O2) 

(Wu et al., 2008). Production of these species at 

higher level may damage cellular membranes and 

other vital substances like chlorophyll, DNA, proteins 

and lipids (Blokhina et al., 2003). 

The final product of lipid peroxidation in the cellular 

membranes, malondialdehyde (MDA) is taken as an 

index of oxidative membrane damage (Ozkur et al., 

2009). Plants resist to stress-induced production of 

active and reactive oxygen species through induction 

of enzymatic and non-enzymatic antioxidant defense 

enzymes, which protect the membranes and other 

vital substances (Ali et al., 2008). Among the 

enzymatic components, superoxide dismutase (SOD) 

plays the key role in antioxidant defense system as it 

scavenges O2− free radicals converting them into 

H2O2. The H2O2 is then further scavenged by catalase 

(CAT) and peroxidase (POD) into H2O and O2 

(Farooq et al., 2009 a).  

 

The activities of antioxidant enzymes and the amount 

of antioxidants increase under drought; however the 

extent of increase varies among the plant species and 

cultivars of the same species. 

 

Photosynthesis is an essential process to maintain 

crop growth and development, and it is well known 

that photosynthetic systems in higher plants are most 

sensitive to water deficit (Falk et al., 1996).  

 

Chlorophyll is one of the major chloroplast 

components for photosynthesis, and relative 

chlorophyll content has a positive relationship with 

photosynthetic rate (Guo and Li, 1996). The effect of 

water deficit on photosynthesis varies among the 

plant species and cultivars of the same species 

(Akhkha et al., 2011). 

 

Several investigators have reported a negative effect 

of water stress on chlorophyll content in leaves such 

as (Kirnak et al., 2001) on eggplant; (Zhang et al., 

2007) on soybean; (Li et al., 2008) on cucumber; 

(Sikuku et al., 2010) on rice; (Bettaieb et al., 2011) on 

Salvia officinalis L; (Ebrahimian and Bybordi, 2012) 

on sunflower; (Sayyari and Ghanbari, 2012) on hot 

pepper. On the contrary, (Khamssi et al., 2010) found 

that chlorophyll content of three chickpea (Cicer 

arietinum L.) cultivars showed no significant 

differences among deficit irrigation and well 

irrigation treatments. 
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Also, many investigators have reported a negative 

effect of water stress on net photosynthetic rate in 

leaves such as (Kauser et al., 2006) on canola 

(Brassica napus L.); (Zhang et al., 2007) on soybean; 

(Jaleel  et al., 2008 a) on Catharanthus roseus. On 

the contrary (Akhkha et al., 2011) observed that a 

reduction in photosynthesis rates of wheat cultivars 

(Hab-ahmar and Sindy-2) due to water stress but no 

decrease in cultivars, (Al-gaimi and Sindy-1). 

 

The effects of water deficit on antioxidative responses 

have been studied in a number of plant species such 

as, (Sairam and Srivastava, 2001) on wheat; (Lima et 

al.,  2002) on Coffea canephora; (Sofo et al., 2004, 

2005) on olive; (Yong et al., 2006) on Radix 

Astragali ; (Ge et al., 2006) on maize;  (Zhang et al., 

2007) on soybean;  (Jaleel et al., 2008 b) on 

Catharanthus roseus; (Pourtaghi et al., 2011) on 

sunflower; (Anjum et al., 2012) on hot pepper. These 

studies indicate that the antioxidative response is well 

correlated with sensitivity and tolerance of the 

cultivars under investigation.  

 

Few studies have been reported on physiological and 

biochemical parameters of hot pepper under deficit 

irrigation during plant growth. This study was 

conducted to investigate the effect of deficit irrigation 

on some physiological and biochemical parameters in 

leaves of ‘Battle' hot pepper during plant growth to 

evaluate the critical period of irrigation for this 

cultivar for good growth. 

 

Materials and methods 

A greenhouse experiment was conducted at the 

Soilless Culture Department, Vegetables and Flowers 

Institute (VFI), Chinese Academy of Agricultural 

Sciences (CAAS), Beijing, China from May to August 

2012. 

 

Growing media and plant materials 

A sand-to-cotton stalk compost (1:1 v/v) was used as a 

growing media; seven litters were used per pot. The 

physical and chemical properties of the growing 

media used in this study are presented in Table 1. The 

seedlings of hot pepper (Capsicum annuum cv. 

Battle) were transplanted at eight- leaf stage, one 

plant per pot. 

 

Irrigation treatments and experimental design 

Four irrigation treatments; 100%, 85%, 70% and 55% 

of water holding capacity (WHC) of growing media 

were used during the whole growing season, which 

will be referred to in the text as  T1, T2, T3 and T4, 

respectively. A full irrigation treatment (T1) was 

considered as a control. The second, third and the 

fourth treatments (T2, T3 and T4) were considered as 

deficit irrigation treatments.  All water treatments 

were given to the plants on the same day of 

transplanting. The desired moisture contents of pots 

were daily monitored by HH2 moisture meter version 

4.0 (Delta- T Devices Ltd. UK) and maintained 

through water application, if required. The 

experiment was organized in a completely 

randomized design (CRD) with three replications per 

treatment; each replication had seven plants (twenty 

one plants per treatment). 

 

Measurements 

Physiological parameters 

Chlorophyll content and net photosynthetic rate (Pn) 

of the fully expanded leaves were measured at 15, 30, 

45, 60 and 75 days after transplanting. Chlorophyll 

content was measured using a chlorophyll meter 

(SPAD-502, Konica Minolta Sensing Inc, Japan). Net 

Photosynthetic rate was measured with LI 6400 (Li-

Cor Inc, Lincoln NE, USA) under a saturating 

photosynthetic photon flux density of 800 µmol m-2 s-

1 provided by an external halogen lamp. 

Measurements of chlorophyll content and net 

photosynthetic rate were taken between 09:00 and 

11:00 am, five plants of each treatment and triplicate 

reading at random locations in the leaf were recorded 

for each plant and the average used for the analysis. 

 

Biochemical parameters 

Leaves were sampled at 15, 30, 45, 60 and 75 days 

after transplanting. The segments (0.3 g) of the fully 

expanded leaf from each plant was detached (three 

leaves per pot and five pots per treatment) and 

immediately frozen in liquid nitrogen and then stored  
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at - 80 0c till used. 

 

Antioxidant enzymes assay 

For the enzymes assay, 0.3 g of frozen leaf segments 

was ground with 3 ml ice-cold 50 mM phosphate 

buffer (PBS pH 7.8) containing 0.2 mM EDTA and 2 

mM ascorbic acid (AsA). The homogenates were 

centrifuged at 4 °C for 20 min. at 12,000 g, and the 

supernatants were used for the determination of the 

enzymatic activities. Superoxide dismutase (SOD) 

activity was assayed according to (Stewart and 

Bewley, 1980) on the basis of its ability to inhibit the 

photochemical reduction of nitro blue tetrazolium 

(NBT). Catalase (CAT) ctivity was assayed according 

to (Chandlee and Scandalios, 1984). Peroxidase 

(POD) activity was determined as described by 

(Upadhyaya et al., 1985).  

 

Lipid peroxidation 

The degree of lipid peroxidation was assessed as 

malondialdehyde (MDA) contents according to the 

TBA method (Hodges et al., 1999). 

 

Root activity 

Measurement of root activity was performed 

according to the TTC method (Wang et al., 2010). The 

roots sampled after second harvesting, the substrate 

was removed from the root using tweezers, and then 

the roots were washed with sterile water. The surface 

liquid of roots was blotted with tissue paper and their 

fresh weights were measured. Roots with weights 0.5 

g were placed in tubes and filled with 5 ml of 0.4% 

TTC and 5 ml phosphate buffer (0.06 mol.l–1, pH 7.0). 

Control treatment (blank runs) was always carried 

out using the same procedure, but adding 2 ml of 

1mol.l–1 sulfuric acid first. The tubes were incubated 

at 37 0C for up to 4 hr. The chemical reaction was 

stopped by adding 2ml of 1 mol.l–1 sulfuric acid into 

the tubes. This step was followed by extraction with 

10 ml of 95% ethanol for 24 h., which consisted of 

taking the root in a new tube. The optical density 

(OD) values were recorded at 485 nm. 

 

Statistical analysis 

Data were analyzed statistically using Statistix version  

8.1 software. Differences between means were 

determined using the Least Significant Difference 

(LSD) test at P < 0.05. The analyzed data were then 

presented as mean ± standard deviation (SD) of the 

mean. 

 

Results 

Physiological parameters 

Chlorophyll content 

Data presented in Fig. 1 demonstrate that the 

chlorophyll content in leaves was affected by 

irrigation treatments during plant growth.  

 

In our study, chlorophyll content increased sharply 

from 15 days after transplanting and reached to the 

peak at 30 days after transplanting, then declined 

slightly at 45 days after transplanting and continued 

to decline till 75 days after transplanting, for all 

irrigation treatments. 

 

Table 1. Physical and chemical properties of growing media. 

Properties Physical Properties Chemical Properties 

BDa 

g/cm3 

ASb 

% 

WHCc 

% 

TPd 

% 

ECe 

mS/cm 

pH TOCf g/kg TNg g/kg OMh 

g/kg 

C/Ni 

ratio 

Values 1.04 14.34 40.11 54.45 1.18 7.86 84.42 8.41 145.55 10.05 

abulk density; b air space; c water holding capacity; d total porosity; e electrical conductivity; f total organic carbon;   gtotal 

nitrogen; h organic matter; i carbon to nitrogen ratio. 

Moreover, deficit irrigation showed a significant 

reduction in chlorophyll content of leaves. The 

reduction was increased with increase in the intensity 

of deficit. The lowest reduction in chlorophyll content 

was 30.98% followed by 18.91 and 13.67 for T4, T3 

and T2, respectively, at 30 days after transplanting, as 

compared with the control. Meanwhile, the highest 

reduction at 45 days after transplanting was 34.00% 

followed by 19.90 and 13.08 for T4, T3 and T2, 

respectively, as compared with the control. 
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Fig. 1. Effect of deficit irrigation on chlorophyll content of leaves during different times (days after transplanting) 

of hot pepper. [T1, 100% of water holding capacity; T2, 85% of water holding capacity; T3, 70% of water holding 

capacity; T4, 55% of water holding capacity]. Lines in figure that are denoted with the same letter in each group 

separately are not significantly different. The values are means ± SD (n= 3). 

Net photosynthetic rate 

Data illustrated in Fig. 2 reveal that photosynthetic 

rate in leaves was changed during plant growth under 

irrigation treatments. Net photosynthesis rat rose 

sharply from 15 days after transplanting, reached to 

the peak at 30 days after transplanting,, then 

decreased slightly till 45 days after transplanting. 

Afterwards, declined sharply at 60 days after 

transplanting.  

 

Thereafter, continued to decline sharply till 75 days 

after transplanting for T1. Meanwhile, net 

photosynthesis rat in T2, T3 and T4 declined slightly 

(nearly constant) until 75 days after transplanting.

 

Fig. 2. Effect of deficit irrigation on net photosynthetic rate of leaves during different times (days after 

transplanting) of hot pepper. [T1, 100% of water holding capacity; T2, 85% of water holding capacity; T3, 70% of 

water holding capacity; T4, 55% of water holding capacity]. Lines in figure that are denoted with the same letter 

in each group separately are not significantly different. The values are means ± SD (n= 3). 
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Furthermore, net photosynthetic rate was 

significantly affected by deficit irrigation treatments, 

during plant growth.  Deficit irrigation caused a 

significant decrease in net photosynthetic rate as 

compared with the control. The maximum reduction 

in net photosynthetic rate was 29.85% followed by 

21.91% and 14.15% for T4, T3 and T2, respectively, 

which obtained at 30 days after transplanting. While, 

the maximum reduction in net photosynthetic rate at 

45 days after transplanting was 40.39% followed by 

20.12% and 14.26% for T4, T3 and T2, respectively, as  

compared with the control. 

 

Fig. 3. Effect of deficit irrigation on superoxide dismutase (SOD) activity of leaves during different times (days 

after transplanting) of hot pepper. [T1, 100% of water holding capacity; T2, 85% of water holding capacity; T3, 

70% of water holding capacity; T4, 55% of water holding capacity]. Lines in figure that are denoted with the same 

letter in each group separately are not significantly different. The values are means ± SD (n= 3). 

Biochemical parameters 

Antioxidant enzyme activities 

Superoxide dismutase (SOD) activity 

The effect of deficit irrigation treatments on the 

activity of superoxide dismutase during plant growth 

is presented in Fig. 3 Data clear that under control 

(100% of WHC), SOD activity in leaves of hot pepper 

plant increased slightly from 15 days after 

transplanting and continued to slightly increase till 

60 days after transplanting.  

 

Afterwards, started to slightly decline till 75 days after 

transplanting. However, under deficit irrigation 

treatments, superoxide dismutase activity rapidly 

increased from 15 days and continued to increase, it’s 

reached to the peak at 45 days after transplanting. 

Thereafter, decreased sharply and reached to level 

lower than the control at 75 days after transplanting 

for T4. However, in T2 and T3, the activity of SOD 

declined after 45 days and continued slightly decline 

till 75 days after transplanting.   

 

On the other hand, the activity of SOD enzyme was 

affected by deficit irrigation treatments during plant 

growth. Deficit irrigation caused a significant increase 

in activity of SOD. The highest increment in SOD 

activity was 97.03% followed by 61.59% and 38.56% 

for T4, T3 and T2, respectively, as compared with 

control at 45 days after transplanting. 

 

Catalase (CAT) activity 

Catalase activity (CAT) exhibited a similar trend to 

SOD activity as illustrated in Fig. 4 The data 

demonstrate that, catalase activity un- obviously 

increased in leaves of plant under control treatment 

(T1), from 15 till 60 days after transplanting, then, un- 

obviously decreased at 75 days after transplanting. 

Under deficit irrigation treatments, the activity of 
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catalase enzyme rapidly increased from 15 days after 

transplanting and continued to increase, it’s reached 

to the peak at 45 days after transplanting. Thereafter, 

rapidly declined till 60 days and continued to decline 

till 75 days after transplanting. 

 

Moreover, the activity of catalase enzyme in leaves of 

pepper plant was affected by deficit irrigation. Deficit 

irrigation caused a significant increase in catalase 

activity in leaves with compare with non-deficit. The 

increment in the activity was increased as a result of 

increasing deficit irrigation.  

 

The maximum activity of catalase enzyme was 

88.99% followed by 64.29% and 48.49% for T4, T3 

and T2, respectively, at 45 days after transplanting 

relative with the control. 

 

Fig. 4. Effect of deficit irrigation on catalase (CAT) activity of leaves during different times (days after 

transplanting) of hot pepper. [T1, 100% of water holding capacity; T2, 85% of water holding capacity; T3, 70% of 

water holding capacity; T4, 55% of water holding capacity]. Lines in figure that are denoted with the same letter 

in each group separately are not significantly different. The values are means ± SD (n= 4). 

Peroxidise (POD) activity 

Data presented in Fig. 5 demonstrate that, the activity 

of peroxidase (POD) enzyme affected by deficit 

irrigation treatments during plant growth. Data clear 

that, under deficit irrigation the activity of enzyme 

started slightly increase from 15 days after 

transplanting and continued to increase till 45 days 

after transplanting, then tended to rapidly increase its 

reached to the maximum activity at 60 days after 

transplanting.  

 

Thereafter, the activity of enzyme rapidly decreased 

till 75 days after transplanting for T3 and T4. 

However, the activity of POD enzyme slightly 

decreased till 75 days after transplanting for T2. 

Under control irrigation treatment, a very slightly 

increased for POD activity observed from 15 to 60 

days after transplanting, then also very slightly 

decreased at 75 days after transplanting. 

 

Furthermore, the activity of POD enzyme was 

influenced by deficit irrigation. Increasing deficit 

irrigation caused a significant increase in activity of 

POD enzyme. The increment of activity was increased 

with increase in the severity of deficit.  

 

The highest activity of peroxidise enzyme was 

163.96% followed by 111.69% and 59.10% for T4, T3 

and T2, respectively, at 60 days after transplanting as 

compared with the control. 
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Fig. 5. Effect of deficit irrigation on peroxidase (POD) activity of leaves during different times (days after 

transplanting) of hot pepper. [T1, 100% of water holding capacity; T2, 85% of water holding capacity; T3, 70% of 

water holding capacity; T4, 55% of water holding capacity]. Lines in figure that are denoted with the same letter 

in each group separately are not significantly different. The values are means ± SD (n= 5). 

Malondialdehyde (MDA) contents 

Data presented in Fig. 6 clear that malondialdehyde 

contents showed a similar trend to POD activity from 

15 until 60 days after transplanting. After that, the 

malondialdehyde contents showed an opposite trend 

to POD activity. Also the Data clear that under full 

irrigation treatment (T1), the MDA contents started to 

slightly increase at 15 days after transplanting and 

continued to increase to maximum contents at 75 

days after transplanting. However, under deficit 

irrigation treatments, the MDA contents slightly 

increased at 15 until 45 days after transplanting then 

tended to rapidly increase till 60 days after 

transplanting, then continued to slightly increase till 

reached to highest contents at 75 days after 

transplanting. 

 

Likewise, malondialdehyde (MDA) contents 

significantly affected by deficit irrigation treatments. 

Deficit irrigation treatments led to a significant 

increase in malondialdehyde (MDA) contents as 

compared with the control.  

 

The increment in malondialdehyde  (MDA) contents 

was increased with increase in the intensity of deficit. 

The maximum content of MDA was 38.65% followed 

by 75.22% and 120.85% for T4, T3 and T2, 

respectively, at 75 days after transplanting. 

Meanwhile, the maximum content of MDA was 

126.40% followed by 82.71% and 33.29% for T4, T3 

and T2, respectively, at 60 days after transplanting 

relative with the control. 

 

Root activity 

The effect of deficit irrigation treatments on root 

activity of pepper plant presented in Fig. 7 The data 

show that, root activity was affected by deficit 

irrigation. Increasing deficit irrigation caused a 

significant increase in root activity as compared with 

the non-deficit. The increment in root activity was 

increased with increased in the severity of deficit.  

The maximum activity of root was 126.70% followed 

by 86.87% and 47.22% for T4, T3 and T2, 

respectively, as compared with the control.  

 

Discussion  

Physiological parameters 

Water deficit is considered as a disturbing factor in 

plant physiology affects growth parameters and the 

quality. The results of this study showed that deficit 
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irrigation had a considerable effect on physiological 

parameters. As a result of increased deficit irrigation, 

chlorophyll content was reduced. This reduction 

could be attributed to an increase of production of 

free oxygen radicals in the cell. These free radicals 

cause peroxidation and disintegration and by 

reduction of chlorophyll, considerable changes are 

produced in the plants (Schutz and Fangmir, 2001).

 

Fig. 6. Effect of deficit irrigation on malondialdehyde (MDA) contents of leaves during different times (days after 

transplanting) of hot pepper. [T1, 100% of water holding capacity; T2, 85% of water holding capacity; T3, 70% of 

water holding capacity; T4, 55% of water holding capacity]. Lines in figure that are denoted with the same letter 

in each group separately are not significantly different. The values are means ± SD (n =3). 

Furthermore, the reduction in chlorophyll content 

can be attributed to of the sensitivity of this pigment 

to increasing environmental stresses, especially water 

deficit, which has been reported by several 

researchers (Moran et al., 1994; Younis et al., 2000; 

Mekliche et al., 2003). Our results are also in 

agreement with the findings of (Sayyari and 

Ghanbari, 2012) who found that by increasing 

drought stress, content of chlorophyll in leaf of hot 

pepper was reduced. Similarly, many researchers 

such as (Zhang et al., 2007; Li et al., 2008; Sikuku et 

al., 2010; Bettaieb et al., 2011; Ebrahimian and 

Bybordi, 2012) all those have found reduction in 

chlorophyll content of leaf as a result of water deficit. 

Our experiment identified a positive relationship 

between net photosynthetic rate and chlorophyll 

content. As a result of increased deficit irrigation 

caused a reduction in net photosynthetic rate. A 

decrease of the photosynthesis rate under water 

deficit condition can be attributed to both stomatal 

and non-stomatal limitations (Shangguan et al., 

1999). Non-stomatal photosynthesis limitation has 

been attributed to the reduced carboxylation 

efficiency (Jia and Gary, 2004), reduce ribulose-1,5-

bisphospate (RuBP) regeneration, reduced amount of 

functional Rubisco (Kanechi et al., 1995), or to the 

inhibited functional activity of photosystemII  (PSII). 

Similar results were obtained by (Guang-cheng et al., 

2011) who observed that water deficit reduced 

photosynthetic rate of pepper leaves as compared 

with the control. (Jaleel et al., 2008 a) who 

demonstrated that a significant reduction in the 

photosynthetic pigment contents in both varieties of 

Catharanthus roseus due to water deficit. Similar 

results obtained by (Kauser et al., 2006) and (Zhang 

et al., 2007).  

 

Moreover, we observed the maximum values of 

chlorophyll content and net photosynthetic rate were 

obtained at 30 and 40 days after transplanting 
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respectively, for all irrigation treatments and the 

different between these values at 30 and 40 days after 

transplanting were small, this indicated that this 

period from 30 and 40 days after transplanting is 

considered critical period of irrigation. Activation of 

antioxidant system helps the plants to stress induced 

damages (Noctor et al., 2000).   

 

Biochemical parameters 

In this study a negative correlation between 

physiological and biochemical parameters was 

observed. The activity of SOD enzyme increased with 

increasing deficit irrigation. This increase could be 

suggested as an adaptive mechanism to scavenge O2− 

free radicals converting them into H2O2 and offer 

protection against oxidative damage. The activities of 

POD and CAT enzymes also increased with increasing 

deficit irrigation. This increment might be suggested 

as an adaptive mechanism to reduce the H2O2 and 

offer protection against oxidative damage.  

 

The period for high activity of SOD and CAT enzymes 

was 30 and 45 days after transplanting while for POD 

activity was 45 and 60 days after transplanting this 

indicated that POD enzyme continued to scavenge 

H2O2.  On the other hand, MDA contents increased 

with increasing deficit irrigation but this increment 

was slightly a corresponding with high activity of 

antioxidant enzymes. In period from 30 to 45 days 

after transplanting MDA had a lower values, this has 

been confirmed by higher activities of antioxidant 

enzymes. 

 

Fig.  7.  Effect of deficit irrigation on root activity of hot pepper. [T1, 100% of water holding capacity; T2, 85% of 

water holding capacity; T3, 70% of water holding capacity; T4, 55% of water holding capacity]. Columns in figure 

that are headed with the different letter are significantly different. The values are means ± SD (n= 3). 

The activity of all antioxidants increased at start of 

water deficit  but decreased with progression of stress 

indicating that prolonged drought may result in 

decrease in antioxidant activities (Sairam and 

Srivastava, 2001; Feng et al., 2004; Simova-Stoilova 

et al., 2008). With increase in severity and duration 

of stress, synthesis of active and reactive oxygen 

species possibly exceeded the capacity of the enzyme 

protective system, and resulted in an extensive 

membrane lipid peroxidation and the decrease of the 

protective enzyme activities (Chen and Zhang, 2000). 

This could be an explanation for the reduction in the 

activity of antioxidant enzymes with a corresponding 

increase in MDA content with progression of water 

deficit. Our results are in agreement with those 

obtained by (Anjum et al., 2012) who demonstrated 

that, the progression in drought enhanced the 

activities of catalase (CAT), peroxidase (POD) and 
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superoxide dismutase (SOD) as well as MDA contents 

in leaves of hot pepper initially, which were then 

decreased with increasing in MDA contents. 

Pourtaghi et al. (2011) who noticed that water deficit, 

significantly increased the activity of antioxidant 

enzymes in leaves of sunflower such as Superoxide 

dismutase (SOD) and Catalase (CAT) compared to full 

irrigation. Ge et al. (2006) who found that, under 

water stress the activities of protective enzymes 

including superoxide dismutase (SOD), catalase 

(CAT) and peroxidase (POD) in leaves of maize were 

increased sharply at prophase and metaphase growth 

stages, but then declined towards the physiological 

maturity.  

 

The content of malondialdehyde (MDA) increased 

according to the severity of water stress.  Our results 

established that, root activity was increased with 

increased in the severity of deficit.  

 

This increment in root activity may be an adaptive 

mechanism to severe water stress, which could 

facilitate drought resistance by maintaining active 

respiration processes (Huang et al., 1997). 

 

Finally, we observed there was an opposite 

relationship between physiological and biochemical 

parameters of hot pepper cultivar Battle under deficit 

irrigation. The period from 30 to 45 days after 

transplanting is considered critical period of 

irrigation this cultivar under our condition. 
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