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Abstract 

 

The objectives of this study were to exploit information on the nature of relationships between agronomic traits 

and oil yield for developing selection indices as well as to compare selection indices methodology and biplot 

analysis as methods of simultaneous improvement of genotypes for multiple traits. Selection indices revealed that 

an increase in efficiency was observed over direct selection for oil yield when four oil yield contributing traits 

were included along with oil yield and showed that correlation coefficients between genotypic worth and each of 

the base indices were less than that for the optimum indices. Applying biplot analysis to the multiple trait data 

revealed that genotype by trait (GT) biplot graphically facilitated visual comparison of genotypes and selection. 

Moreover, the identified superior genotypes in both types of analyses were nearly identical. So use of biplot 

analysis is recommended. 
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Introduction 

Most of the traits of primary importance in peanut 

(Arachis hypogaea L.) are quantitative in nature and 

not highly heritable. Furthermore, when selecting for 

a primary trait such as oil yield, the selection is being 

done for several secondary traits that influence the 

primary trait rather than for the primary trait itself. 

Understanding that improvement of one trait may 

cause improvement or deterioration in associated 

trait(s) serves to highlight the need for simultaneous 

consideration of all traits that are important in a crop 

species (Baker, 1986). 

 

Germplasm evaluation and variety selection must be 

based on multiple traits or breeding objectives (Yan 

and Fregeau-Reid, 2008). For most crops, although 

yield is the number one objective, quality is also very 

important (Yan and Fregeau-Reid, 2008). So, 

selection based on multiple traits is an inevitable 

issue for all breeders. Three strategies of multitrait 

selection are (Simmonds and Smartt, 1999): (i) 

tandem selection, whereby different traits are selected 

in different generations; (ii) independent culling, 

whereby multiple traits are selected simultaneously 

and independently; and (iii) index selection, whereby 

multiple traits are selected simultaneously by an 

index that is a linear combination of various traits. 

The use of a selection index was originally proposed 

by Smith (1936). He argued that since genotypic 

worth could not be directly evaluated, it might be best 

estimated by a linear function of observable 

phenotypic values. The maximum response to index 

selection will be achieved if the correlation between 

genetic worth and the index is maximized (Baker, 

1986). Index selection has also become an important 

concept in plant breeding and has been widely used, 

implicitly or explicitly, for the selection of superior 

varieties as well as for the improvement of a complex 

breeding objective (Jannink et al., 2000). Iroume and 

Knauft (1987) used the selection indices to develop 

selection criteria for increasing pod yield and 

reducing leafspot susceptibility in peanut. Many other 

researchers have used selection indices as an effective 

selection criterion in their breeding programs on 

different crops (Pesek and Baker, 1969; Suvantaradon 

et al., 1975; Wells and Kofide, 1986; Vikram and Roy, 

2003; Rabiei et al., 2004).  

 

Since strong, negative correlations between breeding 

objectives often exist, either genetically or 

physiologically, which makes breeding more 

challenging (Yan and Wallace, 1995). Because 

selection for the desired levels or culling for the 

undesired levels of one trait can mean selection 

against the desired levels of another trait, which can 

lead to the loss of useful materials or even render the 

selection population useless (Yan and Rajcan, 2002). 

Index selection can also lead to the loss of materials 

with desirable levels of a trait or to the retaining of 

materials that have serious defects for some traits 

(Yan and Fregeau-Reid, 2008). A genotype by trait 

(GT) biplot is an effective tool for exploring multitrait 

data (Yan and Rajcan, 2002). It graphically displays 

the genotype by trait pattern and allows visualization 

of the association among traits across the genotype 

and of the trait profile of the genotypes. Yan and 

Rajcan (2002) used a genotype × trait (GT) biplot, 

which is an application of the GGE biplot technique to 

study of the genotype × trait data. The GGE biplot 

methodology was developed originally for analyzing 

multi environment trial data (Yan et al., 2000; Yan, 

2001). However, it can also be equally used for all 

types of two-way data that assume an entry × tester 

structure (Yan, 2001). The genotypes can be 

generalized as entries and the multiple traits as 

testers. A GGE biplot, constructed from the first two 

principal components (PC1 and PC2, also referred to 

as primary and secondary effects, respectively) 

derived from singular value decomposition (SDV) of 

the tester- centered data (Yan and Kang, 2003). 

 

Index selection has had limited use in actual plant 

breeding programs. Studies have been reported in 

peanut (Iroume and Knauft, 1987; Vikram and Roy, 

2003). The various results seem to indicate that index 

selection for improving one trait singly would be no 

better than direct selection for the trait itself, but 

might prove useful when selecting simultaneously for 

more than one trait. GT biplot methodology is a one 

of the best methods to propose a comprehensive 
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multitrait selection strategy that used for line 

selection based on multiple traits (Yan and Fregeau-

Reid, 2008). The purpose of present study is i) to 

construct two different types of selection indices 

among peanut varieties in order to compare their 

relative efficiency, ii) to compare selection indices 

result with interpretation a GT biplot and iii) 

selection of the most desirable varieties. 

 

Materials and methods  

Field experiments and plant material 

The experiment was conducted at the research farm 

of the Tobacco Research Institute (49º 36' east 

latitude, 37 º 16' north longitudes), Rasht, Iran, 

during 2006. The experimental material consisted of 

39 peanut genotypes which were provided by the 

Genetic Research Department of the National Plant 

Gene Bank of Iran (NPGBI). The names and codes of 

the genotypes are provided in Table 1. The 

experiment was laid out in a randomized complete 

block design with three replications. The trial field 

was plowed and disc harrowed few days prior to 

seeding. The experimental plots consisted of three 

rows of 3.2 m length each. Row- to- row and plant- 

to- plant distances was kept at 30 and 40 cm, 

respectively. Weeds were controlled by hand- weeding 

several times as required. Neither herbicides nor 

insecticide were used in trial as there was no need for 

them. Data was taken from the middle row of each 

plot. All measurements were performed according to 

instructions stated in the peanut descriptor 

(Anonymous, 1981). 100-grain weight, 100-pod 

weight, Grain Length, Grain Width, Pod Length, Pod 

Width, Grain: pod volume ratio, Leaflet length, 

Leaflet width, Plant Height, Pods per plant and oil% 

traits were measured. 

 

Statistical analysis 

To select those traits that would qualify to be included 

as independent variables in the oil yield model, 

stepwise regression analysis was performed. In order 

to test of multicollinearity, Variance Inflation Factor 

(VIF) for each independent trait included in the 

regression model was calculated: 

  121


 jj RVIF  

Where 
2

jR is the multiple determination coefficient 

for regression Xj over the other p-1 independent 

traits. Multicollinearity is the undesirable situation 

where the correlations among the independent 

variables are strong. Multicollinearity increases the 

standard errors of the coefficients. In other words, 

multicollinearity misleadingly inflates the standard 

errors. If VIF for one of the variables is greater than 5 

or 10, there is collinearity associated with that 

variable (Rezaei and Soltani, 2003). 

 

The estimates of genotypic and phenotypic variance 

and heritability for each trait and covariance for each 

pair of traits obtained among peanut varieties were 

used for construction of selection indices. To evaluate 

the selection strategies for maximizing peanut oil and 

yield, different selection indices were calculated based 

on optimum and base indices as described by Smith 

(1936), Hazel (1943), Brim et al., (1959) and Baker 

(1986). A 5% selection intensity was used to estimated 

expected genetic advance (k = 2.06). 

 

Construction of selection indices 

In matrix notation, an optimum selection index (I) 

takes the following form: 

iI b x  

 

Where b  is the transpose vector of weights assigned 

to those traits in selection index and xi is the vector of 

phenotypic values for traits. 

The optimum indices were constructed by solving the 

following matrix equation: 

GaPb 1  

 

Where b: vector of index coefficients, P-1: inverse of 

the phenotypic variance- covariance matrix, G: 

genetypic variance- covariance matrix, and a: vector 

of relative economic values or weights assigned to the 

different traits (Smith, 1936; Brim et al., 1959; Baker, 

1986; Kang, 1994). 
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To compare indices, four different criteria were used: 

Correlation coefficients between genotypic worth and 

each index which if it is maximum, the maximum 

response is obtained: 

2 2

WI I
WI WI

WI W

r b
 

 
   

 

The matrix form as follows: 

WI

b Pb
r

a Ga





 

 

The expected change in aggregate genetic advances:  

WI WW kr    

 

The expected genetic advance in each trait on the 

basis of index (RI) and efficiency of the selection 

indices relative to direct selection for either trait 

evaluated was also investigated: 

 

( )G A II

A A

rR
RE

R h
   

 

Where RI is the expected response for trait (A) based 

on selection index and RA is the expected response 

based on direct selection of trait (A): 

   

   

I G A I G A

A A G A

R kr

R kh








 

 

Where rG(A)I is the correlation coefficient between 

genotypic value of trait (A) and selection index, 

 G A
 is the genotypic standard deviation for trait (A) 

and h(A) is the square root of heritability of trait (A). 

Base index proposed by Williams (1962) uses the 

economic weights as index coefficients: 

iI a x  

 

In this index, the correlation coefficients between 

index and genotypic worth is calculated in matrix 

notation as follows: 

WI

a Ga
r

a Pa





 

Where a is the transpose vector of relative economic 

weights. 

 

GGE biplot 

The term GGE is the contraction of G+GE. A biplot 

that displays the GGE of an MET dataset is called a 

GGE biplot. GGE biplot model keeps G and GE 

together and partitions this mixture GGE into two 

multiplicative terms (Yan and Kang, 2003): 

1 1 2 2
ˆ
ij j i j i j ijY g e g e        

 

Where ˆ
ijY is the expected yield of entry i in tester j, μ: 

the grand mean of all observations, βj: the main effect 

of tester j, and where gi1 and e1j are called the primary 

scores for entry i and tester j, respectively; gi2 and e2j, 

the secondary scores for entry i and tester j, 

respectively; and εij is the residue not explained by the 

primary and secondary effects. A GGE biplot is 

constructed by plotting gi1 against gi2, and e1j against 

e2j in a single scatter plot (Yan and Kang, 2003). 

 

The most common way to implement above equation 

is by subjecting the GGE data to SVD (Yan and Kang, 

2003): 

1 1 1 2 2 2
ˆ
ij j i j i j ijY              

Where 1 and 2 are the singular values of first and 

second largest principal components, PC1 and PC2, 

respectively; the square of the singular value of a PC 

is the sum of squares explained by the PC; 1i and 

2i are the eigenvectors of entry i for PC1 and PC2, 

respectively; and 1 j and 2 j are the eigenvectors of 

tester j for PC1 and PC2, respectively. 

 

Although the GGE biplot methodology was originally 

proposed for analyzing multi-environment trials data 

for a given trait, it is equally applicable to all types of 

two-way data that assume an entry-by-tester 

structure, such as a genotype-by-trait two-way dataset 

(Yan and Kang, 2003). The only difference is that in 

genotype-by-trait data, different traits have different 

units, and the units need to be removed through 
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standardization before meaningful biplot analyses can 

be made (Yan and Kang, 2003). Therefore, within 

tester standard deviation-standardized model for 

mean or nonreplicated data: 

1 1 2 2
ˆ( ) /ij j j i j i j ijY d g e g e        

 

and within tester standard error-standardized model 

for replicated data: 

1 1 2 2
ˆ( ) /ij j j i j i j ijY s g e g e        

are appropriate models (Yan and Kang, 2003). 

Genotype by trait biplots generated using GGEbiplot 

software (Yan, 2001) 

 

 

Result and discution 

Selection indices 

Correlation coefficients were computed for each pair 

of traits and they were further partitioned into 

components of direct and indirect effects by path 

Coefficients analysis originally developed by Wright 

(1921) and later described by Dewey and Lu (1959). 

Path coefficients analysis for oil yield indicated that 

oil%, 100-pod weight, grain pod ratio and grain per 

pod were added to the multiple regression model, as 

the first-order predictor variables, and had the 

highest direct and indirect effects on oil yield. Results 

from multicollinearity test showed that VIF values for 

the regression coefficients are in the acceptable range 

for the lack of multicollinearity among the 

independent traits (Table 2). 

 

Table 1. Genotype code and name of 39 peanut genotypes. 

Genotype 
code 

Name Genotype 
code 

Name Genotype 
code 

Name Genotype 
code 

Name 

A2 ICGV 92049 A12 ICGV 93163 B14 ICGV 93135 D14 ICGV 93277 

A3 ICGV 92050 A14 ICGV 93171 B15 ICGV 93136 E2 ICGV 92195 

A4 ICGV 92052 B4 ICGV 92022 D2 ICGV 92113 E8 ICGV 92267 

A5 ICGV 92054 B5 ICGV 92023 D3 ICGV 92116 E10 ICGV 93282 

A6 ICGV 92064 B6 ICGV 92027 D4 ICGV 92118 E11 ICGV 93388 

A7 ICGV 92071 B7 ICGV 92028 D6 ICGV 92121 E12 ICGV 93292 

A8 ICGV 92076 B10 ICGV 92040 D9 ICGV 93233 E13 ICGV 93420 

A9 ICGV 93152 B11 ICGV 93128 D11 ICGV 93260 E14 ICGV 94361 

A10 ICGV 93155 B12 ICGV 93133 D12 ICGV 93261 E15 Chico 

A11 ICGV 93162 B13 ICGV 93134 D13 ICGV 93269   

The path analysis in this study was used for 

developing the selection indices, so that the cause and 

effect relationship between oil yield and other traits 

were not important for us. However, most other 

researchers such as Hoque et al. (1993), Siddique et 

al. (2006) have used path analysis for improving 

peanut yield. Table 3 shows the results of the path 

analysis for the first-order prediction variables of oil 

yield. To evaluate selection strategies for maximizing 

oil yield, selection indices were calculated based on 

two methods (optimum and base) for four 

independent traits along with oil yield with different 

economic weights. The vector of relative economic 

weights for traits are presented in Table 4 that include 

single values (1), phenotypic and genotypic 

correlation, coefficients of direct effects in path 

coefficients analysis, the first factor loadings from 

factor analysis and broad sense heritability.  

 

Table 2. Estimated VIF value for each predictor 

variable in stepwise regression model. 

Trait VIF 

Oil% 2.499 

Grain: pod ratio (GPR) 2.269 

100-pod weight (PW) 4.414 

Grains per pod (GPD) 1.104 

The expected change in aggregate genetic advance, 

the correlation coefficients between genotypic worth 

with each index (rWI) and efficiency of selection 

indices relative to direct selection for both sets of 

selection indices are presented in Tables 5, 6, 8 and 9. 

The highest gain in expected genetic advance, both in 

base and optimum indices, was obtained when 

selection was based on indices 1 and 6. 

Comparisons of Tables 5 and 8 indicated that 

correlation coefficients between genotypic worth and 
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each of the base indices were less than that for the 

optimum indices. The range of index relative 

efficiency for indices was between -21.1 and 159.1% 

for optimum indices and between -40.3 and 149.2% 

for base indices. 

 

Table 3. Path coefficients (underlined) and indirect effects of first-order predictor variables on oil yield. 

Trait X1 X2 X3 X4 Correlation with oil yield 

Oil% (X1) 0.403 -0.008 -0.063 -0.011 0.321 

GPR (X2) -0.011 0.285 0.271 0.158 0.704 
PW (X3) -0.054 0.162 0.476 0.138 0.725 

GPD (X4) -0.019 0.196 0.286 0.231 0.694 
R2 = 0.832     Residual= 0.402 

 

Table 4. Evaluated traits and its relative economic weights for calculating of the selection indices. 

                                                                  Relative economic weight 

Trait b1 b2 b3 b4 b5 b6 

Unit Phenotypic Corr. Genotypic Corr. Path coefficient Broad sense heritability Factor 
loading 

Oil 
yield 

1 1 1 1 0.565 0.902 

Oil% 1 0.321 0.320 0.403 0.228 0.038 
GPR 1 0.705 0.614 0.285 0.284 0.843 

 PW 1 0.725 0.526 0.476 0.228 0.856 
GPD 1 0.695 0.532 0.231 0.750 0.756 

 

Table 5. Estimated index coefficients, expected aggregate genetic advance and estimated correlation between 

genotypic worth and each of the indices based on optimum Smith-Hazel index. 

Trait                                                      Index coefficients 

b1 b2 b3 b4 b5 b6 

Oil yield 21.60 14.53 11.35 9.40 5.32 16.13 
Oil% -0.50 -0.42 -0.31 -0.20 -0.12 -0.56 

GPR 0.48 0.37 0.27 0.22 0.11 0.46 
 PW 0.21 0.15 0.12 0.00 0.05 0.18 

GPD 12.85 10.34 8.72 3.90 4.12 13.29 

W  37.28 26.92 20.90 15.77 5.49 31.76 

rWI 0.84 0.83 0.84 0.83 0.84 0.83 

R2 0.70 0.70 0.70 0.70 0.71 0.69 

Each index has been calculated by using the economic weights presented in Table 4. 

The results of efficiency of index selection relative to 

direct selection for either trait evaluated showed that 

except for selection index 4, index selection for 

increased oil yield, grain pod ratio and 100 grains 

weight of peanut genotypes would be between 5 and 

62% more efficient than direct selection, depending 

on the trait and selection method. Comparisons of 

Tables 6 and 9  also showed that the use of selection 

indices to improve oil% and grains per pod was not 

effective. Moreover, on the basis of calculated 

selection indices three genotypes D4, B10 and B13 

were selected as the superior genotypes (Tables 7 and 

10). 

 

Williams (1962) stated that comparing the 

corresponding correlation coefficients between 

genotypic worth and each index can be obtained the 

efficiency of optimum indices relative to base indices 

(Table 11). As can be seen in Table 11, the efficiencies 

of optimum indices compared with base indices were 

higher in all cases. 

 

Table 6. Expected genetic advance based on selection by index (RI) and estimated efficiency of selection indices 

to direct selection with 5% selection intensity (k = 2.06) according to optimum index method. 
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 Indices 

Trait I1  I2  I3  I4  I5  I6 

RE RI  RE RI  RE RI  RE RI  RE RI  RE RI 

Oil 
yield 

1.41 0.51  1.40 0.59  1.40 0.59  1.41 0.36  1.42 0.60  1.38 0.58 

Oil% 0.11 0.13  -0.21 -0.11  -0.20 -0.24  0.77 2.66  0.16 0.16  -0.07 -0.19 

GPR 1.52 11.62  1.61 10.10  1.58 10.12  0.29 2.09  1.53 12.14  1.59 11.91 

 PW 1.49 24.43  1.47 20.87  1.49 20.73  0.84 13.71  1.41 23.24  1.46 24.48 

GPD 0.85 0.34  0.85 0.21  0.84 0.21  0.34 0.07  0.88 0.26  0.84 0.25 

Each index has been calculated by using the economic weights presented in Table 4. 

 

Table 7. Estimated index value for five of the most desirable genotypes and genotype code (in parenthesis) for 

optimum in. 

dex 

Number I1 I2 I3 I4 I5 I6 

1 124.06(D4) 88.70(D4) 69.65(D4) 51.86(D4) 32.15(D4) 103.48(D4) 

2 119.95(B10) 86.91(B10) 68.18(B10) 49.80(B10) 31.29(B13) 102.46(B10) 

3 114.27(B13) 81.83(B13) 64.25(B13) 47.78(B13) 27.50(D9) 95.83(B13) 

4 105.24(D9) 75.96(D9) 59.85(E2) 43.33(E2) 27.11(D6) 89.35(E2) 

5 105.11(E2) 75.32(D6) 59.40(D9) 43.17(D6) 26.22(A8) 87.93(D9) 

 

Table 8. Expected aggregate genetic advance and estimated correlation between genotypic worth and each of the 

indices based on base index method. 

 Indices 

I1 I2 I3 I4 I5 I6 

W  
29.53 21.84 21.84 12.16 7.73 26.12 

rWI 0.66 0.67 0.67 0.64 0.68 0.68 

R2 0.44 0.46 0.46 0.41 0.47 0.46 

Each index has been calculated by using the economic weights presented in Table 4. 

 

Table 9. Expected genetic advance based on selection by index (RI) and estimated efficiency of selection indices 

to direct selection with 5% selection intensity (k = 2.06) according to base index method. 

 Indices 

Trait I1  I2  I3  I4  I5  I6 

RE RI  RE RI  RE RI  RE RI  RE RI  RE RI 

Oil 
yield 

1.09 0.46  1.08 0.46  1.10 0.47  1.06 0.45  1.13 0.48  1.05 0.44 

Oil% -0.00 -0.01  -0.07 -0.25  -0.18 -0.24  0.22 0.30  -0.40 -0.05  -0.15 -0.52 

GPR 1.21 8.90  1.30 9.38  1.13 9.22  0.32 2.59  1.49 9.20  1.21 9.42 

 PW 1.18 20.00  1.27 20.47  1.05 20.79  0.24 3.79  1.22 8.54  1.31 20.87 

GPD 0.61 0.16  0.62 0.17  0.64 0.17  0.68 0.27  0.65 0.18  0.63 0.17 

Each index has been calculated by using the economic weights presented in Table 4. 

Table 10. Estimated index value for five of the most desirable genotypes and genotype code (in parenthesis) for  

base index. 

Number I1 I2 I3 I4 I5 I6 

1 337.33(D4) 223.27(D4) 174.66(D4) 62.03(D4) 82.75(D4) 246.44(D4) 

2 327.74(B10) 218.59(B10) 171.21(B10) 61.27(B13) 80.82(B10) 243.25(B10) 

3 318.83(B13) 213.43(D9) 164.87(B13) 57.94(D9) 78.93(D9) 235.69(A8) 

4 318.06(D6) 211.44(A8) 163.62(A8) 57.32(B4) 78.72(B13) 234.48(D9) 

5 316.04(A8) 208.96(B13) 163.57(D6) 57.28(A11) 77.60(D6) 230.52(D6) 

 

 

 

 

Table 11. Estimated relative efficiency of optimum selection indices over base indices. 

 Indices 

I1 I2 I3 I4 I5 I6 
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O

B

WI

WI

r
RE

r
  

1.26 1.23 1.23 1.27 1.22 1.21 

Each index has been calculated by using the economic weights presented in Table 4. 

In conclusion, results derived from all indices 

indicated that among evaluated indices, one and 

factor loading weights that assigned as relative 

economic weights would improve peanut oil yield 

using either the optimum index or base index.  

 

Fig. 1. The average tester or ATC view of the GGE 

biplot. The symbol of genotypes and traits are the 

same as Tables 1 and 2 

 

 

Fig. 2. Comparison of all genotypes with the ideal 

cultivar. The genotypes are ranked based on their 

distance from the ideal cultivar. The symbol of 

genotypes and traits are the same as Tables 1 and 2 

GT biplot 

The GT biplot (Fig. 1) displays 81% of information in 

the standardized data (within tester standard error-

standardized model) of the 39 genotypes four 

independent trait. Evaluation of the genotypes based 

on average trait is achieved by drawing an average 

tester coordinate (ATC) on the biplot (Fig. 1)(Yan and 

Kang, 2003). An average trait, represented by the 

small circle, is defined by the mean PC1 and PC2 

scores of the traits. The line that passes through the 

biplot origin and the average trait may be called the 

average trait axis is the abscissa of the ATC. 

Projections of genotype markers onto this axis should, 

therefore, approximate the mean yield of the 

genotypes (Yan and Kang, 2003). Thus, the cultivars 

are ranked along the ATC abscissa, with the arrow 

pointing to higher mean performance. Cultivar B13 

was clearly the superior cultivar, on average, followed 

by B10 and D4, etc. The small circle in Figure 2, 

which is located on the ATC abscissa and with an 

arrow pointing to it, represents the ideal cultivar. 

Such an ideal genotype rarely exists in reality. 

Nevertheless, it can be used as a reference for cultivar 

evaluation. The plot distance between any cultivar 

and this ideal cultivar can be used as a measure of its 

desirability (Yan and Kang, 2003). The concentric 

circles, taking the ideal cultivar as the center, help in 

visualizing the distance between all cultivars and the 

ideal cultivar (Figure 5.23). Hence, B13 is closet to the 

ideal cultivar, and therefore, most desirable of all the 

tested cultivars. It is followed by D4, D9 and etc. 

 

Conclusion 

Because most breeding programs are concerned with 

simultaneous improvement of several traits, the 

selection index has become the best alternative, 

provided that reliable estimates of genetic and 

phenotypic variances and covariances are available 

and appropriate economic weights of each trait can be 

determined. It is important to note that the selection 

indices results were determined by the weights given 

to each of the traits. These weights are somewhat 

subjective and depend on the breeding objectives. 
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Applying biplot analysis to the multiple trait data 

revealed that genotype by trait (GT) biplot graphically 

facilitated visual comparison of genotypes and 

selection. Although the identified superior genotypes 

in each methodology was nearly identical, but because 

of additional information are not necessary, biplot 

methodology is a very simple and fast method. 

Therefore, use of GGE biplot to identify superior 

genotypes for simultaneous improvement of several 

traits, is recommended. 
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