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Abstract 

   
Cancer classification from microRNA (miRNA) gene expression data is a difficult task in system biology and 

machine learning as conventional classification methods require a sufficiently large number of labeled samples 

to train the classifiers accurately, particularly when the labeled samples are very expensive and difficult to 

collect. Therefore, conventional classification methods usually do not provide the desired classification accuracy 

due to the scarcity of training samples. In this context, we present an extreme learning machine (ELM) 

technique for cancer classification from miRNA gene expression data that can improve the classification 

accuracy as it is extremely fast and accurate compared to other traditional methods.  The presented method is 

evaluated using publicly available miRNA gene expression datasets of breast cancer, pancreatic cancer, 

colorectal cancer, prostate cancer and lung cancer in terms of classification accuracy, precision, recall, macro F1-

measure, micro F1-measure and kappa in comparison to four other state-of-the-art methods. Experimental 

results justify the dominance of the ELM method over the other compared methods for cancer sample 

classification from miRNA Gene Expression data.  
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Introduction 

Cancer is one of the dangerous diseases due to the 

unusual rapid division and unregulated growth of the 

cells (Kumar et al., 2020). It is one of the leading 

causes of death across the globe. There was 

approximately 18.1 million new cancer patients and 

9.9 million cancer-related deaths worldwide reported 

in 2020 (Sung et al., 2021). The number of new 

cancer patients per year is expected to increase by 

29.5 million and the number of cancer-related deaths 

approaching 16.4 million by the year (Sung et al., 

2021). Therefore, early detection and diagnosis of 

cancer have become an essential area of research for 

biologists and researchers across the world. In this 

context, it is necessary to construct an accurate and 

reliable classifier that can be used by the physicians to 

discriminate benign tumors from malignant tumors 

without going for a surgical biopsy (Marak et al., 

2021). Surgical biopsy tests are extremely invasive as 

tissue samples are needed to be extracted from 

patients in the form of proteins. Although, 

conventional protein-based diagnostic methods 

require careful analysis as well as it produces a less 

accurate result. However, recent researches have 

emphasized the role of non-protein-coding 

ribonucleic acid (ncRNA) in cancer (Esquela-

Kerscher et al., 2006). microRNA (miRNA) is one of 

type of ncRNAs that handles proliferation, 

differentiation, development, and apoptosis (Hwang 

et al., 2006).  It is a small, single-stranded, non-

coding endogenous RNAs of approximately 22 

nucleotides (nt) length that manage gene expression 

by controlling their target mRNAs for translation 

repression. The miRNA expression levels differ 

significantly between cancerous and non-cancerous 

cells that recommend that miRNAs might be involved 

in the development of cancer and may even be used in 

the diagnosis and treatment of cancer (Marak et al., 

2021). Several machine learning methods have been 

applied in classifying tumors using gene expression 

data (Pirooznia et al., 2008, Tarek et al., 2017). These 

methods can broadly be classified as supervised 

(Haider et al., 2013; Vanitha et al., 2015), semi-

supervised (Marak et al., 2021; Halder et al., 2014), 

active learning (Kumar et al., 2019; Halder et al., 

2019), and ensemble based (Kumar et al., 2020; Chen 

et al., 2012) methods etc. Classification of miRNA 

gene expression data usually depends on traditional 

supervised methods that require sufficient number of 

manually labeled training samples to predict 

unlabeled samples to a particular class. Although 

miRNA gene expression labeled samples are 

expensive, time-consuming, and challenging to 

collect, whereas unlabeled samples are relatively 

inexpensive and easy to gather. Therefore, the limited 

training samples are a bottleneck to be used in 

traditional supervised methods for cancer 

classification. In this context, it is a challenging to 

construct a robust classifier that can produce high 

accuracy in classifying cancerous samples from 

miRNA gene expression data. Motivated from the 

above said challenges, an extreme learning machine 

(ELM) is used in this article, which is extremely fast 

compared to other traditional methods as it is 

implemented without iteration and no human-

intervention is needed. The advantage of ELM over 

other neural network algorithms (i.e., 

backpropagation (BP) based algorithm) is that the 

learning parameters of hidden nodes, input weights 

and biases are randomly assigned and need not be 

tuned and the output weights can be analytically 

computed by the simple generalized inverse operation 

(Ding et al., 2013; Huang et al., 2015). 

 

The ELM method is evaluated using publicly available 

miRNA gene expression datasets (Clough et al., 2016) 

of pancreatic cancer, colorectal cancer, prostate 

cancer, lung cancer and breast cancer in terms of six 

validity measures viz., percentage accuracy, precision, 

recall, macro F1, micro F1, and kappa. The 

classification performance of the ELM method is 

compared with three other state-of-the-art methods 

namely, k-nearest neighbour (KNN) classifier (Aha et 

al., 1991), support vector machine (SVM) classifier 

(Vanitha et al. 2015) and Naïve Bayes (NB) classifier 

(Chandra et al., 2011). The overall results reveal that 

employing the extreme learning machine classifier in 

miRNA gene expression data can achieve better 

accuracy. The rest of the article is organised as 

follows. In Section 2, we provide material and 
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methods. Experimental results and discussions are 

reported in Section 3. Finally, conclusions and future 

direction of research are highlighted in Section 4. 

 

Material and methods 

The extreme learning machine (ELM) method is used 

for cancer classification from miRNA Gene 

Expression data. Thus, brief description of extreme 

learning machine is highlighted here. Datasets used 

for the experiment along with the brief description of 

the other compared methods are also reported 

followed by performance evaluation metrics at the 

end of this section. 

 

Extreme learning machine 

Extreme Learning Machine (ELM) was introduced by 

Huang et al., (Huang et al., 2006). It is feedforward 

neural networks having a single hidden layer. 

Parameters of hidden layer are assigned randomly 

and need not be tuned in learning process. Input layer 

weights w and biases b are also assigned randomly 

and never adjust them due to the input weights are 

fixed in ELM method. The output weights β are 

independent of them (unlike in the backpropagation 

training method) and have a straight forward solution 

that does not require iteration (Akusok et al., 2015). 

Therefore, ELM method computes linear output layer 

very fast compared to backpropagation networks. The 

block diagram of ELM method is shown in Fig. 1.  

 

                     (1) 

 

where nh is a number of hidden neurons, N is a 

number of training samples, g(.) is an activation 

function, wi is the weight vector connecting the ith 

hidden neuron to the input layer, βi is the output 

weight vector connecting the ith hidden neuron to the 

output layer, bi is the bias of the ith hidden neuron, 

and wi .xj is the inner product of wi and xj. We can 

shorten the Equation (1) by taking  as H 

and rewrite the equation as follows: 

 

(2) 

 

where, 

  

 

 

 

and g(.) is a non-linear piecewise continuous function 

such as Sigmoid function or Gaussian function 

(Huang et al., 2006). The output weight β is 

computed based on the labeled target Y as follows: 

 

β = (HT H) −1HT Y = H†Y,                                                (3)  

 

where H† is the Moore-Penrose generalized inverse 

(Akusok et al., 2015) of the hidden layer output 

matrix H. 

 

The datasets  

The experiments are carried out on eight miRNA gene 

expression datasets (viz., GSE24279, GSE85589, 

GSE30454, GSE60117, GSE102286, GSE51853, 

GSE26659 and GSE58606) of five cancer types 

namely, pancreatic, colorectal, prostate, lung and 

breast cancers.  

 

These datasets are downloaded from the Gene 

Expression Omnibus (GEO) (Clough et al., 2016). 

Each miRNA dataset is uniquely identified by the 

accession ID. The datasets comprise of non-cancerous 

and cancerous samples, and each sample consists of 

gene expression values along with class label 

information. The summary of each dataset, such as 

the cancer type, accession ID, total number of 

samples, number of cancerous samples, number of 

non-cancerous samples and number of genes in each 

sample are provided in Table 1. Detailed descriptions 

of the used datasets are given below:  

 

Pancreatic cancer 

GSE24279 and GSE85589 pancreatic cancer miRNA 

datasets are used for the experiments. GSE24279 

dataset consists of 158 samples (136 cancerous and 22 

non-cancerous samples) with each sample containing 

848 miRNAs gene expression values. GSE85589 
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dataset comprises of 88 cancerous and 19 non-

cancerous samples with each sample containing 2579  

miRNAs gene expression values.  

 

Colorectal cancer 

GSE30454 colorectal cancer miRNA dataset is used 

for the experiments. This dataset contains 74 samples 

out of which 20 samples are cancerous and 54 

samples are non-cancerous and each sample is having 

1145 genes.  

 

Prostate cancer 

GSE60117 prostate cancer miRNA dataset consists of 

77 samples out of which 56 samples are cancerous 

and 21 samples are non-cancerous and each sample is 

described by 2689 miRNAs gene expression values.  

 

Lung cancer 

Two miRNA datasets (GSE102286 and GSE51853) of 

lung cancer are used for the experiments. GSE102286 

dataset contains 179 observations in which 88 

samples are of cancerous and 91 samples are of non-

cancerous and 734 expression values present per 

sample. GSE51853 dataset comprises of 131 samples 

in which 126 samples are cancerous and 5 samples are 

non-cancerous and each sample is measured over 470 

genes. 

 

Breast cancer 

Two miRNA datasets (GSE26659 and GSE58606) of 

breast cancer are used for the experiments. These 

datasets are briefly described as follows.  

 

GSE26659 dataset is having 94 samples out of which 

17 samples are cancerous and 77 samples are non-

cancerous. Each sample is described by 237 gene 

expression values. GSE58606 dataset consists of 1926 

gene expression values for each sample and it 

comprises of 122 cancerous and 11 non-cancerous 

samples.  

 

The compared methods  

We compared the performance of the ELM method 

(in terms of all the validity metrics) with respect to 

three other state-of-the-art methods namely, k-

nearest neighbour (KNN) classifier (Aha et al., 1991), 

support vector machine (SVM) classifier (Vanitha et 

al. 2015) and Naïve Bayes (NB) classifier (Chandra et 

al., 2011). The brief descriptions of kNN, SVM and NB 

methods are as follows.  

 

k-nearest neighbour (KNN) is the simplest method 

for classification. In this method, class label of the 

test sample is assigned based on the k-nearest 

neighbours labeled samples of that test sample (Aha 

et al., 1991), where k is the positive number. 

 

Support vector machine (SVM) is a supervised 

machine learning technique that can be used for 

classification as well as regression problems under 

statistical techniques.   It handles non-linear decision 

boundaries of arbitrary complexity (Vanitha et al., 

2015).  

 

The decision boundary (a straight line in the case of a 

two-dimensional separation) is positioned to leave 

the largest possible margin on either side. 

Classification is done by the finding the hyper-plane 

that differentiates the two classes very well. 

 

Naïve Bayes classifier (Chandra et al., 2011) is also 

supervised learning algorithm.  It is based on Bayes 

theorem and used for solving classification problems. 

Naïve Bayes classifier is one of the simple and most 

effective classification algorithms which helps in 

making the machine learning models that can make 

fast predictions. 

 

Performance validity metrics 

Six different kinds of validity metrics (viz., percentage 

accuracy, precision, recall, macro averaged F1, micro 

averaged F1 (Kumar et al., 2019), and kappa (Cohen, 

1960) are used to assess the performance of the all the 

methods. 

 

Results and discussion 

In this article, we have reported the average results of 

10 simulation runs of all the methods performed on 

eight real life microarray gene expression datasets. 

The ELM method is implemented in MATLAB and 
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the other three methods, KNN, SVM and NB are 

simulated using WEKA 3.8.3 (Waikato Environment 

for Knowledge Analysis) tool in 64-bit Windows 10 

machine with processor speed 2.50 GHz and 4 GB 

RAM. The experiments are carried out with the same 

number of training samples, i.e, 20% of the total 

samples for all the methods (viz., KNN, SVM, NB, and 

ELM).

 

Table 1. Summary of the eight-miRNA gene expression cancer datasets used for the experiments. 

Cancer Type Accession ID #  Total Samples # Cancerous Samples # Non-cancerous Samples # Genes /Sample 

Pancreatic Cancer GSE24279 158 136 22 848 

GSE85589 107 88 19 2579 

Colorectal Cancer GSE30454 74 20 54 1145 

Prostate Cancer GSE60117 77 56 21 2689 

Lung Cancer GSE102286 179 88 91 734 

GSE51853 131 126 5 470 

Breast Cancer GSE26659 94 17 77 237 

GSE58606 133 122 11 1926 

 

The summary of the average experimental results of 

10 simulations on eight miRNA gene expression 

datasets achieved by the ELM and compared methods 

in terms of six validity metrics (viz., percentage 

accuracy, precision, recall, macro F1, micro F1, and 

kappa) are reported in Table 2.  

 

Table 2. Summary of the average experimental results (in terms of accuracy, precision, recall, macro 

F1, micro F1 and kappa) of 10 simulations achieved by different methods viz., KNN, SVM, NB and ELM 

performed on eight microarray gene expression datasets. 

Cancer Type Accession ID Methods Accuracy 

(%) 

Overall Precision Overall Recall Macro F1 Micro F1 Kappa 

 

 

Pancreatic 

Cancer 

 

GSE24279 

KNN 87.30±5.20 0.8590 0.8730 0.8260 0.8494 0.2329 

SVM 85.71±5.48 0.7590 0.8570 0.8010 0.8252 0.1429 

NB 86.51±2.90 0.8560 0.9500 0.8210 0.8325 0.1429 

ELM 94.84±1.29 0.9609 0.9727 0.8278 0.8536 0.6589 

 

GSE85589 

KNN 84.88±3.20 0.8320 0.8490 0.8320 0.8445 0.3957 

SVM 82.24±6.12 0.8340 0.8220 0.7900 0.8112 0.2310 

NB 84.55±4.33 0.8598 0.8260 0.7790 0.8088 0.1744 

ELM 91.49± 4.73 0.8910 0.9526 0.8376 0.8634 0.6823 

 

Colorectal 

Cancer 

 

GSE30454 

KNN 81.35±8.21 0.8870 0.8140 0.8220 0.8490 0.6189 

SVM 93.22±4.67 0.9230 0.9320 0.9340 0.9398 0.8455 

NB 72.88±5.30 0.8040 0.7290 0.6300 0.7212 0.0817 

ELM 95.66±4.17 0.9255 0.9723 0.9427 0.9479 0.8864 

 

Prostate 

Cancer 

 

GSE60117 

KNN 85.48±7.12 0.8590 0.8550 0.8400 0.8329 0.5578 

SVM 74.19±9.75 0.7150 0.7420 0.7542 0.7510 0.2581 

NB 83.87±7.37 0.8320 0.8390 0.8310 0.8420 0.5414 

ELM 95.05± 6.14 0.9271 0.9655 0.9378 0.9453 0.8780 

 

 

Lung Cancer 

 

GSE102286 

KNN 90.50±2.90 0.9200 0.9050 0.9040 0.9120 0.8106 

SVM 50.84±9.40 0.5512 0.5080 0.4872 0.4900 0.4916 

NB 85.31±6.18 0.8710 0.8530 0.8520 0.8865 0.7086 

ELM 93.58±3.41 0.9401 0.9352 0.9353 0.9377 0.8713 

 

GSE51853 

KNN 95.85±8.55 0.9422 0.9530 0.9544 0.9550 0.3210 

SVM 95.23±8.44 0.9660 0.9520 0.8860 0.8980 0.2988 

NB 96.94±7.65 0.9700 0.9690 0.9600 0.9590 0.3247 

ELM 92.85±9.22 0.6634 0.9639 0.6938 0.7796 0.4190 

 

 

Breast Cancer 

 

GSE26659 

KNN 97.33±2.10 0.9770 0.9730 0.9740 0.8542 0.9123 

SVM 92.00±3.33 0.9270 0.9200 0.9100 0.8874 0.6586 

NB 93.33±2.78 0.9380 0.9330 0.9270 0.9020 0.7257 

ELM 98.72±1.91 0.9580 0.9928 0.9724 0.9745 0.9451 

 

GSE58606 

KNN 92.59±4.66 0.9260 0.9260 0.9260 0.9210 0.0380 

SVM 91.51±4.90 0.9178 0.9150 0.9002 0.8990 0.2432 

NB 92.45±6.56 0.9500 0.9250 0.9330 0.9394 0.6271 

ELM 90.17±5.05 0.6187 0.9009 0.6536 0.7314 0.3331 
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The best results obtained for each dataset are marked 

with bold font in the table and the standard 

deviations of percentage accuracies of 10 simulations 

are also shown using ± sign in Table 2.  

Fig. 1. Block diagram of the Extreme Learning 

Machine (ELM). 

 

We can observe from the summarized experimental 

results (Table 2), that the ELM method outperformed 

the other counter-part methods for six datasets (viz., 

GSE58606, GSE24279, GSE85589, GSE30454, 

GSE60117, GSE102286 and GSE26659), whereas in 

two cases (viz., GSE51853 andGSE58606) other 

methods NB and KNN respectively performed better 

in terms of accuracy compared to the ELM method. 

 

Conclusion  

Traditional supervised learning methods require a 

large amount of labeled training data to achieve 

desired classification accuracy. Therefore, small 

labeled sample size in miRNA gene expression data 

remains a bottleneck in obtaining robust and accurate 

classifier. In order to resolve these issues, we use 

extreme learning machine (ELM) classifier for cancer 

sample classification from miRNA gene expression 

datasets. The efficiency of this method is validated 

using eight publicly available miRNA gene expression 

cancer datasets in terms of six different kinds of 

validity metrics viz., accuracy, precision, recall, macro 

F1-measures, micro F1-measures and kappa. It can be 

observed from the experimental results that the ELM 

method dominated the other compared methods in 

terms of all most all the validity measures (viz., 

accuracy, overall precision, overall recall, macro 

averaged F1 measure, micro averaged F1 measure and 

kappa) for six datasets namely, GSE58606, 

GSE24279, GSE85589, GSE30454, GSE60117, 

GSE102286 and GSE26659, whereas in two datasets 

(viz., GSE51853 and GSE58606) other methods NB 

and KNN respectively performed better in terms of 

accuracy compared to the ELM method. The 

encouraging results obtained from the ELM method 

may motivate researchers to apply this method in 

other application domains particular where the 

labeled samples are limited. The ELM method may 

also be tested on other microarray /miRNA gene 

expression cancer datasets in future. 
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