

RESEARCH PAPER

International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print), 2222-5234 (Online) http://www.innspub.net Vol. 15, No. 5, p. 261-266, 2019

OPEN ACCESS

Effect of replacing hydroponic oat on enactment and blood chemistry of rabbits

Nuzhat Sial*, Farooq Ahmad, Ayesha Muqadas, Sadia Khalid, Mushtaq Hussain Lashari, Gulnaz Afzal, Sobia Abid

Department of Zoology, The Islamia University of Bahawalpur, Pakistan

http://dx.doi.org/10.12692/ijb/15.5.261-266

Article published on November 15, 2019

Abstract

The effect of substituting feed with hydroponic oat (HO) was studied on nurturing trial to explore its effects on performance and blood chemistry of developing rabbits. 4 varied diets centered on a pelleted rabbit feed were made by substituting HO for feed. Sixty four rabbits of equal age and with an average body weight were assigned to the treatments and caged in groups. HO was grown and fed immediately after harvesting, including roots, seed and leaves. The rabbits were then slaughtered and dressing proportions were calculated. Dry matter feed intake and growth rate decreased linearly by per unit of HO increase. Both crude protein and digestible energy intake decreased linearly. Feed transformation and remains yield rate were not influenced by medications. Level of HO had variable effects on visceral organs. It was therefore concluded that replacing pelleted feed by wet HO had negative effects on rabbits' performance.

* Corresponding Author: Nuzhat Sial 🖂 nztsial@gmail.com

Introduction

The domestic rabbit (Oryctolagus cunniculus) is an amazing source of good quality meat. Rabbit meat is of high protein and low cholesterol contrasted with that of ruminants. As a rear gut fermenter, it can use the accessible proteins in cellulose-rich plants. The creatures' exhibition and lower nourishing expenses are significant worries by scientists everywhere throughout the world. In the diets for nonruminants (for example grills, rabbits) almost 75% of domesticated animals activity costs are related with feed cost (Issa andAbo Omar, 2012).

Hydroponically green fodder is provided from seeds, having greater production ratio which are developed for a brief timeframe in specific blocks which gives the suitable developing states (Sneath and McIntosh, 2003). Hydroponic fodder is enriching with necessary biological components with helpful consequences for animals (Boue et al., 2003). It has high digesting vitality, rough protecious quality and edibility (El-Morsy et al., 2013). It is additionally rich wellspring of cancer prevention agents in type of Beta-carotene, Vitamin A, E and C (Shipard, 2005). The germination process takes 8 to 10 d period to reach the hydroponic sprout using solar energy (FAO, 2001). Plastic trays of suitable dimensions placed on metal stand are used in the germination process (Saidi and Abo Omar, 2015). At harvest, the plant is 20 to 25 cm in height, consisting of stem, green leaves and roots (Shtaya, 2004). The animal consumes the whole plant including seed and roots. Because of its aspect, color, taste and texture, it is considered highly palatable feed that promotes digestibility of other nutrients (FAO, 2001). The adoption of this technique has enabled production of fresh forage from oats, oat, wheat and other grain (Saidi and Omar, 2015).

Oat seed has a vital way of fodder to all livestock in Pakistan, because it has the highest yield with chemical consistency of 66% carbohydrates 16%protein, 6%fat contents, 4% beta glucans, 11%fibers which are essential for health. The objective of this study was to investigate the performance, visceral organ mass and blood metabolites of rabbits fed hydroponic oat as part of commercial rabbit feed.

Materials and methods

Study site

The research was performed at the livestock farm of veterinary and animal sciences in Islamia university of Bahawalpur Bagdadul jaded campus.

Production of hydroponic oat

Generation was led under temperature controlled conditions ($22 \pm 1^{\circ}$ C). Hydroponic framework is made out of a hydroponic chamber with a territory of 33 m2. The chamber is made out of metal edge and retires that hold 126 plate with limit of chamber to create roughly one ton of green grain per development cycle (8 days). Plastic plates with measurements 90 x 30 x 4 cm were utilized for developing oat grains. The relative mugginess in the development room was 65%.

Animals, plan, dietary medications and diagnostic strategies

Sixty-four rabbits, with a normal weight were appointed to the 4 medicines and confined in gatherings of 4 rabbits. A pelleted feed was utilized as control diet (C). Concoction structure of business feed and HO is appeared in Table 1. The measures of pelleted feed and HO offered every

Week in every treatment are appeared in Table 2. Pelleted feed and HO were given in various feeders. Rabbits were kept in confines estimating $90 \times 60 \times 40$ cm, furnished with two container type feeders and programmed areola consumers.

Normal temperature in the region was 20 °C. Feed utilization was acquired day by day by gauging the sum offered and the sum remaining per pen and rabbits were gauged week after week. Feed transformation was gotten from the total of the dry HO admission and dry issue admission of pelleted business feed separated by rabbit weight gain. Stomach related issues and mortalities didn't happen during the examination.

Blood collection

Blood tests were gathered into marked Ethylenedeamine-tetra-acidic corrosive (EDTA) treated cylinders for hematological investigation and into tubes without anticoagulant for serum biochemical assessment. Assessments were led by the strategy for Bitto and Gemad (2001).

Slaughtering technique

Toward the finish of the test (age of 74 d), all rabbits were butchered after a 18 h quick as indicated by routine techniques at neighborhood business butcher offices. Fasted-live and hot cadaver loads were following recorded previously and butcher. Legitimately after butcher, non-corpse parts (i.e., head and feet, lungs and trachea, heart, liver, kidneys) were expelled and gauged. Remains were chilled at 4 °C for 24 h and cold cadaver loads were recorded. Void body weight and loads of consumable parts (corpse without head, liver, heart, kidneys and lungs) were recorded.

Table 1. Analysis of feed and hydroponic oat (HO) .

Statistical analyses

The straight impacts of HO on dry issue, absorbable vitality, and rough protein were examined utilizing relapse examination. Investigation of change was utilized to test the importance of HO incorporation rates on beneficial execution markers, instinctive organ rates, and blood metabolites. Duncan's numerous range tests was utilized to test contrasts among treatment implies with utilizing essentialness level of 0.05. These investigations were performed utilizing SPSS factual examination programming (2007).

Results

The entirety of the HO offered was completely expended yet pelleted feed consistently stayed in feeders. Results for sustaining preliminary and remains yield in rabbits, during the different avenues regarding the expansion of HO are appeared in Table 3. Incorporation of HO caused a direct decrease in pelleted feed admission. Complete dry issue admission was additionally directly diminished

	feed	НО
Moisture % as fed	12	84
Crude protein	17	3
Ether extract	3.23	2.52
Crude fiber	12.64	15.89
Nitrogen free extract	52.5	63.1
Ash	11	6
Digestible energy; kcal/kg	2630	2390

Table 2. (Juantity	of balance	l feed	and wet	: HO	offered	daily per	r rabbit
------------	----------	------------	--------	---------	------	---------	-----------	----------

	С	20HO			40HO		60HO	
	CF	HO	CF	HO	CF	НО	CF	HO
Week1	100	0	80	20	60	40	40	60
								_
Week2	125	0	108	25	75	50	50	76
Week3	150	0	119	30	89	60	60	91
Week4	166	0	134	33	100	70	68	102
Week5	189	0	147	36	109	75	73	111
Week6	216	0	159	40	119	80	79	119

This could be explained by the bulky nature of the wet HO. Both estimated crude protein and digestible energy fed were decreased with HO inclusion. Average daily gain also decreased linearly (P<0.001). However, feed conversion ratio was not exaggerated.

	С	20HO	40HO	60HO	P value
Daily dry matter intake,					
g/rabbit					
Total	134 ^a ±7.56	$112^{b} \pm 5.54$	95°±4.68	$73^{d} \pm 4.01$	0.001
Pelleted feed	140 ^a ±7.01	$111^{b} \pm 8.08$	85°±5.09	$56^{d} \pm 6.17$	0.001
HO	Od	6.92°±0.80	$11^{b}\pm 1.10$	17 ^a ±1.68	0.001
Final weight	2160.0ª±30	$2130.8^{b} \pm 16b$	1634.8°±18c	$1440.6^{d}\pm 21$	0.001
Daily weight gain, g	40.1ª±3.13	$33.9^{b} \pm 3.21$	27.7°±3.20	$20.7^{d} \pm 3.00$	0.001
FCR	3.6±0.24	3.3±0.23	3.3±0.80	3.4±0.46	0.835
Dressing percentage, %	55 ± 4.31	53±4.90	55±4.09	55 ± 4.91	0.354

Table 3. Balanced dry feed effect with HO on constraints of growing rabbits

The reduction in digestible energy and crude protein caused by feeding HO resulted in ration levels lower than that recommended by the NRC (1966). Basic protein stages in nourishing trial failed to encounter rabbits' necessities and decreased their enactment. Energy and protein are central aspects essential to find determined weight increase (Morales *et al.* 2009).

Table 4. Visceral organ percentages of local rabbits fed different levels of HO.

Parameter	C	20HO	40H0	60HO	
1 arameter	C	20110	40110	00110	
					p-value
Blood					
	86.24±0.64	86.7±0.44	86.8±0.26	86.2±0.22	0.120
				7.7±0.08	
Skin	7.42±0.16	6.5±0.16	8.06±0.24		0.080
Feet	4.02±0.04	2.8 ± 0.02	2.8±0.04	4.41±0.11	0.070
Head	8.44±0.16	8.0±0.06	7.72±0.05	8.45±0.05	0.121
				24.28±0.46	
Intestines					
	20.24±0.16	24.7±0.68	20.8±0.02		0.064
				2.87 ± 0.05	
Liver					
	4.26±0.16	2.6±0.01	4.11±0.16		0.151
				0.62 ± 0.01	
Kidneys	0.54±0.06	0.6±0.0	0.65 ± 0.01		0.275
Spleen	0.20 ± 0.04	0.15 ± 0.0	0.14±0.0	0.16 ± 0.0	0.250
Gallbladder	0.14±0.01	0.15±0.0	0.14±0.0	0.15±0.0	0.004
Heart	$0.44^{b} \pm 0.01$	0.40°±0.0	0.46 ^a ±0.01	0.46ª±0.04	0.024
Lungs	0.67±0.05	0.65±0.04	0.74±0.01	0.61±0.05	0.240

It was proposed that a feed should contain a DE of about 10.5 MJ DE/ kg DM. They showed that optimum rabbit performance is expected when fed diets with DE levels of at least 9.5 MJ/kg DM.

Discussion

According to this, deprived enactment witnessed in rabbits fed the highest level of HO might be clarified by shortfall of DE and basic protein consumption. However, the performance observed in other rabbits that fed with lower HO levels (20HO and 40HO) would not be explained by a crude protein or digestible energy deficiency but could be accounted 40HO) would not be clarified by a basic protein or deficiency. Similar findings were reported by Morales *et al.* (2009) where poor rabbit's performance was found when fed diets with DE and crude protein levels within the recommended levels.

Morales *et al.* (2009) described that development in rabbit's declines by low levels of fiber (Blas *et al.* 1986). Similar findings were reported by Morales *et al.* (2009) where level of fiber was 13.5% and caused similar effects on rabbits when fed increasing levels of HO.

Table 5. Consequence of nurturing different levels of HO

	Treatment °				P value
	С	20HO	30HO	60HO	
n	16	16	16	16	
Urea, mg/dl	$33.0^{a}\pm2.0$	$30.6^{b}\pm0.8$	$28.0^{b}\pm0.5$	$30.6^{b}\pm0.3$	0.000
Creatine, mg/dl	0.8±0.08	0.0±0.03	0.0±0.06	0.0±0.06	0.528
Total protein, g/l	$5.6^{a} \pm 0.06$	$5.3^{b}\pm0.08$	$5.3^{b} \pm 0.06$	5.0b±0.03	0.032
Albumin, g/l	3.8±0.06	3.6±0.06	3.5 ± 0.08	3.6±0.06	0.085
Globulin, g/l	0.8±0.06	0.6±0.23	0.6±0.06	0.5±0.06	0.383
A/G ²	2.0±0.08	2.0 ± 0.3	0.8±0.03	2.2 ± 0.02	0.582
AST ³ , IU/l	56.6±8.3	38.0 ± 0.58	60.0±5.5	55.3±2.3	0.363
ALT3, IU/l	$32.0^{b}\pm0.5$	$28.0^{b} \pm 0.58$	52.6ª±3.8	$30.3^{b}\pm 2.6$	0.000
Cholesterol, mg/dl	63.0°±00.2	60.3 ^a ±0.33	$30.3^{d}\pm2.3$	66.3 ^a ±3.3	0.022
Triglycerides,mg/dl	006.0 ^b ±8.2	$60.0^{d} \pm 6.0$	88.3 ^c ±8.0	006.0 ^a ±6.8	0.002

Inclusion of HO had variable effects on rabbits' visceral organs (table 4). Higher levels of HO inclusion (40 and 60%) caused a significant increase (P < 0.05) in gall bladder and heart weights.

Other visceral organs were not affected by HO feeding. Blood metabolites were variably affected by the diets fed (Table 5).Feeding HO had no effects on creatine, albumen, globulin and AST.

However, HO decreased levels of blood urea and total protein and had variable effects on other blood metabolites as cholesterol, triglycerides and Alt. levels of measured blood metabolites are within the medirabbit (2007) range.

Conflict of interests

Authors have no conflict of interest.

References

Abo omarJM, Daya R, Ghaleb A. 2012. Effects of different forms of olive cake on the performance and carcass quality of Awassi lambs. Animal Feed Science and Technology **171**, 167–172.

Blasco A, Ouhayoun J, Masoero G. 1993. Harmonization of criteria and terminology in rabbit meat research. World Rabbit Science **1**, 3-10.

Medirabbit. 2007.

www.medirabbit.com/EN/Hematology/blood_chemi stry.htm ; www.Irrd.org/Irrd17/10/chat17109.

DE Blas JC, Santoma G, Carabono R, Fraga MJ. 1986. Fiber and starch levels in fattening rabbit diets. Journal of Animal Science **63**, 1897-1904.

FAO. (Organización de las Naciones Unidas para la Agricultura y la Alimentación). 2001. Manual técnico forraje verde hidropónico. Santiago de Chile, Chile. **Issa K, Abo Omar J.** 2012. Effect of garlic powder on performance and lipid profile of broilers. Open Journal of Animal Science **2**, 62-68.

Morales MA, Fuente B, Juárez M, Ávila E. 2009. Effect of substituting hydroponic green oat forage for a commercial feed on performance of growing rabbits. World Rabbit Science **17**, 35 – 38.

(NRC) National Research Council. 1966. Nutrient Requirement of Rabbits, ^{1st} revised ed.National Academy Press, Washington, DC, USA.

Saidi A, Abo Omar J. 2015. Economical and biological fasibility of hydroponic oat fed to lactating Awassi ewes. Master of Science theses. Open Journal of Animal Science.

Shtaya I. 2004. Performance of Awassi lambs fed different levels of hydroponic oat. Master of Science theses. An Najah National University, Nablus, Palestine.

Sneath R, McIntosh F. 2003. Review of hydroponic fodder production for beef cattle. Department of Primary Industries: Queensland Australia **84**, McKeehen, p 54.