J. Bio. & Env. Sci. 2019

Vol. 15, No. 3, p. 46-58, 2019 http://www.innspub.net

ISSN: 2220-6663 (Print) 2222-3045 (Online)

OPEN ACCESS

Chemical and morphological characteristics of heavy and hazardous metals in settled dust associated with different functional areas of Karachi, Pakistan

Journal of Biodiversity and Environmental Sciences (JBES)

Kashif Ahmed^{*1}, Naveed Hassan^{1, 2}, Naseem Akhter², Mohsin Mumtaz²

'Department of Chemistry, NED University of Engineering & Technology, Karachi, Pakistan ²Peoples Steel Mills Ltd., Manghopir, Karachi, Pakistan

Article published on September 30, 2019

Key words: Heavy Traffic, Industry, SEM, SEM-EDX, WD-XRF

Abstract

The heavy and hazardous metals have high impact on health of living organism mostly on human beings. Settled dust has great impact on natural environment and human health as it may contain heavy and hazardous metals contributed from anthropogenic activities. Four functional areas of Karachi city, were selected for this study that are named as industrial area (Port Qasim), Traffic area (National Highway from Malir Halt to Port Qasim), Urban Area (Gulshan-e-Iqbal), Rural Area (Saadi Town). 36 samples of settled dust were drawn from all these areas and analyzed on WD-XRF spectrometer. Chromium, Copper, Iron, Manganese, Nickel, Lead, Titanium, and Zinc were studied and their average results were 384, 664, 61699, 1379,167, 427, 4656 and 5909mg Kg⁻¹. The average results of all metallic concentration of all four functional areas show that iron, Zinc, Titanium and Manganese are enriched in concentration while Nickel has the lowest concentration in settle dust. Morphological examination was carried out with SEM in which particles size, shape and particle composition was determined. SEM-EDX was used to analyze the particle's chemical composition, and Carbon was also quantify with metals and has high concentration in all samples than heavy metals. The study aided valuable data related with heavy and hazardous metals for the city of Karachi

*Corresponding Author: Dr. Kashif Ahmed 🖂 kashifahm@neduet.edu.pk

Introduction

Peoples living in polluted areas are exposed to heavy and hazardous metals that are present in air which can be life threatening if exposed for a long period of time. Karachi is the largest and the most polluted city of Pakistan so it essential to study of heavy and hazardous metals contaminations present in settled dust. Heavy metals and hazardous metals are associated with the air pollution and it can causes number of diseases to not only the human being but all living organisms as well. In air these types of metals are present in a very low quantity but can have a great effect on living things due to which it should not present or should be in very low quantity in air dust. When dust blow due to any reason either it blow by traffic movement, air blowing or swimming, and due to industrial process etc. then dust mix with other pollutants emitted from different sources like traffic smoke emission, industrial process emission, different process wastes or effluents etc. and then it settled down on different places ((Wan et al., 2016; Godt et al., 2006; Tchounwou et al., 2012).

There are various studies which have been reported the deposition of harmful metals in the soils of Karachi (e.g. Karim *et al.*, 2015; Khan MN and Sarwar Anila, 2014. Mashiatullah *et al.*, 2013). All these studies assessed the inhabitant's health risk linked with Fe, Cu, Pb, Cr and Zn in urban soils of Karachi. Nevertheless, these studies did not consider the deposition of harmful metals in settled dust with no morphological study. The present work shows chemical composition of hazardous metals and morphological characteristics of settled dust of various functional areas of Karachi.

Materials and methods

Area Selection for Study

Karachi; known as city of lights, is the largest city of Pakistan having an area of 3530 square of kilometers, it covers few costal area of Arabian Sea. It has the coordinates 24°51′36″N 67°0′36″E. Karachi is most polluted city (Khan and Sarwar, 2014) as compared to all other cities of Pakistan so it is chosen for this study.

Sampling

In this study, total thirty six samples, nine samples from each of four functional areas were collected. Most of samples for urban area, rural area were collected from residential sites like not cleaned window glasses, flat roofs of outdoor, plants leaves of parks etc. whereas for industrial and heavy traffic area the samples were collected from road sides, (Verma, 2015), (Duong and Lee, 2011) poles, bridges, pipelines, places nearest to industries such as steel mills, (Omran and Fabritius, 2017) old scrapped parts like cars etc. for the collection of samples a small brush was used and samples were collected and stored in polythene bags.

Analysis

Wavelength Dispersive X-Ray fluorescence spectrometer (WD-XRF)

Sample Preparation for WD-XRF

Settled dust samples were pulverized by mixing with wax to get the homogenization by using mini ball mill, in which zirconium based balls were used. Machine was set at 240 rpm speed and the sample was rotated 2 min clockwise and 2 min anti-clockwise. Then press pellets were prepared to get the hard, flat and smooth surface with the help of Herzog press pellet machine by applying 25 KN force (Wolff, 2006). Binder (Boric Acid) was used to prevent the breaking or dispersion of sample during bombarding of high intensity X-Rays.

Sample Preparation for SEM

Samples of settled dust were bombarded with gold particles with the help ion sputter coater machine to make the sample electrical conductor and avoid the building up charges during SEM analysis, which is necessary to analyze the sample with more sensitivity on SEM so that clear images should receive. Ion sputter coater machine is used to deposit metal coating that has thickness of few nanometers, which is very thin layer. In this study ion sputtering of Gold metal (Au) is used but we can also use platinum (Pt), Alloy of Gold and Palladium (Au-Pd) and Alloy of Platinum and Palladium (Pt-Pd) as well.

Results and discussion

Results of heavy metallic elements in settled dust of industrial area (Port Qasim) Karachi

Table 1 shows heavy metallic elemental composition by WD-XRF spectrometer of Chromium, Copper, Iron, Manganese, Nickel, Lead, Titanium, and Zinc in settled dust of industrial area (Port Qasim), Karachi, and the concentrations are 346, 1924, 91929, 1522, 181, 566, 5520, and 18297mg.Kg⁻¹ (ppm) respectively. The highest to lowest concentration of heavy metals are as Fe > Zn > Ti > Cu > Mn > Pb > Cr > Ni. Fig. 2 shows the particles of settled dust of industrial area (Port Qasim), Karachi at 100 x magnification power with SEM, which when further magnified at 750 x shows the largest particle (fig. 9A), and it is analyzed with SEM-EDX spectrometer of which graph is shown in fig. 9B and chemical composition of particle is stated in table 6, where the decreasing trend of metallic compositions are as Al > C > Zn > Fe > Ni > Cr > Pb and their concentrations are 232220, 226410, 17637, 9585, 1200, 637, 36.39mg.Kg⁻¹ (ppm) respectively. In fig. 4 the large particle is seen which is rectangular shaped and its dimension is determined as D₁ 49491.97 x D₂ 34969.74nm² with SEM.

Table 1. Heavy Metallic Elemental Composition in settled dust from Industrial Area (Port Qasim), Karachi City,

 Analyzed on WD-XRF Analyzer (Axios Model).

C Me	Sample	Cr	Cu	Fe	Mn	Ni	Pb	Ti	Zn
5. NO.	ID	(ppm)							
1	I.A*-1	320	230	86510	1540	200	680	4420	41340
2	I.A-2	320	270	87480	1360	180	680	4280	41500
3	I.A-3	330	200	86770	1520	170	690	4660	41680
4	I.A-4	370	1660	97230	1550	210	450	6110	1290
5	I.A-5	370	1900	98180	1470	200	520	6260	1300
6	I.A-6	400	1650	98010	1540	100	470	6420	1190
7	I.A-7	320	3780	91720	1510	220	540	5800	12010
8	I.A-8	390	3750	90940	1770	180	520	5760	12250
9	I.A-9	290	3880	90520	1440	170	540	5970	12110
Mean		346	1924	91929	1522	181	566	5520	18297
Min		290	200	86510	1360	100	450	4280	1190
Max		400	3880	98180	1770	220	690	6420	41680
Median		330	1660	90940	1520	180	540	5800	12110
Standaro	d Deviation	38	1554	4782	111	35	93	832	18032

* I.A stand for Industrial Area and the value represent the number of sample.

Fig. 1. Graph for comparison of metallic elemental concentration in settled dust samples analyzed by WD-XRF Spectrometer of the specified functional areas of Karachi, Pakistan. [IA stands for Industrail Area (Port Qasim), TA stands for Traffic Area (National Highway from malir halt to Port Qasim), UA stands for Urban Area (Gulshan-e-Iqbal), and RA stands for Rural Area (Saadi Town)].

3.2 Results of Scanning Electron Microscope (SEM) analysis of settled dust.

3.2.1 Industrial Area (Port Qasim)

Fig. 2. Scanning Electron Microscopic fig. of settled dust particles of industrial area (Port Qasim), Karachi.

20

Fig. 3. A- Scanning Electron Microscopic [SEM] fig. of Particles of settled dust of industrial area (Port Qasim), Karachi. B- Graph of SEM-EDX (Energy Dispersive X-Rays) Analysis of elements of selected particle in fig. A.

Results of heavy metallic elements in settled dust of traffic area (National Highway from Malir Halt to Port Qasim) Karachi

Table 2 shows heavy metallic elemental composition by WD-XRF spectrometer of Chromium, Copper, Iron, Manganese, Nickel, Lead, Titanium, and Zinc in settled dust of traffic area (National Highway from Malir halt to Port Qasim), Karachi, and the concentrations are 421, 271, 53606, 1308, 164, 391, 4449, 1851mg.Kg⁻¹ (ppm) respectively. The highest to lowest concentration of heavy metals are as Fe > Ti > Zn > Mn > Cr > Pb > Cu > Ni.

Fig. 5 shows the particles of settled dust of traffic area (National Highway from Malir Halt to Port Qasim),

Karachi at 100 x magnification power with SEM, which when further magnified at 750 x shows the largest particles (fig. 6A), and it is analyzed with SEM-EDX spectrometer of which graph is shown in fig. 12B and chemical composition of particle is stated in table 7, where the decreasing trend of metallic compositions are as Si > C > Al > Fe > Zn > Ti > Pb and their concentrations are 151580, 149479, 75364, 45200, 2193, 1797, 529mg.Kg⁻¹ (ppm) respectively.

In fig. 7 the two large particles are seen which are rectangular shaped and their dimensions are determined as D_1 41940.63 x D_2 31246.16nm² for one particle and D_3 43655.05 x D_4 47234.55nm² with SEM.

10 1 011 Qa	isiii), Karac	in City, And	ilyzeu oli w	D-ARI [,] Allal	yzei (Axios	Model).			
C No	Sample	Cr	Cu	Fe	Mn	Ni	Pb	Ti	Zn
5. NO.	ID	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
1	T.A*-1	380	160	51940	1570	170	370	4250	630
2	T.A-2	450	120	51610	1280	120	290	4010	620
3	T.A-3	420	180	50910	1340	150	290	4330	620
4	T.A-4	400	290	56450	1400	180	520	4580	3110
5	T.A-5	400	320	56880	1200	230	450	4650	3060
6	T.A-6	350	300	57310	1160	210	530	4760	3080
7	T.A-7	390	300	52800	1260	150	370	4580	1880
8	T.A-8	390	350	52070	1270	120	370	4550	1830
9	T.A-9	610	420	52480	1290	150	330	4330	1830
Mean		421	271	53606	1308	164	391	4449	1851
Min		350	120	50910	1160	120	290	4010	620
Max		610	420	57310	1570	230	530	4760	3110
Median		400	300	52480	1280	150	370	4550	1830
Standard Deviatio	d n	76	98	2521	121	37	90	235	1065

Table 2. Heavy Metallic Elemental Composition in settled dust from Traffic Area (National highway Malir Haltto Port Qasim), Karachi City, Analyzed on WD-XRF Analyzer (Axios Model).

* T.A stand for Traffic Area and the value represent the number of sample.

J. Bio. & Env. Sci. 2019

Results of heavy metallic elements in settled dust of urban area (Gulshan-e-Iqbal) Karachi

Table 3 shows heavy metallic elemental composition by WD-XRF spectrometer of Chromium, Copper, Iron, Manganese, Nickel, Lead, Titanium, and Zinc in settled dust of urban (Gulshan-e-Iqbal), Karachi, area and the concentrations are 442, 247, 57681, 1303, 183, 553, 4883, 3208mg.Kg⁻¹ (ppm) respectively. The highest to lowest concentration of heavy metals are as Fe > Ti > Zn > Mn > Pb > Cr > Cu > Ni.

Fig. 8 shows the particles of settled dust of urban area (Gulshan-e-Iqbal), Karachi at 100 x magnification power with SEM, which when further magnified at 750 x shows the largest particles (fig. 8A), and it is analyzed with SEM-EDX spectrometer of which graph is shown in fig. 15B and chemical composition of particle is stated in table 8, where the decreasing trend of metallic compositions are as C > Al > Fe > Pb > Zn > Cr >Ti > Ni and their concentrations are 121868, 50662, 8978, 3287, 1738, 1167, 971, 146mg.Kg⁻¹ (ppm) respectively.

As Pb is very high in concentration at 1^{st} particle due to which second particle is also selected (fig. 9A) and analyzed with SEM-EDX spectrometer and its graph is shown in fig. 9B, whereas chemical composition is stated in table 9, that shows the decreasing trend of chemical composition of metal elements as C > Al > Fe > Zn > Ti > Ni and their chemical composition are 399715, 41961, 20828, 8644, 1971, 71.5, in the second particle Cr and Pb are not detected.

In fig. 8 the two large particles are seen one is rectangular shaped and the other is round shaped and their dimensions are determined as D_1 12390.01 x D_2 26909.02nm² for rectangular shaped particle and radius 5319.25nm or diameter 10638.50nm for round shaped particle with SEM.

Fig. 4. Fig. of settled dust particle of industrial area (Port Qasim), Karachi using Scanning Electron Microscope.

3.2.2 Traffic Area (National Highway from Malir Halt to Port Qasim)

Fig. 5. Scanning Electron Microscopic fig. of settled dust particles of traffic area (National Highway from Malir Halt to Port Qasim), Karachi.

Fig. 6. A- Scanning Electron Microscopic [SEM] fig. of Particles of settled dust of traffic area (National Highway from Malir Halt to Port Qasim), Karachi. B- Graph of SEM-EDX (Energy Dispersive X-Rays) Analysis of elements of selected particle in fig. A.

Table 3. Heavy Metallic Elemental Composition in settled dust from Urban Area (Gulshan-e-Iqbal), KarachiCity, Analyzed on WD-XRF Analyzer (Axios Model).

S No	Sample	Cr	Cu	Fe	Mn	Ni	Pb	Ti	Zn
5. 110.	ID	(ppm)							
1	U.A*-1	310	250	56010	1330	220	570	4440	800
2	U.A-2	380	260	55970	1180	160	470	4650	830
3	U.A-3	290	250	56440	1130	130	440	4420	720
4	U.A-4	600	280	54890	1220	280	670	5400	7960
5	U.A-5	580	240	55140	1380	230	640	5370	7980
6	U.A-6	590	190	56180	1350	110	610	5180	7960
7	U.A-7	350	280	61150	1410	160	570	4920	840
8	U.A-8	540	230	61680	1330	220	500	4900	930
9	U.A-9	340	240	61670	1400	140	510	4670	850
Mean		442	247	57681	1303	183	553	4883	3208
Min		290	190	54890	1130	110	440	4420	720
Max		600	280	61680	1410	280	670	5400	7980
Median		380	250	56180	1330	160	570	4900	850
Standard Deviation	l n	132	27	2909	101	56	79	372	3570

* U.A stand for Urban Area and the value represent the number of sample.

Fig. 7. Fig. of settled dust particle of traffic area (National Highway from Malir Halt to Port Qasim), Karachi using Scanning Electron Microscope.

3.2.3 Urban Area (Gulshan-e-Iqbal)

Fig. 8. Scanning Electron Microscopic fig. of settled dust particles of urban area (Gulshan-e-Iqbal), Karachi.

Fig. 9. A- Scanning Electron Microscopic [SEM] fig. of Particles of settled dust of urban area (Gulshan-e-Iqbal), Karachi. B- Graph of SEM-EDX (Energy Dispersive X-Rays) Analysis of elements of selected particle in fig. A.

Results of heavy metallic elements in settled dust of rural area (Saadi Town) Karachi

Table 4 shows heavy metallic elemental composition by WD-XRF spectrometer of Chromium, Copper, Iron, Manganese, Nickel, Lead, Titanium, and Zinc in settled dust of rural area (Saadi Town), Karachi, and the concentrations are 328, 135, 43579, 1384, 139, 198, 3772, 279mg.Kg⁻¹ (ppm) respectively. The highest to lowest concentration of heavy metals are as Fe > Ti > Mn > Cr > Zn > Pb > Ni > Cu.

Fig. 9 shows the particles of settled dust of rural area (Saadi Town), Karachi at 100 x magnification power with SEM, which when further magnified at

750 x shows the largest particles (fig. 10A), and it is analyzed with SEM-EDX spectrometer of which graph is shown in fig. 19B and chemical composition of particle is stated in table 10, where the decreasing trend of metallic compositions are as C > Al > Fe >Cu > Zn > Pb > Cr > Ni > Ti and theirconcentrations are 156377, 13322, 7168, 1134, 1022,884, 846, 832, 470mg.Kg⁻¹ (ppm) respectively. Infig. 14 the two large particles are seen one isrectangular shaped and the other is round shaped $and their dimensions are determined as <math>D_1 23246.83$ x $D_2 28034.02nm^2$ for rectangular shaped particle and radius 10990.75nm or diameter 21981.50nm for round shaped particle with SEM.

Table 4.	Heavy Metallic	Elemental	Composition	in settled	dust from	Rural	Area	(Saadi	Town),	Karachi	City,
Analyzed	on WD-XRF Ana	lyzer (Axio	s Model).								

S No	Sample	Cr	Cu	Fe	Mn	Ni	Pb	Ti	Zn
5. NO.	ID	(ppm)							
1	R.A*-1	520	110	56480	1440	220	360	5470	430
2	R.A-2	220	ND*	38100	1490	ND	ND	2830	180
3	R.A-3	480	140	58010	1320	130	300	5580	550
4	R.A-4	250	160	37650	1450	100	160	2950	160
5	R.A-5	510	160	58010	1340	190	350	5330	440
6	R.A-6	260	ND	36180	1240	ND	130	3080	250
7	R.A-7	150	150	35930	1460	90	110	2920	180
8	R.A-8	ND	90	36470	1330	120	80	2870	140
9	R.A-9	230	ND	35380	1390	120	90	2920	180
Mean		328	135	43579	1384	139	198	3772	279
Min		150	90	35380	1240	90	80	2830	140
Max		520	160	58010	1490	220	360	5580	550
Median		255	145	37650	1390	120	145	2950	180
Standard Deviation	l n	150	29	10483	82	48	119	1269	152

* R.A stand for Rural Area and the value represent the number of sample whereas ND stands for Not Detected.

52 | Ahmed *et al*.

Fig. 10. Scanning Electron Microscopic [SEM] fig. of Particles of settled dust of urban area (Gulshan-e-Iqbal), Karachi. B- Graph of SEM-EDX (Energy Dispersive X-Rays) Analysis of elements of selected particle in fig. A.

Comparison of results of heavy metallic elemental composition in settled dust from different functional areas of Karachi city

Four functional areas of Karachi city, were selected for this study that are named as industrial area (Port Qasim), Traffic area (National Highway from Malir Halt to Port Qasim) where high heavy traffic is seen 24 hours a day, Urban Area (Gulshan-e-Iqbal) where high traffic, shopping malls and small units are seen, Rural Area (Saadi Town) which is far away from industrial area and low traffic is seen. 36 samples of settled dust was drawn from all these areas and analyzed on WD-XRF spectrometer, the average results of each functional area are stated in table 5 for comparison.The average results of all metallic concentration of all four functional areas shows that iron has the highest concentration while Nickel has the lowest concentration in settle dust.

Table .	5. Com	parison	ot	Heavy	Metallic	Elemental	Concentration	ın	settled	dust	samples	from	different
function	nal Area	s of Kara	achi	City, ar	alyzed on	n WD-XRF A	Analyzer (Axios	s Mo	del).				
	0	1		0	0		3.6	3.7.		D1	т.		7

Sample	Cr	Cu	Fe	Mn	Ni	Pb	Ti	Zn
ID	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
I.A*	346	1924	91929	1522	181	566	5520	18297
T.A*	421	271	53606	1308	164	391	4449	1851
U.A*	442	247	57681	1303	183	553	4883	3208
R.A*	328	135	43579	1384	139	198	3772	279
	384	644	61699	1379	167	427	4656	5909
	328	135	43579	1303	139	198	3772	279
	442	1924	91929	1522	183	566	5520	18297
	384	259	55644	1346	173	472	4666	2530
viation	56	855	21007	102	20	172	735	8345
	Sample ID I.A* T.A* U.A* R.A*	Sample Cr ID (ppm) I.A* 346 T.A* 421 U.A* 442 R.A* 328 384 328 442 384 384 328 442 384 56 56	Sample Cr Cu ID (ppm) (ppm) I.A* 346 1924 T.A* 421 271 U.A* 442 247 R.A* 328 135 384 644 328 135 442 1924 384 644 328 135 442 1924 384 259 viation 56	Sample Cr Cu Fe ID (ppm) (ppm) (ppm) I.A* 346 1924 91929 T.A* 421 271 53606 U.A* 442 247 57681 R.A* 328 135 43579 328 135 43579 442 1924 91929 384 644 61699 328 135 43579 442 1924 91929 384 259 55644 viation 56 855 21007	Sample Cr Cu Fe Mn ID (ppm) (ppm) (ppm) (ppm) (ppm) I.A* 346 1924 91929 1522 T.A* 421 271 53606 1308 U.A* 442 247 57681 1303 R.A* 328 135 43579 1384 384 644 61699 1379 328 135 43579 1303 442 1924 91929 1522 384 259 55644 1346 viation 56 855 21007 102	Sample Cr Cu Fe Mn Ni ID (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) I.A* 346 1924 91929 1522 181 T.A* 421 271 53606 1308 164 U.A* 442 247 57681 1303 183 R.A* 328 135 43579 1384 139 384 644 61699 1379 167 328 135 43579 1303 139 442 1924 91929 1522 183 384 259 55644 1346 173 viation 56 855 21007 102 20	Sample Cr Cu Fe Mn Ni Pb ID (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) I.A* 346 1924 91929 1522 181 566 T.A* 421 271 53606 1308 164 391 U.A* 442 247 57681 1303 183 553 R.A* 328 135 43579 1384 139 198 384 644 61699 1379 167 427 328 135 43579 1303 139 198 442 1924 91929 1522 183 566 384 259 55644 1346 173 472 viation 56 855 21007 102 20 172	Sample Cr Cu Fe Mn Ni Pb Ti ID (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) I.A* 346 1924 91929 1522 181 566 5520 T.A* 421 271 53606 1308 164 391 4449 U.A* 442 247 57681 1303 183 553 4883 R.A* 328 135 43579 1384 139 198 3772 384 644 61699 1379 167 427 4656 328 135 43579 1303 139 198 3772 442 1924 91929 1522 183 566 5520 384 259 55644 1346 173 472 4666 viation 56 855 21007 102 20 172 735

* I.A stands for Industrial Area, T.A stands for Traffic Area, and U.A stands for Urban Area, R.A stands for Rural Area.

53 | Ahmed et al.

Fig. 11. Fig. of settled dust particle of urban area (Gulshan-e-Iqbal), Karachi using Scanning Electron Microscope.

3.2.4 Rural Area (Saadi Town)

Fig. 12. Scanning Electron Microscopic fig. of settled dust particles of rural area (Saadi Town), Karachi.

Fig. 13. Scanning Electron Microscopic [SEM] fig. of Particles of settled dust of rural area (Saadi Town), Karachi. B- Graph of SEM-EDX (Energy Dispersive X-Rays) Analysis of elements of selected particle in fig. A.

Table 6. Chemical concentration of elements present in selected particle of fig. 8.A of industrial area (Port Qasim), Karachi by SEM-EDX.

Elements	C (ppm)	Al (ppm)	Cr (ppm)	Fe (ppm)	Ni (ppm)	Zn (ppm)	Pb (ppm)
	(ppin)	(ppin)	(ppm)	(ppm)	(ppin)	(ppm)	(ppin)
Concentration	226410	232220	637	9585	1200	17637	36.39

Table 7. Chemical concentration of elements present in selected particle of fig. 12.A of traffic area (National Highway from Malir Halt to Port Qasim), Karachi by SEM-EDX.

Elements	C	Al	Si	Fe	Ti	Zn	Pb
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Concentration	149479	75364	151580	45200	1797	2193	529

54 | Ahmed et al.

Table 8. Chemical concentration of elements present in selected particle of fig. 15.A of urban area (Gulshan-e-Iqbal), Karachi by SEM-EDX.

Elements	C	Al	Cr	Ni	Fe	Ti	Zn	Pb
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Concentration	(ppiii) 121868	50662	(ppiii) 1167	(ppiii) 146	8978	(ppiii) 971	1738	3287

Table 9. Chemical concentration of elements present in selected particle of fig. 16.A of urban area (Gulshan-e-Iqbal), Karachi by SEM-EDX.

Elements	C	Al	Cr	Ni	Fe	Ti	Zn	Pb
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Concentration	399715	41961	-	71.5	20828	1971	8644	-

Table 10. Chemical concentration of elements present in selected particle of fig. 19.A of rural area (Saadi Town),Karachi by SEM-EDX.

Elements	C (mmm)	Al (mmm)	Cr (mmm)	Cu	Ni (mmm)	Fe	Ti	Zn	Pb
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Concentration	156377	13322	846	1134	832	7168	470	1022	884

Fig. 14. Fig. of settled dust particle of rural area (Saadi Town), Karachi using Scanning Electron Microscope.

Chromium

Chromium has highest to lowest trend according to the selected four functional areas of Karachi as Urban Area (Gulshan-e-Iqbal) > Traffic Area (National Highway from Malir Halt to Port Qasim) > Industrial Area (Port Qasim) > Rural Area (Saadi Town) with the values 442 > 421 > 346 > 328 respectively (Table 5), (Fig. 1). In the urban area there are more traffic and small industrial units like power plant etc. that are responsible for the metallic pollution, whereas in rural area (Saadi Town) no industrial units as well as it is far away from industries and highly traffic areas so, it has low pollution level. Chromium concentration in soil is 100-150mg.Kg⁻¹ (Arshad *et al.*, 2014), its mean more than 150mg.Kg⁻¹ of chromium concentration found in this study is not come from soil only but also from other anthropogenic activities as well.

Copper

Copper has highest to lowest trend according to the selected four functional areas of Karachi as Industrial Area (Port Qasim) > Traffic Area (National Highway from Malir Halt to Port Qasim) > Urban Area (Gulshan-e-Iqbal) > Rural Area (Saadi Town) with the values 1924 > 271 > 247 > 135 respectively (Table 5), (Fig. 1). In the industrial area there are large industrial units which are responsible for the high concentration of copper. Whereas in other areas the difference in copper concentration is not significant as compare to Industrial Area [I.A]. Copper concentration in soil at different regions in Pakistan is reported as 6 to 412mg.Kg-1 and I Karachi it is reported 272mg.Kg⁻¹ (Siddique et al., 2009; Arshad et al., 2014) according to these results copper in concentration in this study of all functional areas except Industrial Area (Port Qasim) is come from soil only, but in Industrial Area (Port Qasim) the copper concentration i.e. 1924mg.Kg-1 is very high that mean in this area copper comes from other anthropogenic activities instead of only soil.

Iron has highest to lowest trend according to the selected four functional areas of Karachi as Industrial Area (Port Qasim) > Urban Area (Gulshan-e-Iqbal) > Traffic Area (National Highway from Malir Halt to Port Qasim) > Rural Area (Saadi Town) with the values 91929 > 57681 > 53606 > 43579 respectively (Table 5), (Fig. 1). Iron [Fe] is reported in soil 35080 to 26960mg.Kg⁻¹ in Kohistan region of Pakistan (Arshad *et al.*, 2014) if it is compared with concentration of iron in this study then all the selected functional areas of Karachi has been polluted with some anthropogenic activities which is causing high iron pollution. In industrial area (Port Qasim) there are steel mills which are spreading iron content due to which it shows highest value in industrial region.

Manganese

Manganese has highest to lowest trend according to the selected four functional areas of Karachi as Industrial Area (Port Qasim) > Rural Area (Saadi Town) > Traffic Area (National Highway from Malir Halt to Port Qasim) > Urban Area (Gulshan-e-Iqbal) with the values 1522 > 1384 > 1308 > 1303 respectively (Table 5), (Fig. 1). Manganese was reported 117.6 to 309mg.Kg⁻¹ in roadside soil of national Highway N-5 Karachi (Khan *et al.*, 2011), in this study all the functional areas have high concentration of manganese its mean it's not come from soil only, but there is involvement of other human activities as well.

Nickel [Ni]

Nickel has highest to lowest trend according to the selected four functional areas of Karachi as Urban Area (Gulshan-e-Iqbal) > Industrial Area (Port Qasim) > Traffic Area (National Highway from Malir Halt to Port Qasim) > Rural Area (Saadi Town) with the values 183 > 181 > 164 > 139 respectively (Table 5), (Fig. 1). Nickel has been reported as 5.96 to 13.23mg/Kg in soil of Karachi region (Khan *et al.*, 2011). Nickel has high concentration in settled dust (Table 5) as compared to nickel concentration in soil which means there are other factors involved in contamination of settled dust with nickel.

Lead

Lead has highest to lowest trend according to the selected four functional areas of Karachi as Industrial Area (Port Qasim) > Urban Area (Gulshan-e-Iqbal) > Traffic Area (National Highway from Malir Halt to Port Qasim) > Rural Area (Saadi Town) with the values 566 > 553 > 391 > 198 respectively (Table 5), (Fig. 1). As lead contaminated fuel is used in Pakistan and reported as 24.80 µg g⁻¹ i.e. equal to 24.80mg Kg⁻¹ (Khan et al., 2011). Lead is reported 121mg Kg-1 in Pakistan's coastal region of Karachi (Siddique et al., 2009; Arshad et al., 2014) and in Lyari river Karachi sediments has 49.5mg.Kg⁻¹ Lead (Mashiatullah et al., 2013). It is also reported in soil of national highway N-5 Karachi with the highest concentration of 176mg.Kg⁻¹ (Khan et al., 2011). As the results of lead [Pb] in this study show higher concentration as compared to lead in soil so, its mean there are other anthropogenic activities that causes the lead contamination in settled dust.

Titanium

Titanium has highest to lowest trend according to the selected four functional areas of Karachi as Industrial Area (Port Qasim) > Urban Area (Gulshan-e-Iqbal) > Traffic Area (National Highway from Malir Halt to Port Qasim) > Rural Area (Saadi Town) with the values 5520 > 4883 > 4449 > 3772 respectively (Table 5), (Fig. 1).

Zinc

Zinc has highest to lowest trend according to the selected four functional areas of Karachi as Industrial Area (Port Qasim) > Urban Area (Gulshan-e-Iqbal) > Traffic Area (National Highway from Malir Halt to Port Qasim) > Rural Area (Saadi Town) with the values 18297 > 3208 > 1852 > 279 respectively (Table 5), (Fig. 1). Zinc metal 37.16mg.Kg⁻¹ has been reported in soil sample along the national highway Karachi N-5 (Khan *et al.*, 2011), in Pakistan's soil highest concentration of zinc is reported 29755mg.Kg⁻¹ (Muhammad *et al.*, 2011).

References

Akhter N, Mumtaz M, Hussain SS. 2018. Quantification of metallurgical flux by wavelength dispersive x-ray fluorescence. Chemical Sciences Journal **9**, 195.

Alsubaie A, Alsulaiti L, Al-Dabbous AN, Chamakh M, Jaafar M, Daar E, Alanazi AH, Altowairqi Y, Podolyak Z, Ward NI, Bradley DA. 2019. A comparison of elemental presence in Riyadh and Doha road dust. Radiation Physics and Chemistry 154, 58-63.

Arshad J, Waseem A, Sajjad A, Iqbal F, Murtaza G, Mehmood Z. 2014. Pollution status of pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables. BioMed Research International **2014**, 1-29.

Duong TTT, Lee BK. 2011. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environmental Management **92**, 554–562.

Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA. 2006. The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology **1**, **22**.

Islam MF, Majumder SS, Mamun AA, Khan MB, Rahman MA, Salam A. 2014. Trace metals concentrations at the atmosphere particulate matters in the southeast asian mega city (Dhaka, Bangladesh). Open Journal of Air Pollution **4**, 86.

Karim Z, Qureshi BA and Mumtaz M. 2015. Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecological Indicators **48**, 358-364.

Khademi H, Gabarrón M, Abbaspour A, Martínez-Martínez S, Faz A, Acosta JA. 2019. Environmental impact assessment of industrial activities on heavy metals distribution in street dust and soil. Chemosphere **217**, 695-705. **Khan MN, Sarwar Anila.** 2014. Chemical composition of wet precipitation of air pollutants: a case study in Karachi, Pakistan. Atmosfera **27**, 35-46.

Khan MN, Wasim AA, Sarwar A, Rasheed MF. 2011. Assessment of heavy metal toxicants in the roadside soil along the n-5, national highway, Pakistan. Environmental Monitoring and Assessment **182**, 587-595.

Leung AOW, Duzgoren-Aydin NS, Cheung KC, Wong MH. 2008. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast china. Environmental Science and Technology **42**, 2674-2680.

Liu H, Chen LP, Ai YW, Yang X, Yu YH, Zuo YB, Fu GY. 2009. Heavy metal contamination in soil alongside mountain railway in Sichuan, China. Environmental Monitoring and Assessment **152**, 25-33.

Machado JGMS, Brehm FA, Moraes CAM, Santos CAD, Vilela ACF, Cunha JBMD. 2006. Chemical, physical, structural and morphological characterization of the electric arc furnace dust. Journal of Hazardous Materials **136**, 953-960.

Mashiatullah A, Chaudhary MZ, Ahmad Nr, Javed T, Ghaffar A. 2013. Metal pollution and ecological risk assessment in marine sediments of Karachi coast, Pakistan. Environmental Monitoring and Assessment 185, 1555-1565.

Men C, Liu R, Wang Q, Guo L, Shen Z. 2018. The impact of seasonal varied human activity on characteristics and sources of heavy metals in metropolitan road dusts. Science of the Total Environment **637–638**, 844-854.

Muhammad S, Shah M, Khan S. 2011. Heavy metal concentrations in soil and wild plants growing around pb-zn sulfide terrain in kohistan region, northern Pakistan. Microchemical Journal **99**, 67-75.

Omran M, Fabritius T. 2017. Effect of steelmaking dust characteristics on suitable recycling process determining: ferrochrome converter (crc) and electric arc furnace (eaf) dusts. Powder Technology **308**, 47-60.

Schneidemesser EV, Stone EA, Quraishi TA, Shafer MM, Schauer JJ. 2010. Toxic metals in the atmosphere in Lahore, Pakistan. Science of The Total Environment **408**, 1640-1648.

Shah MH, Shaheen N. 2007. Statistical analysis of atmospheric trace metals and particulate fractions in Islamabad, Pakistan. Journal of Hazardous Materials 147, 759-767.

Shah MH, Shaheen N, Nazir R. 2012. Assessment of the trace elements level in urban atmospheric particulate matter and source apportionment in Islamabad, Pakistan. Atmospheric Pollution Research **3**, 39-45.

Siddique A, Mumtaz M, Zaigham NA, Mallick KA, Saied S, Zahir E, Khwaja HA. 2009. Heavy metal toxicity levels in the coastal sediments of the Arabian sea along the urban Karachi (Pakistan) region. Marine Pollution Bulletin **58**, 1406-1414.

Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. 2012. Heavy metals toxicity and the environment. Molecular, Clinical and Environmental Toxicology **101**, 1-30.

Verma PC. 2015. Determination of concentration of some heavy metals in roadside dust in damaturu metropolis which causes environmental pollution. International Journal of Advances in Science Engineering and Technology, *ISSN*: 2321–9009 3.

Wan D, Han Z, Yang J, Yang G, Liu X. 2016. Heavy metal pollution in settled dust associated with different urban functional areas in a heavily airpolluted city in north China. International Journal of Environmental Research and Public Health DOI: 10.3390/ijerph1311119 13.

Wolff NLRWH. 2006. Handbook of Practical X-Ray Fluorescence Analysis.