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Abstract 

An Attempt was carried out to evaluate seed germination performances of Baraka, Adlib and Nineveh lentil cultivars 

besides Local Vetch and Local Mungbean cultivar under (0, -0.5, -1 and -1.5 Mpa) osmotic potentials created by 

dissolving pure NaCl in distilled water. Gradual reductions in osmotic solutions resulted in gradual reduction in all 

detected parameters. Subsequently, -1.5Mpa revealed the highest reductions in terms of  final germination percentage 

(467.1%), germination rate (1710%), radical length (12829.4%) and  Plumule length ( infinity). It also aggravated the 

adverse effects by increasing the duration required for attaining the peak germination percentage (110.8%), as 

compared to that of distilled water. Treatments were categorized according to their adverse influence on performance 

of seed germinations as following: -1.5 Mpa> -1 Mpa> -0.5 Mpa> 0 Mpa. Mungbeans local cultivar seeds revealed the 

best germination performance, as compared to other pulse crops and their cultivars. Since this cultivar gave the 

highest germination rate (60.5 seedling.d-1), plumule length (33 mm). In addition to that it significantly reduced days 

required for peak germination (2.6) and days to emergence commencements (1.3). Therefore, cultivars can be 

grouped according to their positively performance as below: Mungbean> Adlib>Nineveh> Baraka> Common Vetch. 

Mungbeans seeds appeared to be the most potent under all tested osmotic potentials. This cultivar manifested the 

highest plumule lengths under distilled water (108 mm), -0.5 Mpa (21mm) and -1.5 Mpa (3mm). Moreover this 

cultivar exhibited, days required for first emergence at all osmotic potentials. 
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Introduction 

Salt tolerance mechanism mainly preponderance by 

means that capable to excludes Na+ from being in 

contact with functional enzymes to ensure enzyme 

inactivation. This task could be fulfilled by vast of 

gene expression, generate many enzymes responsible 

for transporting, sequestering and or secreting 

sodium ions throughout tissues. Glenn et al. (1999). 

Inge et al. (2009) postulated that modification of 

specific root Na+ transport processes might improve 

Na+ exclusion from the shoot and result, at least for 

some plants, in an increase in salinity tolerance. For 

example, initial influx of Na+ from the soil could be 

decreased in the outer cell layers of the root, or efflux 

of Na+ from these cells to the apoplast or soil solution 

could be increased. In the stele cells surrounding the 

vasculature, the loading of Na+ into the xylem vessels 

could be decreased or retrieval of Na+ from the 

transpiration stream increased. Accordingly, at the 

cellular level, Na+ transport processes need to be 

modified in opposite directions in the inner and 

outer parts of the root to minimize Na+ accumulation 

in the shoot. Consequently, plasma membrane Na+ 

transport processes in the root need to be altered in a 

cell type–specific manner. Omami (2005) stated that 

under high salt concentration, plants sequester more 

NaCl in the leaf tissue than normally occurs. 

Increases in NaCl within the leaf tissue then result in 

lower osmotic potentials and more negative water 

potentials. 

 

Under saline conditions, the osmotic adjustment, 

which occurs through the accumulation of inorganic 

compounds (mainly Na+ and Cl-) in plant, is less 

energy and carbon demanding than adjustment by 

organic solutes (Greenway and Munns, 1983). 

Maintenance of adequate levels of K+ is essential for 

plant survival in saline habitats. Potassium is the 

most prominent inorganic plant solute, and as such 

makes a major contribution to the low osmotic 

potential in the stele of the roots that is a prerequisite 

for turgor pressure driven solute transport in the 

xylem and the water balance of plants (Marschner, 

1995). 

 

Water stress is usually created from water 

conductance constraints namely high osmosity at the 

rizophere, root absorption barriers, vessel conduit 

capability and stomata behaviours. Omami (2005) 

reported that the reduction in root hydraulic 

conductance reduces the amount of water flow from 

the roots to the upper portion of the canopy, causing 

water stress in the leaf tissue. However, (Shalhevet 

and Hsiao, 1986) found that the growth rate under 

water stress was half as large as under salt stress in 

the leaf water potential range of interest. 

Nevertheless, the deleterious effects of salinity on 

plant growth are associated with (1) low osmotic 

potential of soil solution (water stress), (2) 

nutritional imbalance, (3) specific ion effect (salt 

stress), or (4) a combination of these factors 

(Marschner, 1995).  Sohan et al. (1999) revealed that 

osmotic effects of salt on plants are as a result of a 

lowering of the soil water potential due to increasing 

solute concentration in the root zone. Therefore, at 

very low soil water potentials, this condition 

interferes with plants ability to extract water from the 

soil and maintain turgour. Reduction of water uptake 

with salinity could be related to reductions in 

morphological and/or physiological parameters like 

leaf area, stomata density, and stomata closure 

(stomata conductance and transpiration). Since 

response to saline water varies greatly with species or 

cultivar (Bayuelo-Jiménez et al., 2003). 

 

Above 100 mM NaCl, the delay in the onset of 

germination was accompanied by reductions in the 

final germination percentage which decreased as the 

NaCl concentration increased. At NaCl 

concentrations of 200 mM and above, no 

germination was observed within 72 hrs of the start 

of imbibitions (Scorer et al., 1985). They    observed 
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that NaCl greatly reduced the germination response 

of the seeds to R. The decreased R sensitivity 

observed in NaCl stressed seeds compares the 

influence response curves obtained with seeds 

germinated in water, 50 and 100 mM NaCl. 

 

Germination tests were conducted under five osmotic 

potential levels (-0.45, -0.77, -1.03, -1.44 MPa, and 

Control) of PEG 6000 and NaCl. Germination 

percentage (%) at 4 and 8th days and also seedling 

growth traits such as root and shoot length (mm), dry 

root and shoot weight (mg), root: shoot length (R: S) 

ratio, and relative water content of shoot (RWC, %) 

were investigated in this study (Kaydan andYagmur, 

2008).Their results indicated that decreases in the 

osmotic potentials caused a reduction in germination 

percentage and seedling growth. Seed germination 

completed in all seed size under control solution and 

at -0.45 MPa of NaCl at the 8th day. Although, 

medium and small seeds had low germination 

percentage at the -0.77 MPa of NaCl, all large seeds 

germinated at the equivalent osmotic potential. 

However, subsequent low osmotic potentials of NaCl 

decreased germination percentage. Therefore, low 

germination percentage recorded at the highest NaCl 

concentration in all seed size. The objective of this 

investigation was to determine the germination 

performance of mungbeans, common vetch and three 

lentil cultivars under varying salt rates. 

 

        Materials and methods 

This investigation was fulfilled at the laboratory of 

Field Crops Department, College of Agriculture, 

Salahalddin University, Erbil, Kurdistan Region, 

Iraq. 

Factorial Randomized Complete Block Design was 

used in this experiment where factor (A) contained 

four osmotic potentials (0 Mpa (a1), -0.5 Mpa (a2), -1 

Mpa (a3, and -1.5 Mpa (a4). Whereas factor (B) was 

represented by Nineveh lentil cv. (b1), Adlib lentil cv. 

(b2), Baraka lentil cv. (b3), Local Common Vetch cv. 

(b4) and Local Mungbean cv. (b5). Subsequently, 20 

treatments were included in this investigation. Every 

treatment was replicated 4 times and one replicate 

contained 4 plastic disposable dishes each of 25 

seeds.   

 

NaCl solutions was detected by electrical conductivity 

device and osmotic potential of the prepared 

solutions were calculated from Ayers and Wescot 

(1985) equation (Osmotic potential = - o.36× ECe). 

25 seeds were laid uniformly over salt wetted 

Watmann filter paper and sealed by polyethylene 

sheets to avoid seed desiccations. Germinated seeds 

were daily counted. Duration required for peak 

germination (days), and days for emergence 

commencements were counted. Final germination 

percentage, germination energy percentage were 

calculated from dividing number of germinated seeds 

on total seeds and from yield of number of 

germinated seeds after three days from starting 

divided on the total seeds, respectively, (Ruan et al., 

2002). Germination rate: germination percentage 

ratio was calculated from dividing the Germination 

rate over germination percentage. Radical and 

plumule lengths (mm) were measured by mini roller. 

 

Germination rate (seedling.d-1) was calculated from 

the following formula (Carleton, 1968): SG = No. of 

grains emerged at first count / Days of first count + 

…+ No. of grains emerged at final count / days of 

final count. Mean germination time (days) was 

calculated from the equation below:  

(
N

nidi
MGR


 ); where ni= number of 

germinated seeds on day I, d= rank order of day i 

(number of days counted from the beginning of 

germinated), and N=total number of germinated 

seeds. Finally, data were analyzed by computer 

statistical program, using Duncan’s Multiple Range 

Test at α = 0.05 probability level. Finally permanent 
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slides were prepared with some modification to that 

reported by Berlyn and Mksche (1976).  

 

Results 

Influence of NaCl concentrations 

Germination of seeds under -1.5 Mpa (Table 1 and 

Fig. 1,a,b,c) profoundly inferior in all detected 

parameters, as compared to seeds germinating under 

distilled water (0Mpa) in terms of  final germination 

percentage (467.1%), mean germination time (143%), 

germination energy (9300%), germination rate 

(1710%), ratio of germination rate to germination 

percentage (58.22%), radical length (12829.4%) and  

Plumule length (infinity). It also aggravated the 

adverse effects by increasing the duration required 

for attaining the peak germination percentage 

(110.8%), days required for first emergence (211.1%). 

When this treatment was compared with that of -

0.5Mpa it also revealed substantially lower values in 

final germination percentage (438.5%), mean 

germination time (74.5%), germination energy 

(7925%), germination rate (1359.9%), ratio of 

germination rate: germination percentage (32%), 

radical length (1870.59%) and  Plumule length 

(infinity). Additionally, this treatment revealed 

profound efficacies in increasing the period required 

for peak germination (60.8%) and days for first 

emergence (211%).  

 

Table 1. Seed germination and seedling performances of Nineveh, Adlib, and Baraka lentil cultivars, Common 

Vetch and Mungbean in response to four osmotic potentials using NaCl Concentrations. 

Treatments Final 
Germination % 

Mean Germination 
Time (days) 

Germination 
Energy (%) 

Germination Rate 
(seedling/day) 

Days for Peak 
Germination 

Osmotic 
Potential 

0  Mpa 99.25a 1.665a 94.00a 56.40a 3.700d 

-0.5 Mpa 94.25b 1.195b 80.25b 45.478b 4.850c 

-1.0 Mpa 78.25c 1.283b 27.15c 23.473c 6.750b 

-1.5 Mpa 17.5d 0.685c 1.000d 3.115d 7.800a 

Legume 
Crops 

N 72.188a 1.356a 49.5b 26.963b 6.938a 

A 74.375a 1.316a 51.313b 27.325b 6.25b 

B 72.188a 1.278a 47.5c 24.988c 6.188b 

Common 
Vetch 

69.688b 1.078b 35.0d 20.844d 6.938a 

Mungbean 73.125a 1.047b 69.688a 60.463a 2.563c 

0  Mpa N 97.5a 1.938a 93.75bc 47.425c 4.75d 

A 100.0a 1.438b 83.75de 38.6de 4.0de 

B 98.75a 1.025def 100.0a 100.0a 2.0f 

Common 
Vetch 

100a 1.563b 87.5d 38.1de 7.5b 

Mungbean 100a 1.325bcd 92.5c 36.725e 4.0de 

-0.5 
Mpa 

N 97.5a 1.063cf 80.0e 31.175f 4.75d 

A 92.5b 0.987f 41.25g 27.225g 6.0c 

B 88.75bc 1.088cf 100.0a 94.165b 2.0f 

Common 
Vetch 

92.5b 1.35bc 16.75b 21.025h 7.5b 

Mungbean 100 a 1.363bc 15.25h 21.275h 8.0b 

-1.0 Mpa N 83.75d 1.263be 15.0h 19.575h 7.75b 

A 86.25cd 0.975ef 15.0h 13.80i 8.5ab 

B 83.75 d 1.463b 73.75f 41.688d 2.0f 
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Common 
Vetch 

62.5f 0.575g 0.0j 1.30k 8.0b 

Mungbean 75e 0.625g 0.0j 2.375jk 9.5a 

-1.5 Mpa N 10i 0.65g 0.0j 2.15k 8.0b 

A 18.75h 0.963ef 0.0j 3.75jk 9.25a 

B 17.5h 0.613g 5.0i 6.0j 4.25de 

Common 
Vetch 

23.75g 0.963ef 0.0j 3.75jk 9.25a 

Mungbean 17.5h 0.613g 5.0i 6.0j 4.25de 

Treatments Days for First  
Emergence 

Germination Rate: 
Germination % Ratio 

Radical Length 
(mm) 

Plumule Length (mm) 

Os
mo
tic 
Pot
ent
ial 

0  Mpa 1.80c 0.568a 109.9a 62.35a 

-0.5 Mpa 1.80c 0.474b 16.75b 10.0b 

-1.0 Mpa 2.6b 0.31d 2.35c 1.9c 

-1.5 Mpa 5.6a 0.359c 0.85b 0.00d 

Leg
um
e 

Cro
ps 

N 3.5a 0.311c 34.656b 15.875bc 

A 3.375ab 0.315c 36.625a 17.219b 

B 3.25b 0.313c 34.531b 14.656c 

Common Vetch 3.313b 0.49b 26.563d 12.063d 

Mungbean 1.313c 0.718a 30.0c 33.0a 

0  
Mp

a 

N 2.0e 0.485e 117.5b 52.5c 

A 2.0e 0.49e 121.25a 57.5b 

B 2.0e 0.475e 113.75c 51.25c 

Common Vetch 2.0e 0.388fg 88.75d 42.5d 

Mungbean 1.0f 1.0a 108.5d 108a 

-
0.5 
Mp

a 

N 2.0e 0.378fg 18.0g 10.0f 

A 2.0e 0.398f 21.25f 9.75f 

B 2.0e 0.355g 20.0fg 5.5g 

Common Vetch 2.0e 0.295h 13h 3.75gh 

Mungbean 1.0f 0.945c 11.5h 21.0e 

-
1.0 
Mp

a 

N 3.0d 0.253i 2.625ij 1.0hi 

A 3.0d 0.245i 3.0i 1.625hi 

B 3.0d 0.26hi 2.875ij 1.875hi 

Common Vetch 3.0d 0.22i 3.25i 2.0hi 

Mungbean 1.0f 0.573d 1.0k 3.0ghi 

-1.5 
Mp

a 

N 7.0a 0.13j 0.5k 0.0i 

A 6.5b 0.127j 1.0ijk 0.0i 

B 6.0c 0.123j 1.5ijk 0.0i 

Common Vetch 6.25bc 1.085a 1.25ijk 0.0i 

Mungbean 2.25e 0.355g 0.0k 0.0i 
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Table 2. Regression analysis results for the responses of germination performance to varying osmotic potential 

levels. 

Character Regression equation  (R2) 

Final Germination Percentage (%) Y = 99.25 - 21 X + 45.5 X2 - 45 X3 96.7 
Mean Germination Time (days)) Y = 1.665 -2.326 X + 3.600 X2 - 1.657 X3 58.1 
Germination Energy (%) Y= 94 + 56.05 - 211.3 X2 + 88.400 X3 84.9 
Germination Rate (seedling/day) Y= 59.396 – 36.372 X 57.2 
Days for Peak Germination Y = 3.645 + 2.840 X 39.7 
Days for First  Emergence Y= 1.120 + 2.440 X 54 
Germ. Rate:Germination Percentage Ratio Y = 0.546 – 0.158 X 10.6 
RadicalLength (mm) Y = 106.655 – 205.89 X 95.5 
Plumule Length (mm) Y = 62.35 – 174.317 + 164.6 X2 – 50.733 X3 81.5 

 

This treatment was followed by -1Mpa in sequence 

order, since the latter treatment significantly reduced 

the final germination percentage (26.8%), mean 

germination duration (29.8%), germination energy 

(246.2%), germination rate (140.3%), germination 

rate : germination percentage ratio (83.2%), radical 

length (4576.6%), and plumule length (3181.6%). 

This treatment also took similar trends in increasing 

the duration required for peak germination (82.4%) 

and days for first emergence (44.4%), as compared to 

treatment of distilled water media. The compression 

between –1Mpa to that of -0.5Mpa in term of final 

germination percentage (20.4%), mean germination 

duration (7.4%), germination energy (195.6%), 

germination rate (93.7%), germination rate: 

germination percentage ratio (52.9%), radical length 

(612.8%), and plumule length (426.3%). It highly 

increased the time required for peak germination 

(39.2%), days required for first emergence (44.44%). 

 

Performance of seed germinations in -0.5Mpa 

manifested substantial reduction in relation to 

germinations performed under 0 Mpa in the final 

germination percentage (39.3%), germination energy 

(17.1%), germination rates (24%), germination rate: 

germination percentage ratio (19.8%), radical length 

(556.1%), and plumule length 523.5%). Moreover, it 

extended the period required for peak germination 

(31.1%). Subsequently, the best seed germination 

performance was obtained from seeds germinated in 

distilled water. These results suggested that 

germination of legume seeds under solutions higher 

than -0.5Mpa are not recommended owing to the risk 

of poor germination and low radical growth.  

Fig. 1. Nature of germination and seedling 

performances of Mungbean in response to four 

osmotic potentials using NaCl concentrations. 

 

Very close results were found by (Abdel, 1989). He 

germinated onion seeds in NaCl solutions at rates of 

0, -5, -10 and -15 bars. Time required to first 

emergence, time to peak germinations, peak 

germination percentage, final seed germination, 

percentage of survived seeds after salt washing from 

un-germinated seeds revealed gradual substantial 

reduction confined with the gradual reductions in 

solute osmosity. These results were attributed to Na+ 

and Cl- toxic effects besides water imbibitions 

constraints. Fenugreek seeds germination capacity in 

varying NaCl solutions were highly reduced 

particularly under -1.5 MPa in compassion to 

distilled water check. Reductions were in terms of 

peak germination percentage (92%), and final 

 

0 Mpa 

 

 

-0.5 Mpa 

 

 

-1.0 Mpa 

 

 

-1.5 Mpa 
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germination percentage (94%). Salts influence on 

seed germination were attributed to the toxic effects 

of Na+ and Cl- preponderances in cellular membrane 

and cytosol by which enzymes are denaturized. 

Iyengar and Reddy (1996) found that salt toxicity 

caused particularly by Na+ and Cl- ions; and soil 

salinity represents an increasing threat to 

agricultural production. High sodium (Na+) 

concentrations in soils are toxic to higher plants. 

More than 40% of irrigated lands worldwide show 

increased salt levels (Horie and Schroeder, 2004). 

Fig. 2. Nature of germination and seedling 

performances of Common Vetch in response to four 

osmotic potentials using NaCl concentrations. 

 

Cultivar responses 

The obtained results (Table, 1 and Figure, 1, a,b,c) 

manifested that Mungbaen local cultivar seeds 

revealed the best germination performance, as 

compared to other pulse crops and their cultivars. 

Since this cultivar gave the highest germination 

energy (69.7%), germination rate (60.5seedling.d-1), 

germination rate: germination percentage ratio 

(0.72), and plumule length (33 mm). In addition to 

that it significantly reduced days required for peak 

germination (2.6) and days to emergence 

commencements (1.3). Adlib lentil cultivar came next 

to local Mungbean in the superiority order. This 

cultivar was preponderated in germination energy 

(51.3%), germination rate (27.3seedling.d-1), and 

plumule length (17.2 mm). Non- significant 

differences were observed between Adlib and 

Mungbean in final germination percentage, besides 

its overwhelming over all detected cultivars in radical 

length (36.5mm). The third cultivar in the sequence 

order was Nineveh cultivar which substantially 

exceeded Braka and Common Vetch in germination 

energy (4.2% and 41.4%, respectively) and 

germination rate (7.9% and 29.4%, respectively) and 

it highly exceeded Common Vetch in both radical 

length (30.5%) and plumule length (31.6%).  

 

Baraka Adlib Nineveh  

   

0 MP 

   

-0.5 MP 

   

-1.0 MP 

   

-1.5 MP 

Fig. 3. Nature of germination and seedling 

performances of three lentil cultivars in response to 

four osmotic potentials using NaCl concentrations. 

 

The fourth cultivar was Baraka as it showed 

superiority over Common Vetch in germination 

energy (35.7%) and (19.9%). Therefore, the worst 

cultivar was Common Vetch (Fig., 2 and 5). It 

revealed the lowest values in final germination 

 

-0 Mpa 

 

-0.5 Mpa 

 

-1.0 Mpa 
 

-1.5 Mpa 
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percentage (69.7%), germination energy (35%), 

germination rate (20.8seedling.d-1), radical length 

(26.6 mm) and plumule length (12.1mm). Cultivar 

differences in their capabilities of salt tolerance were 

well established. Unequivocal tolerance discrepancies 

among cultivars might be attributed to the individual 

cultivar genome expression ability, techniques that 

had been applied by producers and pollination 

contamination of mother plants in the field (Abdel, 

2006).  

 

Fig. 4. The influence of varying osmotic levels on 

root anatomy of three lentil cultivars , Cell 

destructions are obvious, particularly at higher NaCl 

rates. (Magnification 7X40). 

 

Varying responses between species were confirmed 

by Yousif et al. (2010). They examined the difference 

in the salt tolerance mechanisms between New 

Zealand spinach and water spinach (Ipomoea 

aquatica L.). Both plants were exposed to salt stress 

by daily irrigation with 0, 50, 100 and 200 mM NaCl 

solution for 14 days. They found that the growth of 

water spinach was markedly and gradually reduced 

with increasing salinity, whereas that of New Zealand 

spinach was increased with elevating salinity, 

indicating that New Zealand spinach is halophilic. 

 

 

Fig. 5. The influence of varying osmotic levels on 

root anatomy of Common Vetch local cultivar. Cell 

destructions are obvious, particularly at higher NaCl 

rates. (Magnification 7X40).  

 

Cultivar and osmotic solution interactions 

Mungbean seeds appeared to be the most potent 

under all tested osmotic potentials (Table, 1& Figure, 

1, 1a, b, c). This cultivar manifested the highest 

plumule lengths under distilled water (108 mm), -0.5 

Mpa (21mm) and -1.5 Mpa (3mm). Moreover this 

cultivar exhibited the best germination rate: 

germination percentage ratio and days required for 

first emergence at all osmotic potentials (Fig. 3). The 

results also revealed that Adlib cultivar germination 

performance under distilled water, – 0.5 Mpa and -

1Mpa was preponderance over all detected cultivars. 

It manifested the highest radical lengths (121.25 

mm), (21.25mm) and (3 mm), respectively. It is 

worthy to mention Baraka cultivar overwhelming on 

all cultivar and all osmotic solutions in germination 

energy, germination rate, and lowest time for peak 

germination under 0, -0.5 and -1Mpa. Cultivar 

differences were obvious at the two highest potentials 

0 and -0.5 Mpa. However, as the potential being 

decreased the variation among cultivar and /or 

species were gradually vanished. These results 

suggested that at high potential there were a chance 

to distinguish cultivars/and or species competitions. 

On the other hand when salt aggravated, plants lost 

their salt tolerance capabilities owing to 

overwhelming salt influences. Exiguously plant 

responses under low potential might be attributed to 

 Baraka Adlib NIneveh 

- 0
 M

p
a

 

 

   

-0
.5

 M
p
a

 

   

- 1
 M

p
a

 

   

-1.5 M
p

a
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the effects of salts on cell metabolic (Fig. 1, 4 ), Amini 

and Ehsanpour (2005) germinated seeds of two 

tomato cultivars on medium containing only water 

agar, then transferred to MS medium supplemented 

with different concentrations of NaCl (0, 40, 80, 120 

and 160 mM) for 21 days. They manifested that 

increasing of salinity resulted in increasing of soluble 

proteins in stem and leaf of cv. Isfahani but 

decreasing in cv. Shirazy. Soluble proteins in roots of 

both cultivars showed some variations. 
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