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  Abstract 

 

Amaranthus spinosus (spiny amaranth) natively live in America, Africa, Australia, Europe and Asia. This plant 

can be used as medicinal plant and also as food or feed. A. spinosus has phenotypic variation, especially in leave 

and stem type. It is because of plant adaptation. Plant adaptations impact to variation on morphological and 

genetic. Chloroplast DNA (cpDNA) is a common molecular marker that used in the genetic variability analyses. 

Phenotypic variation was analyzed using morphological and molecular data. The trnL intron, matK and rbcL 

genes were amplified and sequenced. The sequence data analyses using MEGA5, Bioedit and DNAsp software’s. 

The molecular data shown that A. spinosus from tropical zone was higher genetic variability then temperate 

zone. Plant in the tropical zone easy to be colonized and there isn’t gene flow barrier. So that, A. spinosus that 

adapt to different habitat have different morphological character and have higher genetic variability. 

* Corresponding Author: Arik Arubil Fatinah  arik.arubil@gmail.com 
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Introduction 

Amaranthus is a core genus of Amaranth family 

(Amaranthaceae), and consists of 70 species and 

natively life in America, Africa, Australia, Asia, and 

Europe (Frassen et al, 2001). Amaranthus spinosus is 

one of seven spesies Amaranthus that natively life in 

Indonesia, especially in Java Island (Backer 1986). 

Member of these genera widely used as traditional 

medicinal plant, especially as antiviral, antimalarial, 

antidiabetic, antibacterial, antihelminthic and snake 

antidote (Kusumaningtyas et al, 2006; Vardhana, 

2011; Kumar et al, 2010). Amaranth genera also can 

be used for food, feed, and as an ornamental plant 

(Backer, 1986; Prosea, 2012).  

 

Amaranthus spinosus has different morphological 

characteristic. The morpho-logical characteristics 

were affected by plant adaptation and genetic 

variation among them (Schlichting and Pigliucci, 

1998; Fatinah et al, 2012). Amaranthus spinosus can 

be adapted in the different ecogeographic and wide 

range of edaphic factor (environmental 

heterogeneity) (Costea et al, 2004). Amaranth genus 

has capability tointerbreed among species in the same 

genus. The interbreeding also causes different 

morphological charac-teristic of A. spinosus (Murray, 

1940; Popa et al, 2010). 

 

Chloroplast DNA is a molecular marker that widely 

used for taxon identification (Clegg and Zurawski, 

1991). The cpDNA has an independent genome that 

encoded several proteins, which are protein related 

photosynthetic and housekeeping genes. The cpDNA 

encode 30-50 tRNA genes and 100 other protein. The 

gene that encode protein divided into several kinds, 

they are gene as splicing factors (rpoB, rpoC1, rpoC2, 

rpsl6 and matK) and protein related photosynthetic 

(rbcL, afpB, psaA and petB) (Baumgartner et al, 

1993; Sugiura, 1995; De Las Rivas et al, 2002). 

 

Genetic variation in A. spinosus was analyzed based 

on PCR-sequencing cpDNA, especially analyze gene 

that encode tRNA (trnL intron), splicing factor 

protein (matK) and protein related photosynthetic 

(rbcL). The trnL intron is a non-coding regions, this 

region has higher insertion and deletions (indels) 

which reflect the plant evolutionary (Roy and Penny, 

2007). The matK gene encodes maturase protein as a 

splicing factor and include in intron group II. The 

matK gene has high nucleotide substitution rate, 

insertion and deletion. Mutation in matK gene 

reflects plesiomorphic characteristics and adaptive to 

environmental changing (Vogel et al, 1999; Hao et al, 

2010). The rbcL gene encodes ribulose-1.5-

biphosphate carboxylase/oxygenase large subunit 

(Ellis, 1979). The rbcL gene has 1428 bp in length and 

has conserve primer. The rbcL sequence can be used 

for cogeneric analysis (Kress et al, 2005). The rbcL 

gene is a core locus in chloroplast genome (plastome) 

multigenes (Newmaster et al, 2006). The rbcL gene is 

an adaptive gene to environment heterogeneity and 

widely used for plant evolutionary and plant 

adaptation mechanism (Golmez et al, 2005; Sen, 

2011).  

 

The previous study using trnL intron indicate that A. 

spinosus has high genetic variability. The genetic 

variability differs among molecular marker that used. 

So in this paper we used the third molecular marker 

to analyze A. spinosus genetic variation to know the 

relationship among phenotypic variation, genetic 

variation and plant adaptation in the tropical and 

temperate zone.  

 

Material and methods 

Sample collection 

Plant collection from natural habitat  

Eight samples of A. spinosus were collected during 

April-Mei 2012 from wild habitat in Malang, East 

Java, Indonesia. Leaves of each sample was packed in 

polyethylene bag, and immediately placed in 

insulated ice box until arrives in laboratory. Samples 

were collection with different morphological 

condition. The eight samples were used as tropical 

type of A. spinosus. The A. spinosus type from 

tropical region was voucher as As1, As2, As3, As4, 

As5, As6, As7 and As8. 
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Plant accessions from gene bank 

The twelve sequences for matK gene and fifteen 

sequences for rbcL gene were used as reference 

sequence from temperate zone. 

 

DNA extraction 

The DNA genome was extracted from fresh young 

leave using Doyle and Doyle’s method (1971) with 

modification.  

 

Polymerase chain reaction  

Polymerase chain reaction (PCR) analyses for matK 

gene were carried out with paired of primer MG1: 

5`CGATCCTTTCATGCATT-3` as a forward and 

MG15: 5`-ATCTGGGT TGCTAACTC AATG-3` as a 

reverse (Hilu and Liang, 1997). The rbcL gene was 

carried out using paired of primer rbcL1b: 5`-

ATGTCACCACAAACAGAA AC-3` and rbcL-724R: 5`-

TCGCATGT ACCTGCAGTAGC-3` each primer as a 

forward and reverse primer respectively (CBOL, 

2009). The trnL intron was amplified using trnL-c 

and d primers, that designed by Taberlet et al (1991). 

The PCR reaction was amplified using Master Cycler 

Gradient Eppendorf. The PCR program  for matK 

gene was started with 1 min of 95 °C incubation, 

followed by 35 cycles of 45 sec at 95 °C denaturing, 45 

sec at 61.7 °C, 54.6 °C and 60.3 °C annealing for trnK, 

rbcL and trnL respectively, and 45 sec at 72 °C 

extension. The reaction was finished with 10 min at 

72 °C incubation and stopped at 4 °C. PCR products 

were separated on 1.5 % agarose gels and detected by 

staining with ethidium bromide. Successful PCR 

amplification was result single band PCR product 

which has 2500 bp, 700 bp and 500 bp for trnK, rbcL 

and trnL genes respectively. PCR product was 

purified and sequence using automatic sequencer ABI 

3730 XL in the Macrogen, Inc, Korea. 

 

Data analyses 

Sequences data were analyzed using MEGA5 

software. MEGA5 software was used to align DNA 

sequences, beside that can be used to analyze Ts/Tvs 

ratio. Aligned DNA sequences then analyzed using 

DNAsp software to determine haplotype, conserved 

DNA region, haplotype sequence analysis and codon 

usage bias analysis. The haplotype networking was 

generated by NETWORK software. The haplotype 

networking can explain A. spinosus’ phylogeography. 

 

Results and discussions 

There were 12 analyzed and divided into 34 character 

states. According to 34 character state, there were 4 

special characters to determine A. spinosus variant. 

The special characters were stem shape (teres and 

quadrangularis) and leave shape(lanceolate and 

rhomboid) (Fig. 1). The As2, As3, As5, As6, As7 and 

As8 have teres stem and As1, As4 and As6 have 

quadrangular stem. The leave shape differ among 

variant from lanceolate (As2, AS, As6 and As8) to 

rhomboid (As1, As4, As5 and As7). The leave has 

different color from yellowish to dark green. The 

petioles have different length, with 0.5-2 cm (As3, 

As4, As6, As7 and As8), 2-4 cm (As2), and 4-7 cm 

(As1 and As5). The ratio leave length: petiole lengths 

are 2:1 for the lanceolate shape and 1:2 for the 

rhomboid shape. 

 

Morphological differences among A. spinosus variant 

can be analyzed using molecular marker, especially 

using cpDNA sequences. There were three cpDNA 

gene that used in this research, they are the trnL 

intron, matK and rbcL genes. The trnL intron has 

600 bp in length, the matK gene has 300 bp in 

length, and rbcL gene has 600 bp in length.  

 

The trnL intron have two conserved region, especially 

in 35-98 bp and 444-551 bp with conserved sequence 

percentage approximately 92 %. The intron trnL have 

476 bp monomorphic base and 43 bp polymorphic 

base. The polymorphic base relief the mutation 

events. Mutation in trnL intron dominated with G↔A 

with 12 events, and A-T (8 events), A-C and T-C (4 

events), T-A (2 events) and G-C, G-T and T-G (1 event 

respectively). According to Fatinah at al, (2013), the 

G↔A substitution was dominate and causing the 

Ts/Tvs ratio high, with 1.19.  
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The matK sequences have low conserved sequenced 

value, with 2.3 % for tropical type and 99.8 % for 

temperate type. The low conserved sequence in 

tropical type indicated there was highly sequence 

variability in those samples. The matK sequence has 

sequence conserved region especially base at 59-93. 

The Ts/Tvs were 0.00 and 0.79 for temperate and 

tropical type respectively. The low Ts/Tv value ratio 

indicates that transversion has higher opportunity 

then transition. Beside that, matK sequence has 

insertion and deletions (indels) especially base at 76-

78. 

 

Table 1. Source of plant material from gene bank accession number for the 12 species A. spinosus were examined 

for matK gene, 15 species for rbcL gene sequences. 

 
The rbcL sequence from tropical and temperate zone 

were analyzed. The rbcL sequence from temperate 

zone has higher conserved sequence value with 1.0 

and 0.199 for tropical type. There were 337 bp 

mutation events with two conserved region especially 

base at 47-88 and 63-141. The Ts.Tvs values were 0.5 

and 0.61 for temperate and tropical type respectively.  

Phenotypic variation caused by plant morphological, 

functional, and developmental changing because of 

environmental heterogeneity to one or more genotype 

in one population (Radford, 1986). Amaranthus 

spinosus is one of other plant that has ability to adapt 

in different environmental condition (Prosea, 2012). 

Environmental heterogeneity adjusts plant to adapt 

(Coleman et al, 1994). Individual adaptation depends 

on genetic variation among them. Adaptation can 

increase plant vitality and survivability in face of 

environmental pressure. The environmental pressure 

causing different phenotypic expressions and this 

phenotypic expression majority were effected by 

pleotropic andepistatic genes (Wright, 1931). The 

gene alteration continuously will form a new 

phenotypic characteristic (neomorph) (Fisher, 1930). 

Amaranthus spinosus from tropical zone have higher 

genetic variation. Genetic variation can be seen by the 

third molecular data was used, which have different 

Ts/Tvs ratio value approximately 0.5-1.19. According 

to Brown et al (1982), the Ts/Tv ratio value can be 

used to indicate the nucleotide substitution bias 

value. The DNA sequences with lower genetic 

distance high Ts/Tv ratio values, approximately 2-10 

(Gojobori et al, 1982; Purvis and Bromham, 1997; 

Ina, 1998, Bakker et al, 2000). The nucleotide bias 

value can be informed mutation mechanism and level 

of DNA repair (Echol and Goodman, 1991).  
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The trnL intron has the highest Ts/Tv ratio value 

among all molecular marker that use with dominated 

by G↔A substitution. It is because of DNA repair 

mechanism based on non-homologues end joining 

(NHEJ). The NHEJ pathway is a common mechanism 

for double strand break (DSB). This pathway use 

short microhomology and can be repaired quickly. If 

DNA repair mechanism smoothly the DNA can be 

return to normal, but if the DSB severe damage 

caused deletion in these intron (Ferlow et al, 2011). 

Repairing DNA mechanism also caused nucleotide 

miss pairing. The G↔A substitution is a common 

DNA miss pairing in the DSB (Echol and Goodman, 

1991). According to Bakker et al (2000), trnL intron 

has Ts/Tv ratio value approximately 0.8-1 in group. 

All angiosperm have Ts/Tv ratio value approximately 

0.4-2. The Ts/Tv ratio value 0.4 indicated 

substitution saturated sequences and 2.0 indicated 

diverged sequences (Holmquist, 1983). The matK and 

rbcL genes have low Ts/Tv ratio value. It is caused by 

nonsynonymous base substitution (Li and Graur, 

1991). 

 

Table 2. Gene characterization from matK and rbcL 

sequences. 

 

 

According to Bakker et al (2000), trnL intron has 

Ts/Tv ratio value approximately 0.8-1 in group. All 

angiosperm have Ts/Tv ratio value approximately 

0.4-2. The Ts/Tv ratio value 0.4 indicated 

substitution saturated sequences and 2.0 indicated 

diverged sequences (Holmquist, 1983). The matK and 

rbcL genes have low Ts/Tv ratio value. It is caused by 

nonsynonymous base substitution (Li and Graur, 

1991).  

 

The conserved sequence value among temperate and 

tropical type were different. The temperate type was 

more conserve then tropical type. The conserved 

sequence depend on phylogeography pattern, which 

are topography barrier, climate changing, sea increase 

level and volcanic activity (Gonza`lez-Rodriguez et al, 

2004; Soltis et al ,2006; Jaramillo-Correa et al, 

2009).  

 

Fig. 1. Special characters to determine A. spinosus 

variants. a. lanceolate leave shape, b. rhomboid leave 

shape, c. teres stem shape, d. quadrangular stem 

shape. 

 

Plant in the temperate zone adapted to freeze using 

freezing tolerant mechanism. The freezing tolerant 

mechanism causing genetic isolation among 

population and impede the genetic flow among 

species. Differ from temperate type; the tropical type 

has high genetic variability. In the tropical zone plant 

allow to colonize with rapid genetic flow among 

species. The genetic flow among species effect to high 

genetic variability among species but has low genetic 

differentiation among population (Bares et al, 2011).  

Plant adapt to spatial and temporal environmental 

heterogeneity. The spatial and temporal adaptations 

cause unique genetic variation (Levene, 1953; 

Haldane and Jayakar, 1963; Levins, 1968, Boza and 

Scheuring, 2004). Adaptations to specific 

environment cause plant local adaptation and 

contribute to plant evolutionary study and plant 

population size. The population size reflects plant 

adaptation process (Leimu and Fischer, 2008).   

 

Conclusion 
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Amaranhus spinosus variant from tropical zone have 

high genetic variability with Ts/Ts approximately 0.5-

1.19 and conserved sequenced > 70%. The high 

genetic variability caused by local adaptation and 

gene flow among species. 
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