

International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print) 2222-5234 (Online) http://www.innspub.net Vol. 15, No. 4, p. 545-554, 2019

# **RESEARCH PAPER**

# **OPEN ACCESS**

# Structural, spectral and bioactivity scores of 5, 6 Dimethyl 1-H

benzotriazole monohydrate: Experimental and DFT study

R Mini<sup>1</sup>, T Joselin Beaula<sup>2</sup>, P Muthuraja<sup>3</sup>, V Bena Jothy<sup>1\*</sup>

 <sup>1</sup>Research Scholar, Register Number:12214, Department of Physics and Research Centre, Women's Christian College, Nagercoil, Tamil Nadu, India
 <sup>2</sup>Department of Physics and Research Centre, Malankara Catholic College, Kaliakkavilai, Tamil Nadu, India
 <sup>3</sup>Post graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore - 641020, Tamil Nadu, India
 Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil, Nadu, India

Key words: DMBM, HOMO-LUMO, DFT, NBO, UV

http://dx.doi.org/10.12692/ijb/15.4.545-554

Article published on October 30, 2019

# Abstract

Bioactive molecules are chemical molecules which produced by living organism that exert a biological effect on other organisms. Dimethyl 1-H Benzotriazole Monohydrate (DMBM) has been performed by the basis set of B3LYP/6-31(d,p) using DFT. Global minimum energy of 5,6 Dimethyl 1-H Benzotriazole Monohydrate is -551.095102444 a.u. Inter and intra-molecular hydrogen bonding are discussed by using Natural Bond Orbital (NBO) analysis. This result has the existence of strong  $N_3$ ....H<sub>15</sub>-O<sub>13</sub> whose energy is about 0.11kJ/mol which supports the inter-molecular hydrogen bonding. Energy gap between the HOMO and the LUMO is 0.19891 eV. Natural Coordinate Analysis (NCA) has been used as the tool for Spectral interpretations. Red shifting by ~54cm<sup>-1</sup> ascribed the level of inter-molecular N-H...O hydrogen bonding. Highly effective inhibition against *Salmonella paratyphi* with a zone diameter of 20mm. Optical transmittance has been performed using UV-visible absorption spectra. The maximum absorption and transmittance peak in the UV-vis spectrum predicts electronic transitions at 199nm and 243nm.

\* Corresponding Author: Patr V Bena Jothy 🖂 benaezhil@yahoo.com

#### Introduction

Benzotriazole derivatives are nitrogen containing bicyclic ring structure and have been confirmed for many biological activities, such as antibacterial, antifungal, anticancer, anti-inflammatory, analgesic, antimalarial and antitubercular activity. In the present work throws different derivatives of benzotriazole and their related to biological activity. Benztriazole derivatives have effectively confirmed as antimicrobial activity. Bioactive molecule 5,6 Dimethyl 1-H Benzotriazole Monohydrate (DMBM) has been used in large quantities for the production of many industrial chemicals. It is a widely used organic building block in chiral catalysts, ligands, and reagents. Hydroxybenzotriazole is also used for the synthesis of amides from carboxylic acids aside from amino acids. For instance, amide derivatives of ionophoric antibiotics have been prepared (Andrew G. Myers et al., 2004, Łowicki & Daniel et al., 2009). The triazole antifungal drugs benzotriazole is used in chemical photography as a restrainer and fog suppressant. Due to spreading resistance of plant pathogens towards fungicides of the strobilurin class, (Gisi et al., 2002) control of fungi such as Septoria tritici or Gibberella zeae (Klix et al., 2007) relies heavily on triazoles. Food like store-bought potatoes, contain retardants such as triazole or tetcyclacis. (Mantecón et al., 2009) 5,6 Dimethyl 1-H Benzotriazole (DMBM) Monohydrate is a biologically active compound.

In the present study, structural analysis has been performed by density functional theory (DFT) methods B3LYP/6-31(d,p) basis set using Gaussian '09 package. Optical transmittance has been performed using UV-visible absorption spectra. Natural Bond Orbital (NBO) analysis confirms inter and intra-molecular hydrogen bonding and Charge analysis also analyzed, all these studies are detailed given below.

#### Materials and methods

#### Experimental details

FT-IR of DMBM was recording using the Perkin Elmer FT-IR Spectrometer instrument. FT-Raman spectrum was recorded using the Bruker RFS-27 stand-alone FT- Raman spectrometer instrument. An air-cooled Nd: YAG laser at 1064nm with an output of 150mW was used as the exciting source. UV–visible absorption spectrum of solid material has been measured in JASCO (V-570) UV/VIS/NIR spectrometer.

#### Computational details

DFT computation has been performed using Gaussian'09 program package with B3LYP as the standard 6-31G (d) basis set. Atomic natural charges have been performed by the NBO method using B3LYP 6-31G (d) basis set. Vibrational spectral analysis has been carried out using NCA which is written by Sundius (Sundius 2002). Electronic properties have been determined by time-dependent DFT (TD-DFT) approach. Important quantities such as electronegativity, hardness, softness, and electrophilicity index have also been deduced (Parr *et al.*, 1983; Kohn *et al.*, 1996 & Politzer *et al.*, 1998).

#### **Results and discussion**

#### Optimized geometry

Molecular structure of DMBM was optimized at the B3LYP/6-31G(d) basis set. Optimized geometrical parameters such as bond lengths, bond angles and dihedral angles of DMBM are presented in Table 1 in accordance with the atom numbering scheme given in Fig. 1.



Fig. 1. Optimized molecular structure of DMBM.

Angles  $C_6-C_7-C_{10}$  is 119° and  $C_8-C_7-C_{10}$  is 119° which are slightly out of perfect trigonal angle 120° which is due to the substitution of a methyl group. The dihedral values of N<sub>2</sub>-N<sub>3</sub>-C<sub>4</sub>-C<sub>9</sub> angle is 179° and H<sub>17</sub>-C<sub>6</sub>-C<sub>7</sub>-C<sub>8</sub> angle is 179° which is around 180° which confirms the phenyl ring found to be near planar. The geometry of  $O_{13}...H_{15}$  has the distance 1.9128 Å which is significantly shorter than the van der Waals separation between the O atom and the H atom and indicates the strong N-H...O intermolecular hydrogen bonding interaction. Computed values for the bond length N<sub>3</sub>-H<sub>15</sub> of DMBM is 1.018 Å which are lesser than the standard value (1.1Å) indicating charge transfer from H to O of monohydrate by the formation of strong N-H...O intermolecular hydrogen bonding.

Generally, C-C bond length is about 1.399Å but bond lengths for  $C_4$ - $C_5$ ,  $C_4$ - $C_9$ ,  $C_5$ - $C_6$ , and  $C_7$ - $C_8$  are which

are longer (above 1.4 Å) than characteristic single bond atoms due to lone-pair-lone-pair repulsion involving two adjacent nitrogen atoms. Among these bond lengths,  $C_7$ - $C_8$  is very high (1.434Å) because of delocalization of charge in the methyl groups.

#### Natural bond orbital analysis

NBO analysis has been used to elucidate inter and intra-molecular hydrogen bonding and intermolecular charge transfer. The second order perturbation analysis of the Fock matrix of DMBM using NBO basis are tabulated in Table 2.

| <b>Fable 1.</b> Optimized bond length (Å | ) Bond angle (°) and Dihedral | l angle (°) | ) of DMBM. |
|------------------------------------------|-------------------------------|-------------|------------|
|------------------------------------------|-------------------------------|-------------|------------|

| Bond length | Theoretical (Å) | Bond Angle   | Theoretical (Å) | Dihedral Angle | Theoretical (Å) |
|-------------|-----------------|--------------|-----------------|----------------|-----------------|
| N1-N2       | 1.2917          | N2-N1-C5     | 108.3544        | C5-N1-N2-N3    | 0.0007          |
| N1-C5       | 1.3785          | N1-N2-N3     | 109.1824        | N2-N1-C5-C4    | 0.0004          |
| N2-N3       | 1.3588          | N2-N3-C4     | 110.392         | N2-N1-C5-C6    | -179,9997       |
| N3-C4       | 1.3628          | N2-N3- H 15  | 118.9385        | N1-N2-N3-C4    | -0.0016         |
| N3-H15      | 1.0188          | C4-N3- H15   | 130.6695        | N1-N2-N3- H15  | -179.9969       |
| C4-C5       | 1.4034          | N3-C4-C5     | 103.4973        | N2-N3-C4-C5    | 0.0017          |
| C4-C9       | 1.4005          | N3-C4-C5     | 134.8363        | N2-N3-C4-C9    | 179.9997        |
| C5-C6       | 1.4019          | C5-C4-C9     | 121.6664        | H15-N3-C4-C5   | 179.9963        |
| C6-C7       | 1.3854          | N1-C5-C4     | 108.5739        | H15-N3-C4-C9   | -0.0057         |
| C6- H17     | 1.084           | N1-C5-C6     | 131.1289        | N2-N3-O13- H12 | 62.1299         |
| C7-C8       | 1.4347          | C4-C5-C6     | 120.2972        | N2-N3-O13- H14 | -62.3792        |
| C7-C10      | 1.5105          | C5-C6-C7     | 118.9239        | C4-N3-O13- H12 | -117.8488       |
| C8-C9       | 1.3878          | C5-C6- H17   | 120.0253        | C4-N3-O13- H14 | 117.6421        |
| C8-C11      | 1.5099          | C6-C6- H17   | 121.0508        | N3-C4-C5-N1    | -0.0013         |
| C9- H16     | 1.084           | C6-C7-C8     | 120.3102        | N3-C4-C5-C6    | 179.9988        |
| C10- H18    | 1.0912          | C6-C7-C10    | 119.8257        | C9-C4-C5-N1    | -179.9996       |
| C10-H19     | 1.0951          | C8-C7-C10    | 119.864         | C9-C4-C5-C6    | 0.0004          |
| C10- H20    | 1.0951          | C7-C8-C9     | 120.8698        | N3-C4-C9-C8    | -179.9985       |
| C11- H21    | 1.0949          | C7-C8-C11    | 119.7941        | N3-C4-C9- H16  | 0.0027          |
| C11- H22    | 1.0913          | C9-C8-C11    | 119.3361        | С5-С4-С9- Н16  | -0.007          |
| C11- H23    | 1.0949          | C4-C9-C8     | 117.9325        | N1-C5-C6-C7    | -179.9996       |
| H12-O13     | 0.9632          | C4-C9-16     | 121.4929        | N1-C5-C6- H17  | 180.0           |
| 013- H14    | 0.9632          | C8-C9-16     | 120.5747        | C4-C5-C6-C7    | 0.0005          |
| O13- H15    | 1.9128          | C7-C10- H18  | 110.8049        | C4-C5-C6- H17  | -0.0001         |
|             |                 | C7-C10- H19  | 111.7627        | C5-C6-C7-C8    | -179.9995       |
|             |                 | C7-C10- H20  | 111.7624        | C5-C6-C7-C10   | 0.0             |
|             |                 | H18-C10- H19 | 107.7224        | H17-C6-C7-C8   | 180.0           |
|             |                 | H18-C10- H20 | 107.7219        | H17-C6-C7-C8   | 179.9995        |
|             |                 | H19-C10- H20 | 106.8467        | C6-C7-C8-C11   | -0.0005         |
|             |                 | C8-C11- H21  | 111.5805        | C10-C7-C8-C9   | -0.0003         |
|             |                 | C8-C11- H22  | 111.0285        | C10-C7-C8-C11  | 180.0           |
|             |                 | C8-C11- H23  | 111.5806        | C6-C7-C10- H18 | 179.9997        |
|             |                 | H21-C11- H22 | 107.8365        | C6-C7-C10- H19 | 0.0             |
|             |                 | H21-C11- H23 | 106.766         | C6-C7-C10- H20 | 0.0039          |
|             |                 | H22-C11- H23 | 107.8369        | C8-C7-C10- H18 | 120.1572        |
|             |                 | H12-O13- H14 | 105.6098        | C8-C7-C10- H19 | -120.1486       |
|             |                 | H12-O13- H15 | 116.5458        | C8-C7-C10- H20 | -179.9961       |
|             |                 | H14-O13- H15 | 116.6086        | C7-C8-C9-C4    | -59.8428        |
|             |                 |              |                 | С7-С8-С9- Н16  | 59.8428         |
|             |                 |              |                 | C11-C8-C9-C4   | 59.8514         |
|             |                 |              |                 | C11-C8-C9- H16 | 0.0006          |
|             |                 |              |                 | C7-C8-C11- H21 | 179.9995        |
|             |                 |              |                 | C7-C8-C11- H22 | -179.9997       |

| Bond length | Theoretical (Å) | Bond Angle | Theoretical (Å) | Dihedral Angle | Theoretical (Å) |
|-------------|-----------------|------------|-----------------|----------------|-----------------|
|             |                 |            |                 | C7-C8-C11- H23 | -0.0008         |
|             |                 |            |                 | C9-C8-C11- H21 | 59.6763         |
|             |                 |            |                 | C9-C8-C11- H22 | -179.9957       |
|             |                 |            |                 | C9-C8-C11- H23 | 120.3332        |

Table 2. Second order perturbation analysis of Fock matrix of DMBM using NBO basis.

| Donor      | ED(i) (e) | Acceptor   | ED(j) (e) | E(2) <sup>a</sup> (KJ/mol) | E(j)-E(i) <sup>b</sup> (a.u) | F(ij) <sup>c</sup> (a.u) |
|------------|-----------|------------|-----------|----------------------------|------------------------------|--------------------------|
| σ(N1-N2)   | 1.98645   | σ*(C5-C6)  | 0.02053   | 4.01                       | 1.48                         | 0.069                    |
| π(N1-N2)   | 1.90531   | π*(N1-N2)  | 0.42431   | 0.61                       | 0.32                         | 0.014                    |
|            |           | π*(C4-C5)  | 0.47434   | 4.09                       | 0.37                         | 0.072                    |
| σ(N1-C5)   | 1.98462   | σ*(N2-N3)  | 0.04380   | 0.70                       | 1.16                         | 0.026                    |
|            |           | σ*(C4-C9)  | 0.02061   | 2.95                       | 1.34                         | 0.056                    |
|            |           | σ*(C6-C7)  | 0.01853   | 0.86                       | 1.39                         | 0.031                    |
| σ(N2-N3)   | 1.99024   | σ*(N3-C4)  | 0.03620   | 0.91                       | 1.32                         | 0.031                    |
|            |           | σ*(C5-C6)  | 0.02053   | 0.58                       | 1.42                         | 0.026                    |
| σ(N3-C4)   | 1.98819   | σ*(N1-C5)  | 0.03102   | 0.61                       | 1.31                         | 0.025                    |
|            |           | σ*(N3-C15) | 0.03701   | 0.93                       | 1.24                         | 0.031                    |
|            |           | σ*(C4-C5)  | 0.47434   | 1.31                       | 1.39                         | 0.046                    |
| σ(N3-H15)  | 1.98839   | σ*(N1-N2)  | 0.00883   | 2.16                       | 1.20                         | 0.068                    |
| σ(C3-C4)   | 1.96202   | σ*(C4-C9)  | 0.02061   | 4.60                       | 1.23                         | 0.048                    |
|            |           | σ*(C6-H17) | 0.01522   | 2.15                       | 1.12                         | 0.048                    |
|            |           | σ*(C9-H16) | 0.01560   | 2.63                       | 1.10                         | 0.066                    |
| π(C4-C5)   | 1.58689   | π*(C6-C7)  | 0.27921   | 17.31                      | 0.30                         | 0.058                    |
| σ(C4-C9)   | 1.97278   | σ*(C8-C9)  | 0.01922   | 3.25                       | 1.30                         | 0.061                    |
| σ(C5-C6)   | 1.97485   | σ*(C4-C5)  | 0.47434   | 3.77                       | 1.25                         | 0.068                    |
| σ(C6-C7)   | 1.97267   | σ*(N1-C5)  | 0.03102   | 4.87                       | 1.18                         | 0.067                    |
| π(C6-C7)   | 1.73142   | π*(C8-C9)  | 0.2990    | 19.36                      | 0.29                         | 0.057                    |
| σ(C6-H17)  | 1.97929   | σ*(C4-C5)  | 0.47434   | 3.77                       | 1.07                         | 0.040                    |
| σ(C10-H19) | 1.97946   | σ*(C6-C7)  | 0.01853   | 1.82                       | 1.11                         | 0.040                    |
| σ(C11-H21) | 1.97824   | σ*(C8-C9)  | 0.01922   | 1.82                       | 1.10                         | 0.061                    |
| σ(C11-H22) | 1.98963   | σ*(C7-C8)  | 0.03267   | 4.34                       | 1.05                         | 0.040                    |
| σ(C11-C23) | 1.94825   | σ*(C8-C9)  | 0.01922   | 1.82                       | 1.10                         | 0.063                    |
| n(1)N1     | 1.93179   | σ*(C4-C5)  | 0.47434   | 5.27                       | 0.94                         | 0.068                    |
| n(1)N2     | 1.95560   | σ*(N1-C5)  | 0.01302   | 6.29                       | 0.92                         | 0.056                    |
| σ(O13-H14) | 1.99905   | π*(N3-H15) | 0.03701   | 0.11                       | 1.20                         | 0.011                    |

Hyper-conjugation may be given as stabilizing effect that arises from an overlap between an occupied orbital with another neighbouring electron deficient orbitals of DMBM. Non-covalent bonding (antibonding) interaction is quantitatively described. Lone pair interaction between nitrogen moiety to CN moiety n1 (N2) $\rightarrow \sigma^*(N_1-C_5)$  obtained as 6.29kJ/mol, serves as an evidence for intra-molecular charge transfer interactions from nitrogen moiety. NBO analysis has the existence of strong N3....H15-O13 whose energy is about 0.11 kJ/mol which supports the inter-molecular hydrogen bonding.

#### HOMO LUMO energy analysis

HOMO and LUMO energies are calculated using the B3LYP/6-31G(d) method and the atomic compositions of the HOMO and LUMO are shown in Fig.2.



Fig. 2. HOMO and LUMO plots.

The electronic transition absorption corresponds to the transition from the ground to the first excited state and is described by the electron excitation from the HOMO and the LUMO. The HOMO is located over the Benzotriazole and dimethyl groups and the LUMO is located over the Monohydrate. HOMO→LUMO transition implies an electron density transfer from the benzotriazole group to the Monohydrate molecule. The calculated energy of HOMO is -6.34841eV and the LUMO is -6.54733eV. The energy gap between the HOMO and the LUMO is 0.19891 eV. This small energy gap is responsible for intermolecular charge transfer, which confirms the biological activity of the molecule. By using HOMO and LUMO energies, the electronegativity, chemical hardness, softness and electrophilicity of the title molecule calculated using TD-DFT method and listed in Table 3.

**Table 3.** HOMO and LUMO energies using TD-DFTmethod.

| TD-DFT/B3LYP/6-31G            | Gas     |
|-------------------------------|---------|
| Еномо (eV)                    | -6.3484 |
| E <sub>LUMO</sub> (eV)        | -6.5473 |
| Еномо-цимоGas (eV)            | -5.2512 |
| Еномо-1(eV)                   | -6.5473 |
| E <sub>LUMO+1</sub> (eV)      | -1.0617 |
| EHOMO-1-LUMO+1 (eV)           | -5.4855 |
| E <sub>HOMO-2</sub>           | -7.2039 |
| E <sub>LUMO+2</sub>           | -0.2498 |
| EHOMO-2-LUMO+2 gas            | -6.9541 |
| Electronegativity χ (eV)      | 2.6256  |
| Chemical harness η(eV)        | 2.6256  |
| Softness ζ (eV)               | 0.1904  |
| Electrophillicity $\psi$ (eV) | 1.3128  |

The electronegativity, chemical hardness, softness, and electrophilicity index in the gas phase are 2.6256, 2.6256, -0.1904 and 1.3128 respectively. These results reveal that this molecule has less hardness and high softness due to the low value of the HOMO–LUMO gap. The calculated value of electrophilicity index describes the biological activity of DMBM.

### UV vis spectra

UV–Vis absorption and Transmittance spectra of DMBM recorded in water are shown in Fig. 3 a & b. Molecules allow strong  $\pi \rightarrow \pi^*$  transition in the UV–visible region with high extinction coefficients. NBO analysis indicates that molecular orbitals are mainly

experimental values are tabulated in Table 4.



**Fig. 3.** UV VIS (a) Absorbance (b) Transmittance spectrum of DMBM.

The maximum absorption and transmittance peak in the UV-vis spectrum predicts electronic transitions at 199nm and 243nm respectively with an oscillator strength f = 0.1833 & 0.0002 showing good agreement with the characteristic peak that arises in the pyrazine system due to  $n \rightarrow \pi^*$  transition (Mohan et al., 2009). The wavelengths obtained with B3LYP/6-31G (d) computations are 267nm, 251nm, 238nm, 222nm, and 213nm. Both HOMO and LUMO are the main orbitals that take part in chemical stability. In view of calculated absorption and transmittance spectra, the respective wavelengths are 199 and 243nm. These absorption spectra correspond to the electronic transition from the HOMO-1 to LUMO+1 with 32% contribution as well as HOMO to LUMO+2 with 57% contribution and HOMO-1 to LUMO with 82% contribution respectively.

**Table 4.** UV-vis excitation energy  $\Delta E$  and oscillator strength (f) for DMBM.

| _         |         |                     |                     |                        |                                |
|-----------|---------|---------------------|---------------------|------------------------|--------------------------------|
| S.<br>No. | Energy_ | Wavel<br>(ni<br>Cal | length<br>m)<br>Exp | Oscillator<br>strength | Major contributions            |
| 1         | 37425   | 267                 |                     | 0.1008                 | HOMO→LUMO(87%)                 |
| 2         | 39806   | 251                 | 243                 | 0.1833                 | H-1→ LUMO (82%)                |
| 3         | 42006   | 238                 |                     | 0.0056                 | H-2→LUMO(98%)                  |
| 4         | 44944   | 222                 |                     | 0.0001                 | HOMO→L+1(90%)                  |
| 5         | 46729   | 213                 |                     | 0.0001                 | H-1→L+1(58%),<br>HOMO→L+2(32%) |
| 6         | 46803   | 213                 | 199                 | 0.0002                 | H-1→L+1(32%),<br>HOMO→L+2(57%) |

#### Vibrational spectral analysis

Assignments of FT-IR and Raman spectra were carried out with the aid of NCA followed by the force field calculations with the same method that was employed for the geometry optimization of the molecule. A non-redundant set of internal coordinates for DMBM has been defined and used as a data file to MOLVIB program. The computed wave numbers were selectively scaled using a set of 16 transferable scale factors with an RMS frequency error of 9cm-1. Experimental and simulated FT-IR and Raman spectra were shown as overlaid with the corresponding simulated spectra Fig. 4 and 5 for visual comparisons. In DMBM have 2 methyl (CH<sub>3</sub>) groups and two rings such as Phenyl ring and Triazole ring. These two rings assume the vibrations. Thus, the molecule has C-C stretching, C-H stretching, N-N stretching, N-H stretching, and O-H stretching. Experimental and calculated frequencies, IR and Raman intensities with the PED contributions have been tabulated in Table 5. The vibrational assignments for different functional groups have been discussed below:

**Table 5.** Vibrational assignments of DMBM by Normal

 Coordinate Analysis based on SQMFF calculations.

| Observed<br>fundamer | ntals/cm <sup>-1</sup>         | Selective scaled B3LYP/6-31(d)force field                                                                            |
|----------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------|
| $v_{\rm IR}$         | $\boldsymbol{v}_{	ext{Raman}}$ | $v_{\text{Cal}\text{cm}}$ Assignment with PED ( $\geq 10\%$ )                                                        |
| 3346w                |                                | 3346 vasOH(100)                                                                                                      |
| 3246 s               |                                | 3246 vssOH( 79), NH <sub>R2</sub> ( 20)                                                                              |
| 3224 s               |                                | 3224 vNH <sub>R2</sub> (78), vssOH(19)                                                                               |
|                      |                                | 3166 vCH <sub>R1</sub> ( 97)                                                                                         |
| 3157 s               |                                | 3158 $\nu$ CH <sub>R1</sub> (99)                                                                                     |
|                      | 3135vs                         | 3129 vssCH <sub>3</sub> (83),visCH <sub>3</sub> (16)                                                                 |
| 3078 w               |                                | 3093 vosCH <sub>3</sub> (65), visCH <sub>3</sub> (27)                                                                |
|                      | 3060 w                         | 3054 v <sub>Is</sub> CH <sub>3</sub> (74), v <sub>Os</sub> CH <sub>3</sub> (19)                                      |
| 3045 s               |                                | 3050 vosCH <sub>3</sub> (100)                                                                                        |
|                      |                                | 3036 v <sub>ss</sub> CH <sub>3</sub> (74)                                                                            |
|                      |                                | 3035 $\nu_{\rm SS}$ CH <sub>3</sub> (31), $\omega$ C4(21), $\tau_{\rm R2}$ (19), $\nu_{\rm SS}$ CH <sub>3</sub> (12) |
| 3000 w               |                                | 3001 v1sCH <sub>3</sub> (57), vssCH <sub>3</sub> (43)                                                                |

| Observed | ntals/cm-1  | Select         | ive scaled B3LYP/6-31(d)force field                                                                                               |
|----------|-------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------|
| rundumer | ituis/ cili | 1716           | vCC <sub>R1</sub> (47),vNHOR <sub>2</sub> (10),vCH <sub>R1</sub> (10)                                                             |
| 1657 s   | 1652 W      | 1654           | $\beta$ H2O <sub>SD</sub> (53), $\beta$ H2O <sub>R1</sub> (24), $\nu$ CC <sub>R1</sub>                                            |
| 1625 8   |             | 1648           | $\frac{(12)}{(44)^{1/2}}$                                                                                                         |
| 1035 8   | 1593 8      | 1582           | $\nu CC_{R_1}(27).NH_{R_2}(21).NHO_{R_2}(12)$                                                                                     |
| 1544 w   | -0900       | 1536           | $\nu CC_{R1}(33), CH_{R1}(28)$                                                                                                    |
|          | 1514 s      | 1503           | vAOCH2 ( 61), vADCH2( 16)                                                                                                         |
|          |             | 1496           | $v_{AO}CH2 (30), CC_{R1} (11), v_{AD}CH2 (11),$                                                                                   |
| 1400 W   |             | 1400           | $NH_{R_2}(10)$<br>$\nu_{AD}CH_2(65)$ $\nu_{AO}CH_2(25)$                                                                           |
| 1478 w   |             | 1476           | vapCH2(63), vaoCH2(23)                                                                                                            |
| 17       | 1460 s      | 1464           | $\nu_{AO}CH2(25), CC_{R1}(15), \nu_{AD}CH2(14)$                                                                                   |
| 1422 S   |             | 1423           | $CH_{2R_1}(56), CH_{2O_{R_1}}(17), \nu_{AO}CH_3(15)$                                                                              |
|          | 1410 14     | 1413           | $CH_{2R1}(55), v_{AO}CH_{2}(17), CH_{2}O_{R1}(15)$                                                                                |
|          | 1360vs      | 1372           | $\beta CC(29), \beta NNR_{2}(20), NHOR_{2}(13)$                                                                                   |
| 1055 0   | -0          | 10.47          | $\nu CN_{R1}(24), \nu CC_{R1}(17), \tau C3(13), CH2_{R1}$                                                                         |
| 1355 8   |             | 1347           | (10)                                                                                                                              |
|          | 1318 w      | 1315           | $\frac{\nu CH_{RI}(62)}{\nu CQ_{RI}(62)} $                                                                                        |
|          | 1281 s      | 1288           | $\nu CCr_1(21), CNr_2(21), \beta NNr_2(13), CC$                                                                                   |
|          |             |                | $\nu CH_{R1}(33), CC(19), \nu CN_{R2}(17), \nu CC_{R1}$                                                                           |
| 1210 s   |             | 1211           | (14)                                                                                                                              |
| 1154 s   |             | 1152           | CC(33),CN <sub>R1</sub> (15)                                                                                                      |
|          | 1105 s      | 1103           | $\frac{\nu NN_{R_2}(37), NHO_{R_2}(27), H2O_{R_1}(10)}{C_{R_2}(27), H_2O_{R_1}(10)}$                                              |
|          |             | 1101           | $2\Omega_{P_1}(16) \ \omega CH_{P_2}(10), \omega CC_{R_1}(17), CH$                                                                |
| 1064 w   |             | 1069           | $NN_{R_2}(32), CC_{R_1}(21), NHOR(16)$                                                                                            |
| •        | 1051 \$     | 1050           | $\nu_{\rm SD}$ CH2(34), $\omega$ CH <sub>R1</sub> (                                                                               |
|          | 10313       | 1059           | 22),CH2O <sub>R1</sub> (20)                                                                                                       |
| 1010 0   | 1035 W      | 1035           | $\frac{\text{CH}_{2}\text{O}_{R_{1}}(39), \nu_{\text{SD}}\text{CH}_{2}(38)}{\text{CH}_{2}(38), \nu_{\text{SD}}\text{CH}_{2}(38)}$ |
| 1019.8   | 1000 s      | 1015           | $\omega CH_{P_2}(82)$ , $\nu_{SD} CH_2(39), CC_{R_1}(11)$                                                                         |
| 952 W    | 10095       | 948            | $\omega CH_{R1}(70)$                                                                                                              |
| 918 s    |             | 912            | τCNHO(46),τNOH2(44)                                                                                                               |
| 896vs    |             | 882            | $\beta$ CC <sub>R1</sub> (29),NHO <sub>R2</sub> (14),CN <sub>R1</sub> (12),CC                                                     |
| -        | 847 W       | 840            | (11)<br>NHO <sub>Po</sub> (20) NH <sub>Po</sub> (24) $\tau$ C2(16) CC (11)                                                        |
| 751 W    | 04/ 11      | 762            | $\beta CC_{R1}(45), CC(23), \beta C3(21)$                                                                                         |
|          | 747 W       | 747            | $\tau C_4(44), \omega CC_{R_1}(20), \tau C_4(17)$                                                                                 |
| 717s     |             | 708            | $\tau C4O_{R2}(45), \tau C4_{R2}(32)$                                                                                             |
| 594 s    |             | 594            | $\nu CC_{R_1}(24), CN_{R_2}$                                                                                                      |
|          |             |                | $\tau C_3(20), \nu C C_{R_1}(20), C C(11),$                                                                                       |
| 494 W    |             | 495            | H2O(11),RCN(11)                                                                                                                   |
|          | 467w        | 471            | $\beta$ C3(33), $\beta$ CN <sub>R2</sub> (13),H2O <sub>R1</sub> (12),CC <sub>R1</sub>                                             |
| 4076     | • /         | 404            | $\frac{(11), \text{NHO}(10)}{(10)}$                                                                                               |
|          |             | 494            | $\tau C_{4R_2}(33), \tau C_4(20),$                                                                                                |
| 378 s    |             | 377            | $\omega CC_{R1}(12), \tau C4O_{R1}(11)$                                                                                           |
|          | 330 w       | 326            | H2OR(55),v <sub>SD</sub> H2O(24)                                                                                                  |
|          |             | 320            | $\frac{\omega C C_{R1}(84)}{\sigma C N HO(aa) \sigma N O HO(aa)} = 100000000000000000000000000000000000$                          |
|          | 266 ₩       | 298            | 10110(32), 110H2(28), 0H20(27)<br>H2O <sub>2</sub> ,(62), $1050H2O(27)$ (1H2O(11)                                                 |
|          | 200 11      | 234            | $\tau C4(56), C3N(11)$                                                                                                            |
|          | 179 W       | 174            | τCH(70), τC4(10)                                                                                                                  |
|          | 146 s       | 146            | vOHB(56),H2OR(25), v <sub>SD</sub> H2O(14)                                                                                        |
|          | 137vs       | 138            | $\frac{\tau \text{CH}(54), \tau \text{C3N}(12), \tau \text{CN}_{3\text{R2}}(11)}{-C2N}$                                           |
|          | 125 W       | 126            | $\tau \cup 3N(21), \cup (21), \tau \cup N3(14),$<br>$\omega \in N_{Po}(14), \tau \in A(12)$                                       |
|          | 58 s        | 64             | CNHO(75)                                                                                                                          |
|          | <u> </u>    | 50             | NOH2(58),CNHO(37)                                                                                                                 |
|          | 33 W        | 35             | H2OR( 59),ν <sub>SD</sub> H2O( 26),ωH2O (10)                                                                                      |
|          |             | 4              | $\omega CN_{R_2}(52), \tau C4_{R_2}(21), \tau C4(16)$                                                                             |
| w-weak;  | vw-very     | v wea          | k; s-strong; vs-very strong; ν-                                                                                                   |
| asymmet  | ric: R-r    | nig;<br>ockino | $\omega$ -wagging: TW-twisting: SD-                                                                                               |
| symmetr  | ic defe     | ormati         | on: SC-scissoring: IS-in-plane                                                                                                    |

stretching; AD-asymmetric deformation; R1-Phenyl ring;

R2- Triazole ring.

#### Methyl vibrations

 $CH_3$  group makes significant contributions in the vibrational spectra of MNBA. Symmetric and asymmetric stretching modes of a methyl group attached the benzene ring are usually downshifted due to electronic effects and are expected near 2925 and 2865cm<sup>-1</sup> for asymmetric and symmetric stretching vibrations. A symmetric stretching mode is observed as a weak band in Raman at 3060cm<sup>-1</sup>. This can direct to changing polarizability and dipole moment due to electron delocalization. Thus, the hyperconjugation and back donation of the methyl group, causing changes in the intensity in IR spectrum which clearly indicates that methyl hydrogen is directly involved in the donation of electronic change (Smith *et al.*, 1999).

The methyl group yields the strengthening of C-H bond which is clearly reflected in the experimental value of C-H bond length (Table 1). Generally, the out-of-plane bending mode of the methyl group is expected near 1460 cm<sup>-1</sup>. CH<sub>3</sub> out-of-plane bending mode is coupled with CH<sub>3</sub> in-plane bending mode and is observed as a strong band at 1422 cm<sup>-1</sup> in IR spectrum with a major PED contribution of 99% is shown in Table 5. Torsion and other modes are given in Table S1 & S2.

**Table S1.** Definition of internal valence coordinates of DMBM.

| Number | Symbol | Type | Definition                                                                                                                                                                                                                                                                                                                                                                                             |  |
|--------|--------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| STRETC | HING   |      |                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 1-6    | ri     | CC   | $C_4$ - $C_5$ , $C_5$ - $C_6$ , $C_6$ - $C_7$ , $C_7$ - $C_8$ , $C_8$ - $C_9$ , $C_9$ - $C_4$                                                                                                                                                                                                                                                                                                          |  |
| 7-8    | ri     | CH   | $C_9$ - $H_{16}$ , $C_6$ - $H_{17}$                                                                                                                                                                                                                                                                                                                                                                    |  |
| 9-10   | ri     | CN   | $C_5-N_1, C_4-N_3$                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 11-12  | ri     | NN   | $N_1-N_2, N_2-N_3$                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 13     | ri     | NH   | $N_{3}-H_{15}$                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 14-15  | ri     | CC1  | C8-C11,C7-C10                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 16     | ri     | OH   | $O_{13}$ - $H_{14}$                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 17     | ri     | OH1  | O <sub>13</sub> -H <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                       |  |
| 18-33  | ri     | CH1  | $\begin{array}{c} C_{11}\text{-}H_{21}, C_{11}\text{-}H_{22}, C_{11}\text{-}H_{23}, C_{10}\text{-}H_{18}, C_{10}\text{-}\\ H_{19}, C_{10}\text{-}H_{20}, C_{11}\text{-}H_{21}, C_{11}\text{-}H_{22}, C_{11}\text{-}\\ H_{23}, C_{10}\text{-}H_{18}, C_{10}\text{-}H_{19}, C_{10}\text{-}H_{20}, C_{11}\text{-}\\ H_{22}, C_{11}\text{-}H_{23}, C_{10}\text{-}H_{19}, C_{19}\text{-}H_{20} \end{array}$ |  |
| 34     | ri     | OH2  | O <sub>13</sub> - H <sub>15</sub>                                                                                                                                                                                                                                                                                                                                                                      |  |
| BENDIN | G      |      |                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 35-38  | βi     | CCH  | $\begin{array}{c} C_8\text{-}C_9\text{-}H_{16}, C_4\text{-}C_9\text{-}H_{16}, C_7\text{-}C_6\text{-}H_{17}, C_3\text{-}\\ C_6\text{-}H_{17} \end{array}$                                                                                                                                                                                                                                               |  |
| 39-42  | βi     | CCC  | C <sub>9</sub> -C <sub>8</sub> -C <sub>11</sub> ,C <sub>7</sub> -C <sub>8</sub> -C <sub>11</sub> ,C <sub>6</sub> -C <sub>7</sub> -C <sub>10</sub> ,C <sub>8</sub> -<br>C <sub>7</sub> -C <sub>10</sub>                                                                                                                                                                                                 |  |
| 43     | βi     | CNH  | $C_4-N_3-H_{15}$                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 44     | βi     | NNH  | N <sub>2</sub> -N <sub>3</sub> -H <sub>15</sub>                                                                                                                                                                                                                                                                                                                                                        |  |
| 45-48  | βi     | CCN  | $C_9$ - $C_4$ - $N_3$ , $C_3$ - $C_4$ - $N_3$ , $C_4$ - $C_5$ - $N_1$ , $C_6$ - $C_5$ - $N_1$                                                                                                                                                                                                                                                                                                          |  |

| 551 | Mini | et al |
|-----|------|-------|

| Number S                                                                                                       | ymbol    | Туре  | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STRETCH                                                                                                        | ING      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 49-64                                                                                                          | βi       | CCC1  | $\begin{array}{l} C_4-C_5-C_6,C_6-C_7-C_8,C_8-C_9-C_4,C_5-C_6-\\ C_7,C_7-C_8-C_9,C_9-C_4-C_5,C_4-C_5-C_6,C_7-\\ C_8-C_9,C_5-C_6-C_7,C_6-C_7-C_8,C_8-C_9-\\ C_4,C_9-C_4-C_5,C_5-C_6-C_7,C_8-C_9-C_4,C_6-\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 65-70                                                                                                          | βi       | НСН   | $\begin{array}{c} C_7\text{-}C_8, C_9\text{-}C_4\text{-}C_5 \\ H_{20}\text{-}C_{10}\text{-}H_{19}, H_{19}\text{-}C_{10}\text{-}H_{18}, H_{20}\text{-}C_{10}\text{-}\\ H_{18}, H_{22}\text{-}C_{11}\text{-}H_{23}, H_{23}\text{-}C_{11}\text{-}H_{21}, H_{22}\text{-}\\ C_{11}\text{-}H_{21} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 71-76                                                                                                          | βi       | HCC   | $H_{20}$ - $C_{10}$ - $C_7$ , $H_{19}$ - $C_{10}$ - $C_7$ , $H_{18}$ - $C_{10}$ - $C_7$ , $H_{22}$ - $C_{11}$ - $C_8$ , $H_{23}$ - $C_{11}$ - $C_8$ , $H_{21}$ - $C_{11}$ - $C_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 77-82                                                                                                          | βi       | HCH1  | $\begin{array}{c} H_{20}\text{-}C_{10}\text{-}H_{19}\text{,}H_{19}\text{-}C_{10}\text{-}H_{18}\text{,}H_{20}\text{-}C_{10}\text{-}\\ H_{18}\text{,}H_{22}\text{-}C_{11}\text{-}H_{23}\text{,}H_{23}\text{-}C_{11}\text{-}H_{21}\text{,}H_{22}\text{-}\\ C_{11}\text{-}H_{21}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 83-86                                                                                                          | βi       | HCH2  | $H_{19}$ - $C_{10}$ - $H_{18}$ , $H_{20}$ - $C_{10}$ - $H_{18}$ , $H_{23}$ - $C_{11}$ - $H_{21}$ , $H_{22}$ - $C_{11}$ - $H_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 87-92                                                                                                          | βi       | HCC1  | $H_{20}$ - $C_{10}$ - $C_7$ , $H_{19}$ - $C_{10}$ - $C_7$ , $H_{18}$ - $C_{10}$ - $C_7$ , $H_{22}$ - $C_{11}$ - $C_8$ , $H_{23}$ - $C_{11}$ - $C_8$ , $H_{21}$ - $C_{11}$ - $C_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 93-96                                                                                                          | βi       | HCC2  | $H_{19}-C_{10}-C_7,H_{18}-C_{10}-C_7,H_{23}-C_{11}-C_8,H_{21}-C_{11}-C_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 97-98                                                                                                          | βi       | HOH   | H <sub>14</sub> -O <sub>13</sub> -H <sub>12</sub> ,H <sub>14</sub> -O <sub>13</sub> -H <sub>15</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 00-100                                                                                                         | ßi       | HOH1  | H14-O10-H15 H10-O10-H15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 101                                                                                                            |          | NHO   | NHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 101                                                                                                            | ρ1<br>ο: | CNIN  | N3-1115-013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 102                                                                                                            |          | CNN   | C <sub>4</sub> -N <sub>3</sub> -N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 103-104                                                                                                        | βι       | NNC   | $N_2-N_1-C_5, N_2-N_1-C_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 105                                                                                                            | βi       | CCN   | $C_5$ - $C_4$ - $N_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 106                                                                                                            | βi       | NCC   | $N_1$ - $C_5$ - $C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 107                                                                                                            | βi       | NNN   | $N_3-N_2-N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 108                                                                                                            | βi       | CCN   | $C_5-C_4-N_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 109                                                                                                            | βi       | NNC   | N <sub>2</sub> -N <sub>1</sub> -C <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 110                                                                                                            | βi       | NCC   | N1-C5-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| OUT-OF-P                                                                                                       | LANE     | BENDI | NG (WAGGING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 111-112                                                                                                        | ωi       | CCCH  | C <sub>4</sub> -C <sub>9</sub> -C <sub>8</sub> -H <sub>16</sub> ,C <sub>5</sub> -C <sub>6</sub> -C <sub>7</sub> -H <sub>17</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 113-114                                                                                                        | ωi       | CCCC  | CCCC_+CCCCC_+C_+C_+C_+C_+C_+C_+C_+C_+C_+C_+C_+C_+C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 115                                                                                                            | wi       | NNCH  | No-No-C -His                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 115                                                                                                            | wi       | CCCN  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 110-11/                                                                                                        | ωι       |       | $C_5 - C_4 - C_9 - N_3, C_6 - C_5 - C_4 - N_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 118<br>TODOLON                                                                                                 | ωι       | нонн  | H <sub>14</sub> -O <sub>13</sub> -H <sub>12</sub> -H <sub>15</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TORSION                                                                                                        |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 119-134                                                                                                        | τί       | CCCC  | $\begin{array}{l} C_4-C_5-C_6-C_7, C_6-C_7-C_8-C_9, C_8-C_9-C_4, C_9-C_4\\ C_5, C_5-C_6-C_7-C_8, C_7-C_8-C_9-C_4, C_9-C_4\\ C_5-C_6, C_4-C_5-C_6-C_7, C_7-C_8-C_9-C_4, C_6\\ C_7-C_8-C_9, C_9-C_4-C_5-C_6, C_5-C_6-C_7\\ C_8, C_8-C_9-C_4-C_5, C_4-C_5-C_6, C_5-C_6-C_7\\ C_9-C_9-C_4-C_5-C_6-C_7, C_6-C_7-C_8-C_9-C_8\\ C_9-C_9-C_9-C_9-C_9-C_8-C_8-C_8-C_8-C_7\\ C_9-C_9-C_9-C_9-C_9-C_8-C_8-C_8-C_8\\ C_9-C_9-C_8-C_9-C_8-C_8-C_8-C_8\\ C_9-C_8-C_9-C_8-C_8-C_8-C_8\\ C_9-C_8-C_8-C_8-C_8-C_8\\ C_9-C_8-C_8-C_8-C_8-C_8\\ C_9-C_8-C_8-C_8-C_8-C_8\\ C_9-C_8-C_8-C_8-C_8\\ C_9-C_8-C_8-C_8-C_8\\ C_9-C_8-C_8-C_8-C_8\\ C_9-C_8-C_8-C_8-C_8\\ C_9-C_8-C_8-C_8-C_8\\ C_9-C_8-C_8-C_8-C_8\\ C_9-C_8-C_8-C_8-C_8\\ C_9-C_8-C_8-C_8\\ C_9-C_8-C_8\\ C_9-C_8\\ C_9-C_8-C_8\\ C_9-C_8\\ C_9-C_$ |
| 135-136                                                                                                        | τί       | NHOH  | N <sub>3</sub> -H <sub>15</sub> -O <sub>13</sub> -H <sub>12</sub> ,N <sub>3</sub> -H <sub>15</sub> -O <sub>13</sub> -H <sub>14</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 137-138                                                                                                        | τί       | CNHO  | $C_4$ - $N_3$ - $H_{15}$ - $O_{13}$ , $N_2$ - $N_3$ - $H_{15}$ - $O_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 139-144                                                                                                        | τί       | СССН  | $\begin{array}{c} C_6-C_7-C_{10}-H_{18}, C_6-C_7-C_{10}-H_{19}, C_6-C_7-\\ C_{10}-H_{20}, C_8-C_7-C_{10}-H_{18}, C_8-C_7-C_{10}-\\ H_{10}, C_8-C_7-C_{10}-H_{20} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 145-150                                                                                                        | τί       | CCCH1 | $\begin{array}{c} C_7\text{-}C_8\text{-}C_{11}\text{-}H_{21}, C_7\text{-}C_8\text{-}C_{11}\text{-}H_{23}, C_7\text{-}C_8\text{-}\\ C_{11}\text{-}H_{22}, \\ C_9\text{-}C_8\text{-}C_{11}\text{-}H_{21}, C_9\text{-}C_8\text{-}C_{11}\text{-}H_{23}, C_9\text{-}C_8\text{-}\\ C_{11}\text{-}H_{22} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 151                                                                                                            | τί       | CNNN  | $C_4-N_3-N_2-N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 152                                                                                                            | τί       | CCNN1 | $C_5-C_4-N_3-N_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 153                                                                                                            | τί       | NNNC  | $N_{3}-N_{2}-N_{1}-C_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 154                                                                                                            | τί       | NCCN  | N1-CC4-N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 155                                                                                                            | τi       | NNCC  | N9-N1-Cr-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| +00                                                                                                            |          | NHOU  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 150-157                                                                                                        | τι       | NHUH  | $N_3$ - $H_{15}$ - $U_{13}$ - $H_{12}$ , $N_3$ - $H_{15}$ - $U_{13}$ - $H_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 158-159                                                                                                        | τί       | CNHO  | $C_4$ - $N_3$ - $H_{15}$ - $O_{13}$ , $N_2$ - $N_3$ - $H_{15}$ - $O_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 160-161                                                                                                        | τί       | CCCN  | C <sub>9</sub> -C <sub>4</sub> -C <sub>5</sub> -N <sub>1</sub> ,C <sub>6</sub> -C <sub>5</sub> -C <sub>4</sub> -N <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The second s |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## Int. J. Biosci.

| 2 | 0 | 1 | 9 |
|---|---|---|---|
| _ | _ | _ |   |

| <b>Fable S2.</b> ] | Definition | of local | symmetry | coordinates. |
|--------------------|------------|----------|----------|--------------|
|--------------------|------------|----------|----------|--------------|

| Number   | Symbol               | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STRETCHI | NG                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1-6      | νCC                  | r <sub>1</sub> ,r <sub>2</sub> ,r <sub>3</sub> ,r <sub>4</sub> ,r <sub>5</sub> ,r <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7-8      | νCH                  | r <sub>7</sub> ,r <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9-10     | νCN                  | r <sub>9</sub> ,r <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11-12    | vNN                  | r <sub>11</sub> ,r <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13       | νNH                  | r <sub>13</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14-15    | vCC1                 | r <sub>14</sub> ,r <sub>15</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16       | vOHSS                | $(r_{16}+r_{17})/\sqrt{2}.(r_{16}-r_{17})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17-19    | vCH1SS               | $(r_{10}+r_{10}+r_{00})/\sqrt{3}(r_{00}+r_{00}+r_{00})/\sqrt{3}(2r_{01}+r_{00}+r_{00})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                      | $\frac{1}{10}$                            |
|          |                      | $r_{-1}/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20       | UOHAS                | r94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| BENDING  | VOIIAD               | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 21-22    | ССН                  | $(R + R)/\sqrt{2}(R + R)/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 21-22    | 000                  | $(p_{35}+p_{36})/\sqrt{2}, (p_{37}+p_{38})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 23-24    | Nut                  | $(\beta_{39} + \beta_{40})/\sqrt{2}, (\beta_{41} + \beta_{42})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25       | N2H                  | $(\beta_{43}+\beta_{44})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 26-27    | CCN                  | $(\beta_{45}+\beta_{46})/\sqrt{2}, (\beta_{47}-\beta_{48})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                      | $(\beta_{49}+\beta_{50}+\beta_{51})/\sqrt{6}, (\beta_{52}-\beta_{53}-\beta_{54})/\sqrt{6},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 28-30    | CCC1D                | $(\beta_{55}+\beta_{56}+\beta_{57})/\sqrt{6}, (\beta_{58}-\beta_{59}-\beta_{60}),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |                      | $(\beta_{61}+\beta_{62}-\beta_{63}-\beta_{64})/\sqrt{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | 011-00               | $(\beta_{65}+\beta_{66}+\beta_{67}-\beta_{68}-\beta_{69}-\beta_{70})/\sqrt{6},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 31-32    | CH2SS                | $(\beta_{71}+\beta_{72}+\beta_{73}-\beta_{74}-\beta_{75}-\beta_{76})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 33-34    | CH <sub>2</sub> 1AS  | $(2\beta_{77} + \beta_{78} + \beta_{70})/\sqrt{4} \cdot (2\beta_{80} - \beta_{81} - \beta_{82})/\sqrt{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 35-36    | CH <sub>2</sub> 2ASO | $(\beta_{82}+\beta_{84})/\sqrt{2}.(\beta_{85}-\beta_{86})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 37-38    | C2HROCK              | $(2\beta_{0}+\beta_{0}+\beta_{0})/\sqrt{4}(2\beta_{0}-\beta_{0}+\beta_{0})/\sqrt{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5/ 50    | C2H1ROC              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 39-40    | KO                   | $(\beta_{93}-\beta_{94})/\sqrt{2}, (\beta_{95}-\beta_{96})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 41       | WSS                  | $(2\beta_{97}+\beta_{98}-\beta_{99})/\sqrt{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 42       | WROCK                | $(\beta_{100}-\beta_{101})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 44       | NHO                  | $\beta_{102}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 45       | CN2                  | $\beta_{103}, \beta_{104}, \beta_{105}, \beta_{106}, \beta_{107}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 46       | N3DO                 | $\beta_{108}, \beta_{109}, \beta_{110}, \beta_{111}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WAGGING  | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 47       | $\omega C_{3H}$      | ω <sub>112</sub> ,ω <sub>113</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 48       | $\omega$ CCC         | $\omega_{114}, \omega_{115}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 49       | ωN2CH                | ω116,ω117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 50       | $\omega C_{3}N$      | ω118,ω119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 51       | $\omega OH_3$        | ω <sub>120</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TORSION  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 52-54    | τC4                  | $(\tau_{121}+\tau_{122}+\tau_{123}-\tau_{124}-\tau_{125}-\tau_{126})/\sqrt{6}, (\tau_{127}+\tau_{128}-\tau_{129}-\tau_{126})/\sqrt{6}, (\tau_{127}+\tau_{128}-\tau_{129}-\tau_{128}-\tau_{129}-\tau_{128}-\tau_{129}-\tau_{128}-\tau_{129}-\tau_{128}-\tau_{129}-\tau_{128}-\tau_{128}-\tau_{129}-\tau_{128}-\tau_{128}-\tau_{129}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{129}-\tau_{128}-\tau_{128}-\tau_{129}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{128}-\tau_{$ |
|          |                      | $\frac{\tau_{130}}{\sqrt{4}} \frac{\tau_{131}}{\sqrt{2}} \frac{\tau_{132}}{\tau_{133}} \frac{\tau_{134}}{\tau_{135}} \frac{\tau_{136}}{\tau_{136}} \frac{1}{\sqrt{12}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 55       | τNH2O                | $(\tau_{137} + \tau_{138})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 56       | $\tau$ CNHO          | $(\tau_{139} + \tau_{140})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 57-58    | $\tau C_{3}H$        | $(\tau_{141} + \tau_{142} + \tau_{143} + \tau_{144} - \tau_{145} - \tau_{146} - \tau_{147} - \tau_{148})/\sqrt{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 59-60    | $\tau CN_3$          | $	au_{149}, 	au_{150}, 	au_{151}, 	au_{152}, 	au_{153}, 	au_{154}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 61       | $\tau CN3O$          | $	au_{155}, 	au_{156}, 	au_{157}, 	au_{158}, 	au_{159}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 62-63    | $\tau C_{3}N$        | $(\tau_{160}+\tau_{161})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

#### H<sub>2</sub>O vibrations

 $H_2O$  group makes, O-H stretching band is characterized by the symmetric and asymmetric expected region is 3400-3500cm<sup>-1</sup> (Kolesov and Geiger 2000) and it has been observed as a band at 3346cm<sup>-1</sup> in IR. Red shifting by ~54cm<sup>-1</sup> ascribed the level of inter-molecular N-H...O hydrogen bonding. Theoretically predicted wavenumbers 3346cm<sup>-1</sup> coincide exactly with the experimental wavenumbers and these modes are pure stretching modes as evident from the PED value 100%. Raman band observed at 1652cm<sup>-1</sup> and the strong IR band is 1657cm<sup>-1</sup> having the symmetric deformation stretching vibration. Rocking vibration is observed in IR as a strong band at 1657cm<sup>-1</sup>. Other modes are observed in Table 5.

#### Phenyl ring vibrations

Phenyl vibrations are reasonably in good agreement with the DFT wavenumbers and the assignments made according to Wilson's numbering convention (Varsanyi *et al.*, 1990). C-C stretching modes are 8a, 8b, 19a, 19b and 14. The degenerate mode 8a is expected to occur in the region 1570-1628cm<sup>-1</sup> and the frequency domain of 8b extends from 1570-1614cm<sup>-1</sup>. Strong IR band observed at 1657cm<sup>-1</sup> and a strong band at 1652cm<sup>-1</sup> in Raman have been assigned to the degenerate mode 8a. The C-C stretching in Raman at1593cm<sup>-1</sup> as a strong band is assigned for 8b mode.

C-C stretching mode 19a is observed in IR as a strong band at 1422cm<sup>-1</sup> which is strongly coupled with the C-H bending mode. Another possible C-C stretch vibration of poly-substituted benzene is mode 14, which is observed in Raman as a very strong band at 1360cm<sup>-1</sup>. C-H in-plane bending vibrations are usually expected to occur in the region 1000-1300cm<sup>-1</sup>. A strong band at 1152cm<sup>-1</sup> is observed in the IR spectrum and Raman weak bands are 1064 and 1035cm<sup>-1</sup>. All other vibrations are given in Table 5.

#### Triazole ring vibrations

In hetero-cyclic compounds, N-H stretching vibration occurs in the region 3500–3000cm<sup>-1</sup> (Sathyanarayana 2004) and is observed as a shoulder band at 3224cm<sup>-1</sup> in IR and scaled value at 3224cm<sup>-1</sup> with 78% PED contribution. Normally C-N stretching vibrations of aromatic rings in the region 1382–1266cm<sup>-1</sup> (Silverstein and Webster 2003) which is observed at 1335cm<sup>-1</sup> in IR. Scaled values of this mode at 1347cm<sup>-1</sup> reveals that these modes are not pure modes but contain a significant contribution from other modes. N-N stretching vibration is observed as a very strong band at 1360cm<sup>-1</sup> with scaled value at 1372cm<sup>-1</sup>.

#### Antimicrobial activity

DMBM was tested for its antimicrobial activity against human pathogens of clinical isolates (*Salmonella paratyphi, Shigella sp., Staphylococcus aureus, Streptococcus pyogenes and Klebsiella pneumonia*) are given in Table 6 and Fig. 6. These results showed highly effective inhibition against *Salmonella paratyphi* with a zone diameter of 20mm

## Int. J. Biosci.

which is followed by *Klebsiella pneumonia, Staphylococcus aureus, Streptococcus pyogenes* and *Shigellaspp* 19mm, 16mm, 15mm, 14mm respectively.



**Figs. 4 & 5.** Experimental and stimulated FT-IR &FT-Raman spectra of DMBM.



Fig. 6. Photographs of DMBM.

Table 6. Antimicrobial effect of DMBM.

| SN | Microorganisms         | Zone of inhibition<br>(diameter in mm) |
|----|------------------------|----------------------------------------|
| 1  | Salmonella paratyphi   | 20mm                                   |
| 2  | Shigella spp.          | 19mm                                   |
| 3  | Staphylococcus aureus  | 16mm                                   |
| 4  | Streptococcus pyogenes | 15mm                                   |
| 5  | Klebsiella pneumonia   | 14mm                                   |

#### Conclusion

In the present study, analyzing the structural properties with DFT computations and the detailed spectral investigations of DMBM has been performed. Vibrational assignments of DMBM have been analyzed using FT -IR and FT -Raman. Phenyl ring found to be near planar. Due to substitution of methyl group slightly out of perfect trigonal angle 120° of the ring. Hyper conjugation and back donation of methyl group, causing changes in the intensity in IR spectrum which clearly indicates that methyl hydrogen are directly involved in the donation of electronic change.

#### References

Andrew, Myers G, Bryant H, Yang & Hou Chen. 2000. Transformation of Pseudoephedrine Amides Into Highly Enantiomerically Enriched Aldehydes, Alcohols, And Ketones. Organic Syntheses 77, 29-37.

Bettye, Smith L, Tilman, Schäffer E, Mario Viani, James, Thompson B, Neil, Frederick A, Johannes Kindt, Angela Belcher, Galen, Stucky D, Daniel, Morse & Paul E, Hansma K. 1999. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature **399**, 761-763.

**Gisi U, Sierotzki H, Cook A, Mc Caffery A.** 2002.Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Management Science **58**, 859-867.

**Jorge, Mantecón D.** 2009. Control of potato early blight with triazole fungicide using preventive and curative spraying, or a forecasting system. Ciencia e Investigación Agraria **36(2)**, 291-296.

Klix MB, Verreet JA, Beyer M. 2007. Comparison of the declining triazole sensitivity of Gibberellazeae and increased sensitivity achieved by advances in triazole fungicide development. Crop Protection **26**, 683-690.

**Kolesov and Geiger.** 2000. The orientation and vibrational states of H2O in synthetic alkali-free beryl. Physics and Chemistry of Minerals **27(8)**, 557-564.

# Int. J. Biosci.

Leszek Kalinowski, Anna Janaszak-Jasiecka, Anna Siekierzycka, Sylwia Bartoszewska, Marcin Woźniak, Dawid Lejnowski, James, F Collawn & Rafal Bartoszewski. 2016. Posttranscriptional and transcriptional regulation of endothelial nitric-oxide synthase during hypoxia: the role of microRNAs. Cellular & Molecular Biology Letters 21(16).

Lowicki Daniel, Huczyński A, Ratajczak-Sitarz
M, Katrusiak A, Stefańska J, Brzezinski B, Bartl
F. 2009. Structural and antimicrobial studies of a new
N-phenylamide of monensin A complex with sodium
chloride. Journal of Molecular Structure 923, 53-59.

Nandini G, Sathyanarayana DN. 2004. Ab initio studies of solvent effect on molecular conformation and vibrational spectra of diacetamide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy **60**, 1115-1126.

Paul von Ragué Schleyer. 2001. Introduction: Aromaticity. Chemical Reviews **101(5)**, 1115-1118. Paul von Ragué Schleyer. 2005. Introduction:Delocalization Pi and Sigma. Chemical Reviews105(10), 3433-3435.

Réti F, Bertóti I, Mink G, Varsányi G. 1990. On the surface thermodynamics of  $\gamma$ -Al2O3 derived from the reaction with chlorine. Solid State Ionics **44**, 33-39.

Sathyanarayana DN. 2004. Vibrational Spectroscopy: Theory and Applications, New Age International Publishers, New Delhi.

**Silverstein RM, Webster FX.** 1998. Spectrometric Identification of Organic Compounds, 6<sup>th</sup> Edition, John Wiley & Sons, New York.

Silverstein RM, Webster FX. 2003. Spectrometric Identification of Organic Compounds, John Wiley and Sons, New York.

**Sundius T.** 2002. Scaling of ab initio force fields by MOLVIB. Vibrational Spectroscopy **29**, 89-95.