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Abstract 
 
A field experiment was conducted in 2012 to determine the effect of different irrigation levels (I1, I2, I3 and I4: 

irrigation after 70, 100,130 and 160 mm evaporation from class A pan, respectively) on leaf-air temperature 

difference, chlorophyll fluorescence, ground cover and their consequences to crop yield of three chickpea 

cultivars (Azad, Arman and Jam from kabuli type). The experiment was arranged as split-plot based on 

randomized complete block design in three replications, with the irrigation treatments in main plots and 

chickpea cultivars in sub-plots. Results showed that with increasing water stress, leaf-air temperature difference 

and chlorophyll fluorescence of the PSII (Fv/Fm) decreased. Consequently, percentage and duration of ground 

cover and grain yield per unit area decreased. Azad was a superior cultivar in grain yield under all irrigation 

treatments.  
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Introduction 

Water availability is a key environmental factor 

limiting plant photosynthesis and growth (Flexas et 

al., 2002). Photosynthesis and cell growth are the 

primary processes which are affected by stress 

(Munns et al., 2006). Plant response depends on the 

nature of the water shortage, induction of 

physiological responses to short term changes (Ruiz-

Sanchez et al., 1993), acclimation to a certain level of 

water availability and adaptation to drought (Alscher 

and Cumming, 1990).  

 

According to Smirnoff (1993) low water availability is 

often associated with increased levels of reactive 

oxygen species, such as superoxide anion, hydrogen 

peroxide, hydroxyl radical and singlet oxygen. Low 

internal CO2 concentration results in a reduction of 

oxidized NADP+ pool, as an electron acceptor. 

Therefore, the light energy absorbed is not fully used 

by photosynthesis, photorespiration or heat 

generation and is diverted to molecular oxygen, which 

is abundant in the chloroplast (Chaves, et al., 2003). 

Knowledge of drought resistance mechanisms makes 

it easier to plant using deficit irrigation strategies 

designed to save water, while minimizing the negative 

impacts on yield (Domingo et al., 1996). 

 

Drought causes huge decrease in crop yield by 

inhibiting plant growth and photosynthesis (Chaves 

and Oliveira, 2004). Under drought stress, plant 

leaves are dehydrated, and photosynthesis is 

decreased. The decrease in photosynthesis of 

dehydrated leaves is usually caused by stomatal 

limitation under moderate drought conditions and/or 

non-stomatal limitations under severe drought 

conditions (Cornic, 1994; Limousin et al., 2010). As 

water becomes limiting, stomatal conductance and 

transpiration decrease and leaf temperature 

increases. A temperature measurement on individual 

leaves is a good indicator of water potential (Ehrler et 

al., 1978) and plant stress (Reginato, 1983). 

 

Under drought stress, disturbances of photosynthesis 

at the molecular level are connected with the 

restricted electron transport through PSII and/or 

with structural injuries to PSII (Flexas et al., 2004; 

Hura et al., 2007). Fluorescence of chlorophyll 

reflected the photochemical activities of PSII 

(Ganivea et al., 1998), with optimal values of around 

0.832 measured from most plant species (Johnson et 

al., 1993). Environmental stresses that affect PSII 

efficiency leads to a characteristic decrease in the 

Fv/Fm ratio (Krause and Weis, 1991; Mamnouie et 

al., 2006). 

 

Water stress during vegetative stages has the greatest 

impact on plant height and biomass (Ghassemi-

Golezani et al., 2008a). Ghassemi-Golezani and Lotfi 

(2012) showed that percentage and duration of 

ground cover in soybean were sharply reduced due to 

water stress at later stages of plant development. 

There is a linear relationship between ground cover 

and light interception (Ghassemi-Golezani et al., 

2008b). Reduction of this growth index can reduce 

photosynthesis, plant biomass, yield components and 

consequently grain yield. Similar results were 

reported for maize (Bismillah-Khan et al., 2001), faba 

bean (Nasrullahzadeh et al., 2007) and pinto bean 

(Ghassemi-Golezani et al., 2010).  

 

In Iran, chickpea is mainly grown on reserve moisture 

which is progressively depleted with crop growth. The 

crop experiences drought stress from late vegetative 

stages until maturity. The intensity of drought stress 

varies from year to year, depending on the amount 

and distribution of rainfall and on spring and early 

summer temperatures. Therefore, this research was 

carried out to investigate changes in Leaf-air 

temperature difference, chlorophyll fluorescence and 

ground cover of three chickpea cultivars in response 

to water stress during growth and development and 

their consequences to crop yield.  

 

Materials and methods 

A split plot experiment (using RCB design) with three 

replications was conducted in 2012 at the Research 

Farm of the Faculty of Agriculture, University of 

Tabriz, Tabriz, Iran (Latitude 38° 05ʹN, Longitude 

46° 17ʹE, Altitude 1360 m above sea level) to evaluate 

the effects of different irrigation levels on leaf-air 
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temperature difference, chlorophyll fluorescence, 

ground cover and their consequences to crop yield of 

three chickpea (C. arietinum L.) cultivars. The 

climate is characterized by mean annual precipitation 

of 245.75 mm per year and mean annual temperature 

of 10°C. Irrigation treatments (I1, I2, I3 and I4: 

irrigation after 70, 100, 130 and 160 mm evaporation 

from class A pan, respectively) were located in main 

plots and cultivars (Azad, Arman and Jam) were 

allocated to sub plots. 

 

Each plot had 6 rows of 5 m length, spaced 25 cm 

apart. Seeds were treated with Benomyl at a rate of 2 

g/kg before sowing. The seeds were then sown by 

hand on 14 May 2012 in 4 cm depth of a sandy loam 

soil. All plots were irrigated immediately after sowing, 

but subsequent irrigations were carried out according 

to the treatments. Weeds were controlled by hand 

during crop growth and development as required.  

Ground cover percentage (PGC) was measured in 

weekly intervals by viewing the canopy through a 

wooden frame (50 cm × 50 cm), divided into 100 

equal sections. The sections were counted when more 

than half filled with crop green area. Changes in mean 

PGC was shown by regression fits on mean data.  

 

After seedling establishment, at flowering stage of 

plants development a plant was marked in each pot 

and Leaf temperature (oC) of upper, middle and lower 

leaves were measured. Leaf temperature was recorded 

by an infrared thermometer (TES-1327) before 

irrigation of each plot in flowering stage. Before and 

after measurement of leaf temperature, air 

temperature was also recorded. Leaf-air temperature 

difference was calculated by subtracting average 

temperature (oC) of upper, middle and lower leaves 

from average air temperature. 

 

The chlorophyll fluorescence induction parameters 

were measured in leaves by a chlorophyll fluorometer 

(OS-30, OPTISCIENCES, USA) at flowering stage of 

plants development before irrigation of each plot. 

Dark-adapted leaves (15 min.) were initially exposed 

to the weak modulate measuring beam, followed by 

exposure to saturated white light to estimate the 

initial (F0) and maximum (Fm) fluorescence values, 

respectively. Variable fluorescence (Fv) was 

calculated by subtracting F0 from Fm. The quantum 

yield (Fv/Fm) measures the efficiency of excitation 

energy capture by open PSII reaction centers, 

representing the maximum capacity of light-

dependent charge separation in PSII (Rizza et al., 

2001; Basu et al., 2004). At maturity, grain yield per 

unit area was determined. 

 

Analysis of variance appropriate to the experimental 

design was conducted, using MSTATC software. 

Means of each trait were compared according to 

Duncan multiple range test at p≤0.05. Excel software 

was used to draw figures. 

 

Results  

Percentage ground cover (PGC) for all irrigations 

treatments and cultivars increased up to the points 

where maximum values were achieved and thereafter 

decreased with further plant development. Percentage 

ground cover was sharply reduced due to water stress. 

Maximum PGC under well-irrigation (I1) was 

observed at 65 days after sowing, while under I2 , I3 

and I4 it was achieved at 55-60 days after sowing 

(Figure 1a). At the most stages of growth and 

development PGC of Azad was higher than that of 

other cultivars, but changes in PGC of Arman and 

Jam were almost similar. Maximum PGC for Azad 

was obtained at 60 days after sowing, while for 

Arman and Jam, it was attained at about 66 days after 

sowing (Figure 1b).   

 

Analysis of the data (Table 1) showed that water stress 

had significant effects on leaf-air temperature 

difference, chlorophyll fluorescence, maximum 

ground cover and grain yield. Grain yield was also 

significantly affected by cultivars. The interaction of 

irrigation × cultivar was only significant for grain 

yield (Table 1).  

 

Percentage ground cover, leaf-air temperature 

difference, chlorophyll fluorescence of the PSII 

(Fv/Fm) and grain yield decreased as water deficit 
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increased. Maximum loss in grain yield was observed 

under severe water stress (I4) (Table 2). 

 

Azad was a superior cultivar in ground cover and 

grain yield, although differences in ground cover 

among cultivars were not significant (Table 2). Grain 

yield of Azad was higher than that of other cultivars 

under all irrigation treatments, but this superiority 

slightly decreased with decreasing water supply. No 

significant differences were observed in grain yield of 

Arman and Jam under all irrigation treatments 

(Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Changes in ground cover (PGC) of chickpea for different irrigation treatments and cultivars 

I1, I2, I3 and I4: irrigation after 70, 100, 130 and 160 mm evaporation from class A pan, respectively 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Mean grain yield of chickpea cultivars under 

different irrigation treatments  

Different letters indicate significant difference at 

P≤0.05. 

 

Correlation coefficients of different traits showed that 

PGC and Fv/Fm positively correlated with grain yield, 

but the correlation between leaf-air temperature 

difference and grain yield was negative. The efficiency 

of photosystem II  had the highest positive correlation 

with grain yield per unit area (Table 3). 

 

 

Discussion 

Reductions in percentage and duration of ground 

green cover  due to water stress (Figure 1) can 

strongly reduce the absorption of incident PAR, either 

by drought-induced limitation of leaf area expansion 

or by temporary leaf wilting and early leaf senescence 

(Hugh and Richard, 2003). This can potentially 

reduce photosynthesis and consequently grain yield 

of crops (Ghassemi-Golezani and Lotfi, 2012). Since 

there is a linear relationship between percentage 

ground green cover and light interception (Burstall 

and Harris, 1983; Ghassemi-Golezani et al., 2008b), 

it can be used as a reliable index to estimate yield 

potential of the crops under a wide range of 

environmental conditions (Ghassemi-Golezani and 

Mardfar, 2008). Reduction in percentage ground 

green cover due to water stress (Table 2) can be 

attributed to competition of plants for water and 

nutrients (Ghassemi-Golezani et al., 2010).  

 

Water deficit reduces leaf water potential and 

stomatal conductance, inhibits photosynthetic 

metabolism and eventually reduces plant productivity 
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(Baker and Rosenqvist 2004; Hassan 2006; Rouhi et 

al., 2007; Degl’Innocenti et al., 2008). Increasing leaf 

temperature due to water stress (Table 2) is possibly 

related to decreasing stomatal conductance and 

transpiration (Ehrler et al., 1978; Reginato, 1983; 

Siddiaue et al., 2000). During drought, leaves are 

subjected to both heat and water deficiency stress 

(Clarke et al., 1993). As a consequence of the 

reduction in transpiration rates of leaves, leaf 

temperature increases. 

 

Table 1. Analysis of variance of the the effects of water stress on some physiological characters and grain yield of 

chickpea cultivars under different irrigation treatments. 

Source df Percentage 

ground cover 

Leaf-air 

temperature 

difference 

Fv/Fm Grain yield 

Replication 2 420.111 33.731 0.005 1026.493 

Irrigation(I) 3 1640.889 * 90.881** 0.118 ** 19961.108 ** 

Ea 6 225.333 5.909 0.004 116.758 

Cultivar (C) 2 428.861 ns 0.308 ns 0.018 ns 8428.530 ** 

I*C 6 184.417 ns 1.768 ns 0.013 ns 215.456 * 

Eb 16 190.194 2.582 0.008 76.914 

Cv%  20.83 -54.45 19.07 3.65 

*,** Significant at p≤0.05 and p≤0.01, respectively 
 

Table 2. Means of the ground cover, leaf-air temperature difference, chlorophyll fluorescence and grain yield of 

chickpea for irrigation treatments and cultivars. 

Grain yield Fv/Fm Leaf-air temperature 

difference 

Percentage ground 

cover 

Treatment 

    Irrigation 

71.54 a 0.6588 a -6.967 b 82.44 a I1 

64.68 b 0.4461 b -4.389 b 72.22  ab I2 

60.13 c 0.4251 b -0.983 a 55.78  b I3 

43.85 d 0.3202 c -0.066 a 54.44 b I4 

    cultivar 

67.57 a 0.475 a -2.917 a 72.917 a Azad 

55.06 c 0.419 a -3.188 a 61.417 a Arman 

57.52 b 0.494 a -3.200 a 64.333 a Jam 

Different letters in each column indicate significant difference at P≤0.05 

I1, I2, I3, I4: Irrigation after 70, 100, 130 and 160 mm evaporation from class A pan, respectively 
 

Table 3. Correlation coefficients of some physiological characters and grain yield of chickpea cultivars 

 Percentage 

ground cover 

Leaf-air 

temperature 

difference 

Fv/Fm Grain yield 

Percentage ground cover 1    

Leaf-air temperature difference -.715** 1   

Fv/Fm .697* -.813** 1  

Grain yield .642* -.631* .852** 1 

*,** Significant at p≤0.05 and p≤0.01, respectively 
 



This may inhibits photosynthesis by limiting the 

availability of CO2 within the leaf (Boyer, 1976; 

Chaves, 1991) and predispose leaves to photo-

inhibition (Bjorkman and Powles, 1994) and decrease 

photosynthetic efficiency by stimulating 

photorespiration (Brooks and Farquhar, 1985). The 

rate of photosynthetic CO2 assimilation is generally 

reduced by drought stress. This reduction is partly 

due to a reduced stomatal conductance and 

consequent restriction of the availability of CO2 for 

carboxylation (Brugnoli and Lauteri, 1991).  

 

It has been well documented that the photosynthetic 

system is very sensitive to many environmental 

stresses and that chlorophyll fluorescence analysis is 

a good index for measuring rapidly the change in 

photosynthetic metabolism of plants to such 

environmental stresses as drought (Conroy et al., 

1986; Genty et al., 1987). Chlorophyll fluorescence 

analysis is a sensitive indicator of the tolerance of the 

photosynthetic apparatus to environmental stress 

(Maxwell and Johnson, 2000).     Reduction in 

chlorophyll fluorescence of the PSII (Fv/Fm) under 

water stress (Table 2) indicates that occurrence of 

chronic photo-inhibition due to photo-inactivation of 

PSII probably associated with the degradation of D1 

protein (He et al., 1995; Giardi et al., 1996). Some 

other researchers also showed that Fv/Fm reduced as 

a result of water stress (Xu et al., 1999; Flexas and 

Medrano, 2002). 

 

Water limitation considerably reduced grain yield in 

chickpea cultivars (Table 2) probably due to pod and 

flower abortion and reduction in mean grain weight 

(Ghassemi-Golezani et al., 2012). The superiority of 

Azad in grain yield could be attributed to higher 

ground cover (Figures 1b) and lower leaf temperature 

(Table 2) of this cultivar, compared with other 

cultivars. Significant correlations of ground cover, 

Leaf-air temperature difference and Fv/Fm with grain 

yield per unit area (Table 3) clearly indicate that these 

physiological characters strongly influence grain yield 

of chickpea cultivars under different water 

availability. 
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