
    Int. J. Biomol. Biomed. 

 

 Justine Kitony 

 

1 

 

  

RESEARCH PAPER                                                                                            OPEN ACCESS 
 

Micro RNA genes and their likely influence in rice (Oryza sativa L.) 

dynamic traits through evolution 

 

Justine Kitony* 

 

Kenya Agricultural and Livestock Research Organization (KALRO), Mwea, Kenya 

 

Key words: Evolution, Gene regulation, Biogenesis, Micro RNA (miRNA). 

Article Published: 17 November  2016 
Abstract 
 
Micro RNAs (miRNAs) are small non-coding RNAs molecules having approximately 18-25 nucleotides, they are 

present in both plants and animals genomes. MiRNAs have diverse spatial expression patterns and regulate 

various developmental metabolisms, stress responses and other physiological processes. The dynamic gene 

expression playing major roles in phenotypic differences in organisms are believed to be controlled by miRNAs. 

Mutations in regions of regulatory factors, such as miRNA genes or transcription factors (TF) necessitated by 

dynamic environmental factors or pathogen infections, have tremendous effects on structure and expression of 

genes. The resultant novel gene products presents potential explanations for constant evolving desirable traits 

that have long been bred using conventional means, biotechnology or genetic engineering. Rice grain quality, 

yield, disease tolerance, climate-resilience and palatability properties are not exceptional to miRN Asmutations 

effects. There are new insights courtesy of high-throughput sequencing and improved proteomic techniques that 

organisms’ complexity and adaptations are highly contributed by miRNAs containing regulatory networks. This 

article aims to expound on how rice miRNAs could be driving evolution of traits and highlight the latest miRNA 

research progress. Moreover, the review accentuates miRNAs grey areas to be addressed and gives 

recommendations for further studies. 
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Introduction 

Rice has two main classes of small RNAs: microRNAs 

(miRNAs) and small interfering RNAs (siRNAs). 

MiRNAs are derived from endogenous single stranded 

transcripts that fold back to themselves, contrary to 

siRNAs which originate from longer exogenous double-

stranded RNA taken by cell from vectors like virus (Guo 

et al., 2015; Martinez de Alba et al., 2013). However, 

both small RNAs are involved in epigenetics using RNA-

induced transcriptional silencing (RITS) as well as key 

players in RNA interference (RNAi) process which is 

important for plant cell survival under various stresses 

(Deng et al., 2015;Younis et al., 2014). Typically miRNAs 

associate with mRNA via complementary base pairing 

to influence stability of mRNA. MiRNAs achieve these 

key regulatory functions by coupling with Argonaute 

(AGO) proteins to form a unit that degrade target 

messenger RNA (mRNA). Although degradation is the 

main mode of miRNA operations to attain regulatory 

functions, regulation can also achieved through mRNA 

translation repression or direct DNA methylation 

(Jones-Rhoades, 2006; Sun, 2012).  

 

In recent years, rice miRNAs have been catalogued to 

be involved inpanicle branching, increased yield, 

improved grain quality, early flowering, immunity to 

diseases, among other important traits at post-

transcriptional level (Baldrich and San Segundo, 

2016; Chen et al., 2013; Miura et al., 2010; Wang et 

al., 2012; Zhang et al., 2013). Altering miRNAs 

activities leads to direct physiological variations in 

plants where they act as ubiquitous regulators in the 

genes expression. The latest version of important 

miRNA database - miRBase 21 (Released on June, 

2014) stores 28645 entries representing hairpin 

precursor miRNAs, in which 592 precursors and 713 

mature miRNAs are from rice (Oryza Sativa L.). 

Studies of miRN As has greatly advanced since it was 

first documented in Caenorhabditiselegans (Lee et al., 

1993; Reinhart et al., 2000). The adoption of high 

throughput sequencing for genome discovery and 

analysis has identified plethora of miRNAs in plants. 

However, few miRNAs are fully characterized (Wang 

et al., 2004). 

Moreover, there is limited information about rice 

miRNAs despite clear demonstrations that they play 

crucial roles in improving rice agronomic traits 

(Macovei et al., 2012). Present review gives an update 

of rice miRNAs.  

 

Rice productivity mainly depends on genome 

stability, due to its sessile nature, several external 

factors (UV light, drought, heavy metals and pathogen 

infections) influences rice genome stability. Different 

visible traits in rice varieties are essentially caused by 

gene expression variation rather than gene products 

structure changes. MiRNA-mediated gene expression 

regulations have largely been employed to withstand 

dynamic external changes. These adaptation 

mechanisms are greatly achieved through constant 

evolution with gain or loss of miRNA binding sites 

caused by nucleotide mutations. Plants miRNAs have 

been characterized to evolve through target genes 

inverted duplications, random formations or via 

modification of existing miRNAs (Allen et al., 2004; 

Felippes et al., 2008; Guo et al., 2008). Nevertheless, 

plants miRNAs are generally conserved with the novel 

miRNAs expunged in a short evolutionary period 

because it’s deleterious nature (Cuperus et al., 2011). 

 

Biogenesis of miRNAs 

miRNA biogenesis is a diverse complex process 

accompanied with many regulatory proteins and 

enzymes in a series of steps (Wen-wen et al., 2014). 

In summary, the processes begin with miRNA gene 

being transcribed into a primary miRNA (pri-miRNA) 

controlled by Polymerase II enzymes (Lee, 2004; 

Wang et al., 2013).  

 

Thereafter, dicer-like1–serrate–hyponastic leaves 1 

(DCL1-SE-HYL1) microprocessor complex 

(Baranauske et al., 2015) processes pri-miRNA to a 

stem loop intermediate called pre-miRNA containing 

miRNA/miRNA* duplex because of their self-

complementary foldback structure. Consequently, 

HYL1, a double-stranded RNA binding protein, help 

in the metabolism stability (Han et al., 2004).  
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Henceforth, the miRNA/miRNA* duplex is cleaved 

into approximately 21nt miRNA at nucleus by DCL1 

(Park et al., 2002) with few exceptions from miRNAs 

which require other DCL family members for 

biogenesis: DCL2 generates 22nt, DCL3 generates 

24nt and DCL4 generates 21nt miRNA (Deleris et al., 

2006; Rogers and Chen, 2013) thereafter miRNA is 

exported by HASTY/nuclear pore exports to 

cytoplasm (Wu et al., 2010). As showed in Fig. 1. 

double-stranded miRNA is loaded into RNA-induced 

silencing complex (RISC), subsequently the miRNA 

duplex unwinds facilitated by helicase-like enzyme 

before mature miRNA guide strand is selected, strand 

with lower thermodynamic relative to miRNA* and 

enhanced by the already associating RNA binding 

proteins is preferentially selected (Eamens et al., 

2009) while the opposite (passenger) strand is 

removed due to conformational changes at AGO1 

complex influenced by dissociation of Heat Shock 

Protein(HSP90) and SQUINT (SQN). Immediately 

after interacting with all necessary components RISC 

complex guided by miRNA direct mRNA activity 

(gene silencing) (Bartel, 2004; Iki et al., 2010; 

Schwarz, 2003). 

 

Fig. 1. Biogenesis of plants miRNA. 

 

Plants miRNA biogenesis however have additional step 

compared to animal miRNA biogenesis. The 

miRNA/miRNA* duplexes are 2’-O-methylated on the 

ribose of the last nucleotide by miRN Amethyl 

transferase HEN1, which protect the 3’ end from 

uridylation and degradation (Li et al., 2005).  

 

It’s worth noting that for rapid change of expression 

profiles, exoribonucleases encoded by Small RNA 

Degrading Nuclease (SDN1) enzyme known for 

degradation is necessary for mature miRNA turnover.  

To recap biogenesis process, mature miRNA guide 

strand, often the strand with weaker 5` terminus, is 

retained in RISC complex where it associates with 

argonaute protein and other proteins complexes to 

mediate activity of target mRNA (Rajagopalan et al., 

2006). The opposite miRNA strand also known as 

passenger strand is degraded or loaded into another 

RISC in non-canonical miRNA pathways (Eamens et 

al., 2012; Ramachandran and Chen, 2008; Wen-wen 

et al., 2014). 
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miRNAs mechanisms of action 

Although the specific AGO proteins to be associated, 

location and action to be taken remains unclear, 

plants miRNA generally interact with DCL and AGO 

proteins to form effector complexes. The associated 

proteins in RISC complex guided by miRNA target 

mRNA or chromatin which is highly complementary in 

transcripts sequence thus destabilizing through slicing, 

translational repression or chromatin modification 

mostly at posttranscriptional level. (Eamens et al., 2008; 

Wu et al., 2009). Notwithstanding that, miRNAs can 

also silence at transcriptional level via DNA methylation 

demonstrated by rice DCL3-dependent 24nt miRNA 

which is loaded into AGO4 and direct methylation at the 

nucleus (Wu et al., 2010). 

 

AGO1 deems sufficient for miRNA mediating 

degradation in plants (Baumberger and Baulcombe, 

2005). AGO1 activity vastly depends on SQUINT 

(SQN) which encodes orthologue of Cyclophilin 40 

(Cyp40) and Heat Shock Protein 90 (HSP90) (Smith 

et al., 2009). Rice (Oryza Sativa L.) plant has four 

AGO1 homologs (AGO1a, AGO1b, AGO1c and AGO1d) 

(Carbonell et al., 2012). Whilst, AGO2 associates with 

mir408 for defense actions against pathogen 

(Maunoury, 2011), AGO7 interacts with miR390 to 

regulate cellular signaling (Endo et al., 2013), AGO10 

involves recruiting mir165/mir166 to regulate 

development (Zhou et al., 2015). Interestingly, the 

diverse AGO proteins family cross talk initiating 

alternative RNA-mediated defenses. For example, 

mir403 disassociated with AGO1 to activate defense 

pathway mediated by AGO2 thus countering viral 

suppression (Harvey. et al., 2011). 

 

It is elucidated that miRNAs in animals, which are 

partially complementary to the target mRNA can also 

accelerate deadenylation hence rapid mRNAs 

degradation (Eulalio et al., 2009). High slicing activity 

and redundancy within deadenylase families in plants 

makes it difficult to experimentally ascertain slicing-

independent target deadenylation (Wang et al., 2013). 

However, accumulation of cleavage products in most 

miRNA targets symbolizes some sort of slicing 

independent destabilization (German et al., 2008). 

Translational inhibition in plants can also be achieved 

when miRNA are in perfect complementation with 

targets unlike in animals where it is often associated 

with limited miRNA/target complementation (Zeng et 

al., 2003). Overexpressed miR172 in Arabidopsis 

mutants demonstrated hindered proteins levels but 

not mRNAs, this event corroborates that translation 

inhibition occurred rather than cleavage (Aukerman 

and Sakai, 2003; Dugas and Bartel, 2008). 

 

Roles of miRNAs 

Breeding elite rice is a global objective to sustain human 

population which its growth has outpaced rice 

production (3K RGP, 2014). The proposal of designing 

ideal plant architecture (IPA) was bold move by rice 

scientists aimed at enhancing yield through point 

mutations of regulatory factors. Altering activity of 

Osmir156 which target SOUAMOSA PROMOTER 

BINDING PROTEIN-LIKE 14 (OsSPL14) displayed rice 

with increased yield, good quality and stress tolerance 

(Jiao et al., 2010; Miura et al., 2010).  

 

The responses to dynamic environment prompting 

appropriate traits and survival strategies by cells is 

believed to be guided by miRNAs (Xiu-JieWang, 

2004). Regulatory roles in biological processes under 

influence of miRNA is highly conserved in plants, this 

is evidenced by the fact that most miRNA families are 

species specific (Kamanu et al., 2013). 

 

Multiple miRNA have also been manifested to play 

integral role in rice immunity against rice blast, a fungal 

disease caused by Magnapor the Oryza. The counter 

measures employed by rice against fungus infection is 

effected at Pathogen-associated molecular patterns 

triggered immunity (PTI) (Li et al., 2010) and effector 

triggered immunity (ETI) levels (Mentlak et al., 2012). 

Basal responses in PTI showed mir398b mediating 

regulation of multiple genes: Os03g22810 encoding 

Superoxide Dismutase (SOD), Os07g46990 encoding 

SOD2 and Os04g48410 encoding copper chaperone for 

SOD displaying reduced fungal growth and increased 

hydrogen peroxide at the infection site. When pathogens 

successfully delivered effectors to suppress responses at 

PTI, alternative rice defense mechanism was recorded to 

be activated. (Li et al., 2014). 

  



    Int. J. Biomol. Biomed. 

 

 Justine Kitony 

 

5 

 

Apart from basal regulations, rice miRNA also act as 

positive regulator. Expressions of mir160a displayed 

up-regulation only in resistant rice lines, the target 

Os04g43910 gene encoding Auxin Response Factor 16 

(ARF16) showed decreased expression. This indicates 

positive regulation of immunity against pathogen 

through suppression of indole-3-acetic acid (IAA) 

pathways (Li et al., 2014). 

 

Moreover, miRNAs have been demonstrated to be 

involved in stabilizing or destabilizing gene expressions 

depending on the mRNA effects (Xie et al., 2007) It is 

vividly clear from the first 20 experimentally discovered 

rice miRNAs to the novel miRNA that they play crucial 

role in development and abiotic stress mitigation 

therefore influencing growth (Jia-Fu Wang, 2004; 

Sunkar et al., 2008; Xie et al., 2006). 

 

Further Research using model plant (Arabidopsis 

thaliana), verified that miRNA is controlling gene 

regulation systems via the target genes. For this reason, 

there is often positive correlation between miRNA 

regions and target genes sequence. (Carrington and 

Ambros, 2003; Takuno and Innan, 2008). When 

Arabidopsis thaliana was subjected to abiotic stresses, 

miRNAs among them; miR168, miR171, and miR396 

responded to the high-salinity, drought, and low 

temperature stresses, showing great sense of cross-talk 

in the signaling pathways (Liu et al., 2008).  

 

Most miRNA in plants mediate gene silencing of the 

target mRNA by base pairing in almost perfect 

manner hindering translation rather than slicing, 

miR-172 elucidated this phenomenon in Arabidopsis: 

base pairing complementarity with APETALA 2 (AP2) 

located in the coding region instead of the 3′ UTR 

therefore controlling cell-fate specification in flower 

development (Chen, 2004) By the same token, 

miRNA 39 was involved in root development and 

hormone signaling, cleaving mRNA targets which 

encoded Scarecrow-like (SCL) family (Llave, 2002). 

 

Importantly, expression patterns of miRNAs support 

their roles not only in development but also in response 

to biotic/abiotic stresses.  

When plants were subjected to drought stress, 

phytohormoneabscisic acid (ABA) worked contentiously 

with phytohormone auxin generally regulated by 

miR393 enhancing lateral root growth, transcripts 

encoding two auxin receptors, TIR1 and AFB2 were 

cleaved by the miRNA (Chen et al., 2012; He and Li, 

2008). 

 

To sum up, predictions of miRNA targets (BOX 1) have 

revealed many regulatory pathways that might be 

mediated by miRNA (He and Hannon, 2004) indeed 

miRNA are involved in almost all biological process 

directly or by feedback regulation of miRNA products.  

 

Evolution of miRNAs 

Advances in high throughput sequencing, have brought 

new insights into how the evolution of miRNA-

containing regulatory networks contributed to species 

complexity. Although, plants miRNAs are under 

purifying selection, computational sequence analysis 

on regions outside miRNA/miRNA* duplex of ath-

miR161, ath-miR163 and ath-miR822 showed some 

correlation with the evolved target sequences. The 

miRNA sequences were aligned in inverted form to 

target genes, asserting that inverted duplications was 

probably the cause of the new miRNAs genes (Allen et 

al., 2004; Ehrenreich and Purugganan, 2008). 

 

Mutations in miRNA-related regions, basically 

initiated different phenotypes observed in plants, 

altering biological functions thus enhancing genome 

evolution. It is therefore likely that mutations in the 

inverted regions could be speed up formation of new 

miRNAsgenes (Cuperus et al., 2011; Sun et al., 2009). 

 

In the quest to find out whether miRNAs have 

evolved during domestication of rice, it was found 

that some miRNA genes evolve rapidly most likely 

due to strong negative selection (Liu, 2013). osa-

smR5864w gene in rice showed that, a single C-to-G 

point mutation was the cause of pollen fertility or 

sterility (Zhou et al., 2012).  

 

During evolution, newly formed miRNAs get 

expressed weakly therefore face negative selective 

pressures to evolve rapidly compared to conserved 

miRNAs. 
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Interestingly, approximately one third of miRNAs 

likely increase the processing of pre-miRNAs into 

mature miRNAs, due to polymorphisms at miRNA 

stem region hence enhancing the stability of hairpin 

structures (Liu, 2013). 

 

The evolution of miR395 gene families in both 

Arabidopsis Thaliana and Oryza Sativa plants 

demonstrated the homology that exist in miRNA gene 

members, which came as a result of gene duplications 

events at different time scales during evolution. The 

evolution of plants miRNA gene was similar to 

protein-coding genes, plants have smaller number of 

unique miRNA sequences but larger miRNA families 

(Li and Mao, 2007). .  

 

To put miRNA family evolution into perspective, rice 

miR395 displayed 24 genes transcribed as a single 

transcript from the four compact clusters. Apparently, 

the variation of genomic organizations of miR395 

gene families, and other miRNA gene families 

generated different regulatory profiles in plants (Li 

and Mao, 2007). 

 

Lastly, transposable elements could also be speeding 

up miRNA genes evolution, along with rapid genetic 

recombination at the origin of gene structures. In the 

case of long terminal repeat retro transposons (LTR-

RT), research elucidated that when subjected to 

mutation, LTR-RT formed miRNA-like hairpins that 

eventually became miRNA genes that led genome 

evolution dormancy (Zhou et al., 2013). 

 

MiRNA-target evolution 

In order to understand miRNA target evolution, 

analysis of evolution of miRNA binding sites is 

necessary. Plants have highly conserved miRNA 

binding sites and strong evolutionary selection, 

miR397 for example was hereditary retained in dicots 

to target L-ascorbate oxidase precursors (Jones-

Rhoades and Bartel, 2004). 

 

Using molecular evolution and population genetics to 

study miRNA target genes and binding site in rice 

genome, a study revealed that loss in activity of 

miR397 after the whole genome duplication (WGD) 

was due to mismatches in the likely miR397 binding 

site to Os01g62600 gene (Guo et al., 2008).  

During the co-evolution of miRNAs and target genes, 

nucleotide polymorphism played a crucial role in 

determining gain or loss of miRNA binding 

sites.(Berezikov, 2011) in order for a miRNA to be 

active, there should be insignificant nucleotides 

variation between miRNA and target binding sites: 

mir161 and mir163 genes of Arabidopsis thaliana 

demonstrated that inverted duplication activities 

coupled with expansion of target gene families which 

are adopted into miRNA biogenesis pathways greatly 

affected its evolution(Allen et al., 2004). 

 

Strategies for characterizing miRNAs 

MiRNA functional characterization can be achieved 

using genetic mutations, metabolism changes brought 

by mutations of miRNA have tendency to result in 

pleiotropic developmental defects, increased grain 

productivity among other important traits in plants (Jiao 

et al., 2010; Miura et al., 2010; Palatnik et al., 2003). 

Defects of miR-JAW gene activity which is homologous 

to CINCINNATA (CIN) gene (Nath, 2003) showed 

crinkly leaves, the uneven leaf curvature and shape was 

concluded to be caused by miRNA activity on several 

Teosinte branched1; Cycloidea; Proliferation cell factor1 

(TCP) genes which controlled leaf development in 

Arabidopsis (Palatnik et al., 2003).  

 

Tampering with Auxin homeostasis regulated by 

miRNA in Arabidopsis led to down regulation of 

auxin signals responsible for lateral root development 

(Eckardt, 2005; Guo et al., 2005). Overexpression is 

another strategy employed when profiling miRNAs, 

Overexpressed miR444a resulted in reduced tillers in 

rice (Guo et al., 2013).  

 

Moreover, subjecting the study plants to stresses 

like drought, salinity and hydrogen peroxide 

subsequently documenting miRNA differential 

expressions and physiological changes is 

indisputable way to characterize them; when rice 

was exposed to cadmium (Cd) stress various 

responses were observed, there was a single up-

regulated gene while 18 of the genes down-

regulated, miRNAs were concluded to play a major 

role in Cd tolerance (Ding et al., 2011).  
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Conclusions and recommendations 

This review highlights the recent miRNAs research 

findings. Until now, hundreds of plant miRNAs have 

been identified by next generation sequencing (NGS) 

and computational approaches. However, the omics of 

rice miRNAs still lags behind other plant research areas. 

The complex networks and relationships among 

transcription factors, miRNAs, miRNA targets and other 

regulatory components remain to be fully explored. 

 

Limited comparative data has been big hindrance to the 

establishment of birth and evolution of plants miRNAs. 

The alternative low depth cloning techniques used in 

profiling miRNAs is apparently biased to highly 

expressed regions. Vital questions raised on mechanisms 

of miRNA co-evolution with their targets are yet to be 

extensively answered (Luo et al., 2013).  

 

Although, there is tremendous amount of research 

being conducted in all the frontiers of coding and 

non-coding RNA molecules using point mutations, 

artificial miRNAs engineering or inhibition of miRNA 

activity by target mimicry (Debat and Ducasse, 2014) 

.We anticipate more research work to deliver and 

improve the precision of important agronomic traits 

like climate-resilience and high nutritional value 

which will go a long way in helping malnutrition in 

the world (Ye, 2000). 

 

Following cutting-edge innovations and technology 

improvements, intensive training of rice miRNAs 

scientists should be initiated for reliable utilizations of 

miRNAs as robust tool for enhancing rice productivity. 

Reported issues like accidental mRNA silencing because 

of sequence similarity (Qiu et al., 2005) or the 

controversial ingested plant mir168 that was purported 

to be regulating animal`s gene expression (Zhang et al., 

2012), should never occur again. 

 

Coherent functional annotation and documentation 

of many predicted plant miRNA should urgently be 

addressed, studies on specific actions between mRNA 

degradation and repression owed to be enhanced not 

to mention the localization of miRNAs activities in the 

cell. If miRNA antibodies will be easily available gene 

functional characterization can be confirmed 

effortlessly. 

Diligent use of gene conservation knowledge should 

also be observed keenly while doing miRNA research, 

this is necessary since studies have shown contrasting 

findings on similar miRNAs, there is likely a diverse 

outcomes between dicots and monocots plants innate 

immunity regulation as well as other biological 

processes(Li et al., 2014; Li et al., 2010).  

 

Never has miRNA research been more exciting with 

the extensive characterization of miRNA/targets in 

non-model plants using in-silico techniques coming 

up with promising results. MiRNA, siRNA and other 

non-coding RNAs based applications will definitely be 

of great use if optimized fully as gene resource factory 

for crop improvement. 

 

In order to achieve compressive understanding of the 

evolution of miRNA-mediated regulatory pathways 

under physiology and stresses, we anticipate many 

future studies focused in examining the molecular 

mechanisms and regulatory roles of miRNAs in stress 

tolerance and relationship to other biological 

processes.  
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