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Abstract 

 

Low oxygen condition or hypoxia is a distinguishing feature of the tumor microenvironment, which is a well-

recognized factor responsible for the limited efficacy of traditional modes of cancer treatments, such as- 

radiotherapy, chemotherapy and photodynamic therapy. However, oxygen therapy can reverse the hypoxia-

mediated de-sensitization of hypoxic tumor cells towards the conventional cancer treatments. The efficacy of 

photodynamic, drugs or radiation routines is enhanced whenever oxygen therapy is coupled with conventional 

treatment regimes. Additionally, a significant reduction in tumor mass post-oxygen therapy is evident, 

irrespective of coupling it with the conventional therapy. Hyperbaric Oxygen therapy (HBOT) was earlier used in 

cancer treatments. Nevertheless, untargeted application of HBOT comes with severe side-effects. This drawback 

limits the tumor oxygenation strategy to the pre-clinical stage. However recent studies demonstrate a large 

number of strategies such as use of manganese oxide based depots for site specific oxygen delivery and breathing 

of excess of oxygen with reduced time etc., all have been discovered to achieve oxygenation of hypoxic tumor 

micro environment. This article reviews the important progresses made in the field of oxygen therapy. This study 

will be helpful in developing new therapeutic methods based on the application of oxygen, which can bypass 

hypoxia-induced resistance to traditional therapeutic regimes.     
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Introduction 

The tumor micro-environment comprises of-

adjoining blood vessels, fibroblasts inflammatory 

cells, immune cells and their extracellular matrix, 

proteins & growth factors. This tumor micro-

environment primes cells for carcinogenesis by 

playing a pivotal role in the complex interplay of 

genetic and epigenetic fluctuations inside cells 

themselves (Balkwill, 2012).  An abnormal oncogene 

driven progress of tumor cells in association with a 

disorganized vascular bed of tumor-micro-

environment determines the origin of hypoxia. This 

unregulated proliferation of tumor cells leads to an 

imbalance between the oxygen availability & its 

consumption, which further limits the diffusion of 

oxygen, hence sustaining hypoxic tumor micro-

environment (Michiels, 2016; Forster, 2017).  

 

Tumor hypoxia nurtures other hallmarks of tumor 

micro environment and provides a favorable 

atmosphere for carcinogenesis (Gilkes, 2017; Petrova, 

2018) while selecting aggressive phenotypes from a 

heterogeneous tumor cell population (Vaupel, 2004; 

Rankin, 2016). 

 

Hypoxia induces extensive biological alterations that 

promote malignancy, such as- increased cellular 

proliferation, inhibition of apoptosis, de-activation of 

DNA repair pathways, increased genomic instability, 

up-regulation of growth factors and facilitation of 

tumor invasion and metastasis processes (Graeber, 

1996; Coquelle, 1998, Yuan, 2000; Rofstad, 2000; 

Harris, 2002; Subarsky, 2003; Bindra, 2004; Koshiji, 

2005; Hubi, 2015; Lindqvist, 2018, Ma, 2018). 

 

These hypoxia-induced adaptations in tumor cells 

sustain them throughout nutrient deficiency and a 

hostile environment present during hypoxia 

(Ackerman, 2014; Leithner, 2017; McNeil, 2017; 

Sormendi, 2018). 

 

Diminished transport of chemotherapy drugs through 

the disorganized vascular network of hypoxic tumor 

micro-environment severely limits their efficacy 

(Vaupel, 2001; Trédan, 2007; Aouali, 2017). 

A number of cytotoxic drugs lose efficacy in the 

hypoxic environment e.g. cyclophosphamide, 

carmustine, carboplatin, and melphalan, 

anthracyclines, mitoxantrone and Etoposide, 

doxorubicin etc. (Teicher, 1994; Littlewood,2001; 

Sullivan, 2008; Cosse, 2008; Fu,2014). 

 

Hypoxia is well-established to enable the resistance to 

radiotherapy as well as photodynamic therapy (Gray, 

1953; Luna, 1991; Brizel, 1997; Rofstade, 2000;   

Ferrario, 2000; Koukourakis. 2001). These therapies 

include reactive oxygen species-mediated apoptosis, 

where oxygen is prerequisite for the destruction of 

tumor cells. Thus, non-accessibility of oxygen in the 

tumor micro-environment is a restriction for their 

effectiveness. Both of the approaches are also 

notorious to intensify the hypoxia by consumption of 

available low oxygen amount in tumor micro-

environment consequently lead to more resistance 

and low therapeutic potential (Bakalova, 2004; 

Karimaian, 2017).  

 

Considering the limited efficacy of conventional 

therapies in low oxygen tumor micro-environment 

several hypoxia-activated pro-drugs have been 

developed. Their inactive form changes to active form 

under reductive metabolism by cellular oxide-

reductase. Though, molecular oxygen hinders their 

conversion into the active form, it marks them 

specific for hypoxia e.g. N-oxide tirapazamine, PR-

104 and TH-302 (evofosfamide), AQ4N 

(banoxantrone), E09(apaziquone) etc. Among above 

–explained prodrugs some are under clinical trials 

and other have failed to beat tumor cells growth at a 

significant level (Rischin, 2008; Williams, 2009; 

Guise, 2010; Sun, 2012; McKeage, 2012; Phillips, 

2013; Guise, 2014). 

 

Thus, hypoxia is a self-determining prognostic aspect 

of cancer progression and reduced clinical outcome. 

The most suitable approach to deal with the problem 

of hypoxia is an alteration of hypoxic tumor micro-

environment by means of oxygen delivery.  
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 In 1966 the Nobel Prize winner Dr. Otto Warburg 

publicized that ‘’prime source of the cancer is 

switching of aerobic respiration to anaerobic 

respiration” clarifying that lack of oxygen is the 

foremost reason for cancer. Present day 

developments in cancer biology have proved that his 

hypothesis was right. Progress in today’s research in 

respect of oxygenation of tumor micro environment 

provides insights that oxygen could be a source in 

treating and defeating cancer. The main motive of 

oxygen therapy is to enhance the amount of oxygen in 

tumor micro-environment.  

 

In recent years oxygen therapy based modulation of 

hypoxic tumor micro-environment has been widely 

explored to achieve better performance of cancer 

therapeutics. 

 

Considering the success of oxygen the rapy in cancer 

treatments, this study was conducted to summarize 

the progress of oxygen therapy from past to recent 

advances made in this field. This review aims to 

provide an overview of beneficial methods, developed 

to make oxygen delivery possible in the  tumor micro- 

environment and to reflect the promising role of 

oxygen in cancer therapeutics. 

 

Hyperbaric oxygen therapy (HBOT): an overview  

Hyperbaric oxygen therapy is a non-invasive 

technique uses 100% oxygen greater than the normal 

atmospheric pressure to enforce in the hypoxic tissue, 

consequently increases the oxygen supply to the 

targeted tissue. This process of HBOT is featured by 

induction of apoptosis, reduction in vascular density 

and change in gene expression (Gill, 2004; 

Vaupel,2007; Michieli, 2009). 

 

In 1662 hyperbaric oxygen therapy was introduced 

first time by the innovation of an airtight chamber 

named as ‘domicilium' created by a British physician 

Henshaw, his finding is exceptional because it 

happened prior to the discovery of oxygen. It was 

1930 when a Brazilian physician predicted and 

demonstrated the benefits of hyperbaric oxygen 

therapy. However, hyperbaric oxygen therapy is the 

subject of discussion for cancer prevention from past 

few decades (Wenwu, 2013; Yan, 2015) and raised a 

query that whether hyperbaric therapy is 

advantageous for cancer patients. A significant 

number of studies are present to validate the negative 

and positive effect of HBOT on cancer growth, since 

studies have long focused to elucidate the effect of 

HBOT in cancer prevention. Studies in support of 

hyperbaric oxygen therapy have shown a positive 

relation in hyperoxia and elevated levels of reactive 

oxygen species (ROS), consequently lead to cellular 

damage (Thom,2009). 

 

Studies on the molecular mechanisms of HBOT-

induced cell death, disclose a complex signalling 

network comprises of protein kinases and receptors 

such as RAGE, CXCR2, TLR3, and TLR4 (Gore, 

2010). HBOT also found to regulate the pro-apoptosis 

and anti-apoptosis pathways (Chen, 2007).  

 

This study was complemented by the induction of 

apoptosis in osteosarcoma cells & two different 

animal models, including mammary and 

gliomastumors after implementation of HBOT in 

hypoxia (Raa, 2007; Kawasoe, 2009; Moen, 2009).In 

vivo with in vitro studies on HBOT have publicized 

the decreased cell proliferation, with a negative effect 

on histology (Feldmeier, 2003;Stuhr, 2004; 

Granowitz, 2005; Daruwalla, 2006; Stuhr, 2007; 

ZhENG-RoNG, 2010).  

 

Anti-angiogenesis and pro-angiogenesis both types of 

effect of HBOT have been supported by ample of 

studies(Chong, 2004; Shi, 2005; Heys, 2006; Raa, 

2007 Schonmeyr, 2008; Tang, 2009; Kawasoe, 2009; 

Thom, 2011). In 2012 Moen et al. has carried out a 

research based on a review of the literature to clarify 

that inconsistencies in response to HBOT are 

followed by the cancer type and the protocol to be 

used for HBOT (Moen, 2012). 

 

As HBOT is studied to enhance the oxygen level and 

induce cell death in a hypoxic tumor. Though, the side 

effects of HBOT involve more risk than the benefits 

achieved from it, including oxygen toxic seizures 

(Seidel, 2013). 
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In addition, other side effects encompass reversible 

myopia, epileptic fits etc. (Overgaard, 1989; Leach, 

1998). 

 

Thus the approach has not been very successful in 

solving the problem of oxygen delivery in hypoxia. 

HBOT in concomitant with other therapies has given 

improved outcomes. For example, a study conducted 

on mice showed an enhanced HBOT-mediated 

buildup of 5-FU in the kidney & liver tumor-bearing 

mouse (Takiguchi, 2001). Previously it has also been 

reported with taxol and doxorubicin. The combined 

effect of HBOT with photodynamic therapy and 

radiotherapy was also encouraging (Siemann, 

1986;Kalns, 1998; Maier, 2000; Chen, 2002; Petre, 

2003; Huang, 2003). 

 

Other approaches used for oxygen delivery include 

the use of perfluorochemical emulsion, change in 

haemoglobin-oxygen affinity (Rockwell, 1985; Jain, 

2014). Although these discussed methods of tumor 

oxygenation are confined to pre-clinical studies, none 

of them extended to the level of clinical testing.  

 

Vascular-normalization and oxygenation of tumor 

microenvironment 

As discussed before solid tumors are characterized by 

the disorganized vascular bed, which lead towards a 

hypoxic tumor micro-environment. This hypoxic 

tumor micro-environment is accountable for the 

limited efficacy of therapeutic approaches. To 

improve the potential of therapeutics research has 

targeted to vascular normalization. 

 

In 1971 it was the first time when anti-angiogenesis 

therapy was suggested for cancer prevention and it 

took 1976 to apply this method. Anti-angiogenesis 

therapy was administered for the vasculature 

normalization to enhance the efficacy of therapeutics 

by enhancing the oxygen level in the tumor micro-

environment. Vascular normalization is a process 

involving trimming of incompetent blood vessels, by 

abolishing extra endothelial cells. The hypothesis of 

vascular normalization by anti-angiogenesis therapy 

would be an outcome with improved oxygenation was 

evidenced by the survival benefits in patients with  

colorectal, lung, renal, breast, brain and other cancers 

(Sorensen, 2009; Garcia-Foncillas, 2012; Batchelor, 

2013; Emblem, 2013; Vasudev, 2014; Heist, 2015; 

Jayson, 2016). 

 

Blocking of vascular endothelial growth factor 

(VEGF) or receptor of (VEGFR2) was one of the 

methods of anti-angiogenesis therapy, implicated for 

the vascular normalization. This method was 

resulting in reduced interstitial fluid pressure with 

increased oxygen tension in some tumors (Yuan, 

1996; Tsuzuki, 2000; Kadambi, 2001). This discovery 

was consistent with the use of monoclonal-antibody 

against VEGFR-2 (Hansen-Algenstaedt, 2000). 

Overexpression of histidine-rich glycoprotein in solid 

tumors is another one example to justify the 

connection of vascular normalization and elevated 

oxygen level of the tumor micro-environment (Rolny, 

2001). Other anti-angiogenesis therapies have also 

been used such as extraction of hormone from a 

hormone-dependent tumor was also diminished the 

level of VEGF in tumor cells (Jain, 1998). Anti-

angiogenesis therapy was not found completely 

effective as the proliferation of non-responsive tumor 

cells is able to regain the aberrant vasculature by 

producing angiogenic factors (Viloria-Petit, 2001). 

Currently, this field is moving towards the re-

arrangement of tumor vasculature to achieve the 

better efficacy of therapeutics (Stylianopoulos, 2018). 

Recent movements in the field of oxygen therapy 

Oxygen is indispensable for the life, needed for 

breathing and energy production in cells. Although 

tumor micro-environment is marked with lack of 

oxygen and rely on anaerobic energy production 

pathway. Hypoxia is a main driving force for cancer 

resistance, reversing this hypoxia by means of oxygen 

delivery seems a promising approach toward the war 

against cancer. Though current attention in cancer 

therapy  focuses on the application of oxygen therapy. 

Recently Michail Sitkovsky, an immuno-physiology 

researcher at Northeastern University has postulated 

in his study on the mouse model that, breathing 

oxygen in excess of 21% (available in the normal 

environment), could support the immune system to 

fight tumor development (Hatfield, 2015). 
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Fig. 1. Hypoxia is an attribute of solid tumors, involved in multiple pathways to support tumor progression 

(Ruan, 2009). 

Effect of oxygenation on tumor regression was 

demonstrated by the amplified level of oxy-

haemoglobin, where exchanging the respiration gas 

from hypoxic to hyperoxic even for 10 minutes was 

resulting in increased tumor oxygenation 

subsequently changes the volume of a tumor after 

chemotherapy. This study is further going on with 

reduced time of respiration, would be a step forward 

to achieve clinical application (Lee, 2018). 

 

Improved oxygen pressure and reduced proliferation 

of glioma cells were observed with the combined 

effect of hyperbaric oxygen therapy and nimustine a 

compound with antineoplastic activity (Lu, 2016). 

Another study clarifies that a controlled dose of 

HBOT must be used for beneficiary effects; otherwise, 

it lead towards tumor survival (Sengupta A, 2018). 

 

For the first time to enhance the effect of chemo-

radiotherapy in hypoxictumor micro-environment, an 

oxygen-based method has developed by using MnO2 

and paclitaxel nanoparticles (ANPs-PTX),MANPs-

PTX were obtained as final functional Nano-platform. 

This nano-platform has revealed the great potential 

for the improvement of chemo-radiation therapy by 

the production of abundant oxygen needed for tumor 

oxygenation (Meng, 2018). 

 

Photodynamic therapy is also considered as a 

promising method in cancer treatments. However, 

the lack of oxygen is also a major restrictive issue for 

photodynamic therapy. Recently, tumor-micro-

environment accessible Ce6-MnO2/CNTs (CMCs) 

nano platform was created, with self –oxygen 

generation property to improve photodynamic 

therapy. This nano platform reacts with endogenous 

H2O2 to produce singlet oxygen in tumor micro-

environment, which effectively augments the effect of 

photodynamic therapy on tumor growth suppression 

(Yin, 2018).Similar results were obtained with the 

synchronous delivery of photosensitizer and oxygen, 

made possible by using biocompatible liposomes 

loaded with oxygen carrier haemoglobin and 

photosensitizer indo-cyanine green. Delivery of 

liposomes in tumor micro-environment enhances the 

photodynamic therapy with a down-regulated level of 

HIF-1alpha and VEGF (Guo, 2018). 

 

The similar combination of oxygen-carrier and 

photosensitizer has been used with artificial red 

blood cells to achieve enhanced photodynamic 

therapy (Luo, 2016). On the other hand, bone 

marrow-derived monocytes were also used to 

perform co-delivery of oxygen & photosensitizer 

offers great potential for the improved efficacy of 

photodynamic therapy (Huang, 2015). 
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Fig. 2.Pictorial representation of oxygenation of the hypoxictumor microenvironment, leading to induction of 

apoptosis and also increases the sensitivity of therapy (Brown, 1999; Thomas, 2013). 

Previously hyperbaric oxygen therapy (HBOT) was 

applied to disturb the hypoxia-induced resistance to 

DOX an anti-tumor drug. This approach fails to get 

success, as HBOT intensify the ROS-mediated 

cytotoxicity of DOX toward the normal tissue. For 

further improvement, an implantable oxygen-

generating depot has used to target hypoxic tumor 

microenvironment. Implantation of oxygen 

generating depot has given a significant improvement 

in site-specific cytotoxicity of DOX (Huang, 2016). 

Ultrasound beam guided oxygen encapsulated 

nanobubbles were used in MB49murine urothelial 

carcinoma model has shown to enhance the efficiency 

of mitomycin-C, resulting in significantly lower tumor 

progression (Bhandari, 2018). 

 

To defeat the hypoxia-related resistance particularly 

in photodynamic therapy and radiation therapy 

innovative oxygen based strategy has been tested in 

mice, where high oxygen-dissolving property of 

perfluorocarbons (PFC) was applied intravenously 

into the mice breathing under hyperoxia. Ultrasound 

stimulation made PFC nanodroplets to form a 

circulation of oxygen between lung and tumor, 

subsequently enlarge the oxygen level of a tumor with 

improved therapeutic results of radiation and 

photodynamic therapy. This kind of strategy would be 

helpful in promoting oxygenation in different tumor 

models (Song, 2016). 

 

Other studies proposed that inhibition of cellular 

oxygen consumption could be an effective approach 

for oxygenation of tumors. Metformin an anti-

diabetic drug showed the improved oxygenation in a 

tumor as it causes a reduction in oxygen consumption 

by inhibiting the mitochondrial complex I. A meta-

analysis with metformin has revealed a significant 

reduction in breast cancer, colorectal cancer 

pancreatic cancer, and liver cancer (Zannella, 2013; 

Zhang, 2013). 

 

Other oxygen therapies to be considered are-  

Prof. Keith Scott-Mumby faculty at California 

Institute for Human Science has published his article 

explaining the connection of cancer and oxygen. He 

suggested that in addition to hyperbaric oxygen 

therapy, oxygen flooding can be used to increase the 

oxygen level of tumors. 

 

Oxygen flooding includes the use of peroxide and 

Ozone; both of two substances are able to deliver a 

high amount of oxygen. But the use of this method 

imperfectly can be dangerous. Discovery of an 

alternative method to achieve oxygen flooding would 

be a path towards success. 

 

Conclusion 

Tumor hypoxia is a major concern in the tumor 

biology, due to its crucial role in resistance to 

conventional therapies. Oxygen therapy can have long-

term as well as short -term effects on tumor hypoxia. 
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This study reviewed the most beneficiary methods 

ranging from the breathing of excess of oxygen to 

enhanced efficacy of conventional therapies in 

presence of oxygen, which have shown an inhibitory 

effect of oxygen on tumor growth and also reflects its 

promising role in cancer prevention. Nowadays 

research is focused on the vascular re-arrangement 

for oxygenation of tumor micro-environment. To 

achieve the tumor regression by decreasing the 

exposure timing of HBOT is one of the targets of 

current research. Other future challenges in HBOT 

cover efficient targeting of hypoxic tumors after its 

systemic induction. The increasing application of 

oxygen requires a constant and extended research to 

achieve the clinical phase of the treatment. 
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