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Abstract 

   
Classification of cancer patterns from gene expression data is a difficult task in computational biology and 

artificial intelligence due to the sufficient number of training samples is often difficult, expensive, and hard to 

gather. Although, the classification results obtained by the conventional classifiers trained with insufficient 

training samples are generally low. However, unlabeled samples are relatively low-cost and easy to gather, 

whereas conventional classifiers do not utilize these unlabeled samples to train the model. In this context, a self-

training-based model semi-supervised ordered weighted average fuzzy-rough nearest neighbour classifier for 

cancer pattern classification from gene expression data is proposed. The experiments are carried out on eight 

publicly available real-life gene expression cancer datasets. The performance of the proposed method is 

compared with four other methods (two supervised and two semi-supervised) in terms of percentage accuracy, 

precision, recall, macro averaged F1 measure, micro averaged F1 measure and kappa. The dominance of the 

proposed method is justified by the experimental results.  
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Introduction 

Cancer is an unfavourable health issue across the 

globe. There were approximately 18.1 million new 

cancer patients and 9.9 million cancer-related deaths 

worldwide reported in the year 2020, according to the 

Global cancer statistics. Therefore, detection and 

diagnosis of cancer in an early stage is an important 

field of research for computational biologists. 

Conventional techniques for cancer classification 

depend on the clinical tests and the morphological 

exhibition of the tumor. These techniques are 

expensive and time-consuming. The latest 

development of microarray technology (Stekel, 2003) 

has enabled scientists to specify ten thousand genes 

in a single experiment in order to produce a 

comparatively low-cost diagnosis and prediction of 

cancer at an early stage. Several machine learning 

techniques have been applied to classify cancer from 

microarray gene expression data using supervised 

learning (i.e., classification) (Dettling et al., 2003) 

and unsupervised learning (i.e., clustering) (Jiang et 

al., 2004). However, limited contributions have been 

made using semi-supervised learning (Priscilla et al., 

2013; Halder et al., 2014).   

 

Conversion classifiers need a sufficient number of 

labeled patterns to train the classifier to achieve the 

desired accuracy without using unlabeled patterns 

during the training stage. However, labeled patterns 

are very costly and hard to collect, whereas unlabeled 

patterns are relatively low cost and easy to collect. 

Generally, the number of samples present in gene 

expression data is very low in comparison to the 

number of genes available in the dataset. Gene 

expression datasets are usually vague, indiscernible, 

and overlapping in nature (Du et al., 2014).  

 

In this context, it is crucial to build a classifier based 

on a fuzzy-rough set to handle the overlapping, vague 

and indiscernible subtype classes of gene expression 

datasets and a semi-supervised learning method that 

should be useful when the number of labeled patterns 

is limited. Therefore, in this article, we propose a 

‘self-training’ based semi-supervised ordered 

weighted average fuzzy-rough nearest neighbour 

classifier for cancer pattern classification from gene 

expression data. Semi-supervised learning finds ‘high 

confidence’ patterns from unlabeled patterns and 

adds them to the limited training set to improve 

classification accuracy. 

 

Material and methods 

The proposed semi-supervised ordered weighted 

average fuzzy-rough nearest neighbour (SS-

OWAFRNN) is an amalgamation of fuzzy set and 

rough set theory; thus,a brief outline of those is 

provided below: 

 

Fuzzy set theory 

L. A. Zadeh developed the fuzzy set (Zadeh, 1965) 

theory in the year 1965. It is an extension of crisp sets 

to handle vague and imprecise data. Fuzzy set A uses 

mapping from the universe X to the interval [0, 1]. 

The value of A(x) is called the membership degree of x 

in A. 

 

Rough set theory 

Rough set theory was introduced by Z. Pawlak 

(Pawlak, 1982) in the early 1980s. It can handle 

uncertainty, indiscernibility and incompleteness in 

the datasets. The rough set theory begins with the 

idea of an approximation space, which is a pair <X, 

R>, where X is the non-empty universe of discourse 

and R is an equivalence relation defined on X, where 

R satisfies the reflexive, symmetric and transitive 

property. The lower and upper approximations for 

each subset A of X are defined as follows; the lower 

approximation is the union of all the equivalence 

classes which are fully included inside class A, and the 

upper approximation is the union of equivalence 

classes that have a non-empty intersection with the 

class A.  

 

Fuzzy-rough set theory 

Fuzzy set theory can handle vague information, 

whereas rough set theory can handle incomplete 

information. Hybridization of these two concepts 

yields the idea of the fuzzy-rough set, which is the 

pair of lower and upper approximations of a fuzzy set 

A in a universe X on which a fuzzy relation R is 
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defined. The fuzzy-rough lower and upper 

approximations of A are defined as follows (Cornelis 

et al., 2010): 

 

))(),,((inf))(( yAyxRIxAR
Xy


                  (1) 

 

))(),,((sup))(( yAyxRTxAR
Xy



                 (2) 

 

Where I is the Lukasiewicz implicator, T is the 

Lukasiewicz t-norms and ),( yxR  is the valued 

similarity of patterns x and y, inf is infimum and sup 

represents supremum (Cornelis et al.,2010). 

 

Ordered weighted averaging fuzzy-rough sets theory 

Fuzzy-rough set theory used Lukasiewicz implicator 

and t-norm to compute upper and lower 

approximations based on only one instance by using 

inf and sup operators. Therefore, Ordered Weighted 

averaging (OWA) operators modify the strict inf and 

sup operators with more flexible operators to obtain 

lower and upper approximations that would be more 

robust in the presence of noise (Cornelis et al., 2010). 

The lower and upper approximations of instance y 

can be defined as follows:    

                    

))(),,(()( min yAyxRIOWAAR OWA 
                  (3) 

 

))(),,(()( max yAyxRTOWAAR OWA 
          (4) 

 

Proposed Semi-supervised Ordered Weighted 

Average Fuzzy-rough Nearest Neighbour Classifier 

The proposed method semi-supervised Ordered 

Weighted Average Fuzzy-rough Nearest Neighbour 

Classifier (SS-OWAFRNN) comprises semi-

supervised learning and testing. In the first stage, 

semi-supervised learning is adopted to select the 

‘high-confidence’ patterns from the unlabeled 

patterns and it is used for the training process in the 

next iteration. This process continues until 

convergence. In the second stage, each test pattern is 

assigned to a particular class based on the final 

enlarged training set (limited numbers of the labeled 

patterns together with the high-confidence unlabeled 

patterns). The complete procedure of SS-OWAFRNN 

method is given below: 

 

Stage-I: Semi-supervised learning   

A. Determine the k-nearest neighbour (kNN) 

labeled patterns nearest to each of the unlabeled 

pattern (u) based on Euclidean distance.  

 

B. The values of lower and upper 

approximations of unlabeled pattern (u) for belonging 

to each class C is computed using Equation (5) and 

(6) respectively (Jensen et al., 2008): 
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      Where ),( yuR  is calculated as follows:  
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where yu    is the distance of the unlabeled 

pattern )(u  from the labeled pattern kNNy  (k-

nearest neighbour labeled pattern of unlabeled 

pattern )u and  )1(  mm  is the 

fuzzifier. )(yC  is calculated as:  
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C. Unlabeled samples having high-confidence 

values are picked as: 

 

Let 
ijavj  be the average value of lower and upper 

approximations of the unlabeled sample iu  for 

belonging to a class 
jC  and  hmax be the highest 

average value of lower and upper approximations of 

the unlabeled pattern iu for belonging to a class .hC   

The ratio 










h

ijavg

max
 hjj  ,  acts the degree of 

similarity of an unlabeled sample iu
for belonging to 

class 
jC  and the highest belonging class hC  . The 

value of the ratio lies between 0 and 1. Higher the 

value of the ratio, more is the similarity of the 

unlabeled sample with two classes 
jC  and hC  ; 

thus, less is the confidence of that unlabeled sample 

for belonging to any class. Therefore, if the ratio value 

of 
ijavj  hjj  ,  and hmax  is less than 

threshold value (close to 0) then the corresponding 

sample is considered as high confidence pattern iu  

(belonging to class hC ) and added to the training set 

for the next iteration. Otherwise, iu is not added to 

the next iteration. 

 

Stage-II: Testing    

Stage-I (semi-supervised learning) is once converged, 

then the test patterns are tested to assign the class 

labels based on the enlarged set of labeled patterns. 

 

A. Compute the k-nearest neighbour (kNN) 

labeled patterns nearest to each of the test pattern 

)(t  based on Euclidean distance.  

 

B. The values of lower and upper 

approximations of a test pattern )(t for belonging to 

each class C is calculated (similar  to  Equation (6) 

and (7)) respectively as follows (Jensen et al., 2008): 
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where yt    is the distance of the test pattern )(t  

from the labeled pattern kNNy  (k-nearest 

neighbour labeled pattern of test pattern ( )t and 

)1(  mm  is the fuzzifier. )(yC  is computed 

using Equation (8). 
minOWA  and  

maxOWA  are 

computed using Equation (9) and (10), respectively. 

 

C. Test pattern )(t is conferred to a particular class 

for which the sum of lower and upper approximation 

value is highest.    
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Comparison with other methods 

The comparison of the proposed SS-OWAFRNN 

method with four other methods, namely, fuzzy k-

nearest neighbour (FKNN) (Keller et al., 1985), 

ordered weighted average fuzzy-rough nearest 

neighbour (OWAFRNN) (Cornelis et al., 2010), semi-

supervised fuzzy k-nearest neighbour (SS-FKNN) 

(Halder et al., 2014), and semi-supervised fuzzy 

vaguely quantified rough nearest neighbour (SS-
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FVQRNN) (Jensen et al., 2008) is done. Fuzzy k-

nearest neighbour (FKNN) (Keller et al., 1985) 

method is a continuation of the k-Nearest Neighbour 

(KNN) classifier. In KNN algorithm, equal weightage 

is provided to all the k-nearest neighbours to compute 

the predicted class of a test sample. FKNN algorithm 

assigns fuzzy membership of a test sample in each 

class. That class is considered to be the predicted 

class (of that test sample) for which the fuzzy-

membership is maximum. SS-FKNN (Halder et al., 

2014) method is the semi-supervised version of 

FKNN method, which utilizes the unlabeled samples 

along with the labeled samples to enhance the 

classification accuracy of the cancer classification.  

 

In SS-FVQRNN (Jensen et al., 2008) method, the test 

sample is assigned to a specific class for which the 

sum of lower and upper approximation value is 

highest and this method is a semi-supervised version 

of FVQRNN method.  

 

Performance evaluation measures 

In this article, six validity measures are used to 

evaluate the performance of the proposed method. 

They are  (i) percentage accuracy, (ii) precision, (iii) 

recall, (iv) macro averaged F1 measure, (v) micro 

averaged F1 measure (Halder et al., 2013) and (vi) 

kappa (Cohen, 1960). 

 

Experimental setup 

The average results of 10 simulation runs of all the 

methods carried out on eight real-life microarray gene 

expression datasets are mentioned in this article.  

 

All the methods are implemented in MATLAB and 

executed on Windows 7 machine with a processor 

speed 2.40 GHz and main memory 4 GB in this 

article. Two samples are taken from each class as a 

training sample and the test set comprises the total 

samples available (in the datasets), keeping out the 

training samples. 

 

Description of datasets 

We have used eight real-life gene expression cancer 

datasets, namely, Colon Cancer, Brain tumor, SRBCT,  

Lymphoma, Prostate Cancer, Ovarian Cancer, 

Leukemia, Lung Cancer datasets for the experiments. 

These datasets are publicly available at 

www.stat.ethz.ch/dettling/bagboost.html (Dettling, 

2004) and 

http://datam.i2r.astar.edu.sg/datasets/krbd/index.ht

ml (Kent ridgebio-medicaldataset repository).  

 

A dataset is a group of samples and each sample has 

gene expression values and class information. A brief 

outline of the used datasets is given below. 

 

The colon Cancer dataset consists of 40 samples, out 

of which 22 samples are normal patients and 18 

samples are cancerous. Each sample has 2000 genes. 

 

The brain Tumor dataset contains 42 samples 

separated into 5 classes (viz., medulloblastomas, 

malignant gliomas, atypical teratoid/rhabdoid 

tumors, primitive neuroectodermal tumors, human 

cerebella). The numbers of samples present for these 

classes are 10, 10, 10, 8 and 4, respectively. There are 

5597 genes expression values in each sample. 

 

The small round blue cell tumors (SRBCT) dataset 

contains 63 samples, out of which 12 samples of 

neuroblastoma, 20 samples of rhabdomyosarcoma, 8 

samples of Burkitt’s lymphoma and 23 samples of 

Ewing’s sarcoma. Each sample is described by 2308 

genes. 

 

The lymphoma dataset has 62 samples and each 

sample is described by 4026 genes. There are 3 

classes of lymphoma viz., diffuse large B-cell 

lymphoma, follicular lymphoma and chronic 

lymphocytic leukemia. 

 

The prostate cancer dataset comprises 102 samples, 

of which 52 samples are from prostate cancer tissues 

and 50 samples are from normal patients. Each 

sample contains expression values for 6033 genes. 

 

The ovarian cancer dataset contains 203 

observations, of which 91 observations are normal 

and 162 observations are cancerous. The number of 
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genes present in each observation is 15154. The 

leukemia dataset contains 72 samples with two 

classes, namely, lymphoblastic leukemia and myeloid 

leukemia and each sample is described by 3571 genes.  

 

The lung Cancer dataset has 203 samples of which 

139 samples of lung adenocarcinomas, 20 samples of 

pulmonary carcinoids, 21 samples of squamous cell 

lung carcinomas, 6 samples of small-cell lung 

carcinomas and 17 normal lung samples. The 

expression profile contains 12600 genes. The datasets 

used for the experiments are summarized in Table 1. 

Results and discussion 

The average results of 10 simulation run (on a 

random selection of labeled / training samples) in 

terms of percentage accuracy, precision, recall, macro 

F1, micro F1 and kappa obtained by all the methods 

(viz., FKNN, OWAFRNN, SS-FKNN, SS-FVQRNN 

and SS-OWAFRNN) achieved on eight microarray 

gene expression datasets are shown in Table 2. The 

best results are shown in bold font in Table 2. The 

standard deviations of accuracies of 10 simulations 

are also shown using   sign corresponding to each 

percentage accuracy in Table 2. 

 
Table 1. Summary of eight microarray gene expression datasets used for the experiments. 

Datasets No. of Samples No. of Genes Classes 

Colon Cancer 62 2000 2 

Brain Tumor 42 5597 5 

SRBCT 63 2308 4 

Lymphoma 62 4026 3 

Prostate cancer 102 6033 2 

Ovarian cancer 253 15154 2 

Leukemia 72 3571 2 

Lung Cancer 203 12600 5 

 

From the Table 2, it is observed that the proposed SS-

OWAFRNN method performed better in terms of all 

most all the validity measures (viz., accuracy, overall 

precision, overall recall, macro averaged F1 measure, 

micro averaged F1 measure and kappa) compared to 

the other methods namely, FKNN, OWAFRNN, SS-

FKNN and SS-FVQRNN for six datasets (viz., Colon 

cancer, Brain Tumor, SRBCT, Lymphoma, Prostate 

cancer, Ovarian cancer and Leukemia). Whereas only 

one Lung cancer dataset, SS-FVQRNN method 

achieved better results in terms of all the validity 

measures compared to the other methods.  

 

Table 2. Summary of the average experimental results (in terms of accuracy, precision, recall, macro 

F1, micro F1 and kappa) of 10 simulations obtained by different methods viz., FKNN, OWAFRNN, SS-

FKNN, SS-FVQRNN and SS-OWAFRNN performed on eight microarray gene expression datasets. 

Datasets Methods Accuracy  

(%) 

Overall 

Precision 

Overall 

  Recall 

MacroF1 Micro F1 Kappa 

Colon cancer FKNN 80.69 8.28 0.8467 0.8237 0.8029 0.8350 0.6255 

OWAFRNN 90.52 6.20 0.9158 0.9056 0.9001 0.9105 0.8039 

SS-FKNN 85.52 8.45 0.8824 0.8577 0.851 0.8698 0.7119 

SS-FVQRNN 93.45 2.67 0.9364 0.9238 0.9303 0.9349 0.8614 

SS-OWAFRNN 94.83 4.45 0.9468 0.9480 0.9421 0.9424 0.8842 

Brain Tumor FKNN 67.81 7.66 0.6692 0.7901 0.6433 0.7224 0.5812 

OWAFRNN 80.05 4.19 0.7836 0.8387 0.7692 0.8091 0.7407 

SS-FKNN 75.31 9.93 0.7117 0.7934 0.6964 0.7496 0.6773 

SS-FVQRNN 80.21 4.37 0.7893 0.8177 0.7640 0.8028 0.7443 
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SS-OWAFRNN 81.82 3.61 0.8083 0.8800 0.7799 0.8426 0.7612 

SRBCT FKNN 71.45 4.37 0.7918 0.7727 0.7140 0.7818 0.6239 

OWAFRNN 81.09 6.37 0.8566 0.8040 0.7947 0.8294 0.7450 

SS-FKNN 78.00 9.37 0.8375 0.7955 0.7634 0.8158 0.7068 

SS-FVQRNN 79.36 4.47 0.8405 0.8051 0.7760 0.8221 0.7223 

SS-OWAFRNN 83.64 3.99 0.8718 0.8167 0.8224 0.8433 0.7762 

Lymphoma FKNN 96.25 1.01 0.9786 0.9218 0.9474 0.9493 0.9202 

OWAFRNN 96.43 1.19 0.9833 0.9261 0.9516 0.9538 0.9241 

SS-FKNN 96.61 0.56 0.9841 0.9293 0.9542 0.9559 0.9275 

SS-FVQRNN 95.18 2.24 0.9461 0.9004 0.9194 0.9226 0.8971 

SS-OWAFRNN 98.21 1.39 0.9917 0.9667 0.9782 0.9790 0.9610 

Prostate 

cancer 

FKNN 67.55 10.89 0.6736 0.7444 0.6425 0.7047 0.3471 

OWAFRNN 85.00 5.61 0.8499 0.8738 0.8472 0.8615 0.6997 

SS-FKNN 76.02 9.73 0.7591 0.7932 0.7486 0.7754 0.5186 

SS-FVQRNN 81.96 8.06 0.8211 0.8502 0.8140 0.8350 0.6403 

SS-OWAFRNN 87.76 5.05 0.8754 0.8952 0.8757 0.8852 0.7540 

Ovarian 

cancer 

FKNN 87.07 7.50 0.8563 0.8704 0.8525 0.8626 0.7100 

OWAFRNN 89.40 4.92 0.9095 0.8944 0.8887 0.9015 0.7814 

SS-FKNN 88.92 5.55 0.8818 0.8866 0.8798 0.8841 0.7611 

SS-FVQRNN 96.63 4.22 0.9713 0.9630 0.9646 0.9671 0.9298 

SS-OWAFRNN 96.79 5.28 0.9750 0.9588 0.9657 0.9668 0.9314 

Leukemia FKNN 75.59 5.77 0.7879 0.7668 0.7482 0.7772 0.5162 

OWAFRNN 76.91 7.73 0.7395 0.7956 0.7290 0.7637 0.4770 

SS-FKNN 76.03 7.6 0.7987 0.7813 0.7542 0.7899 0.5338 

SS-FVQRNN 73.94 8.55 0.6885 0.7159 0.6865 0.7014 0.3859 

SS-OWAFRNN 80.88 1.87 0.8556 0.8194 0.8054 0.8371 0.6248 

Lung cancer FKNN 61.81 8.43 0.7895 0.6061 0.6070 0.6852 0.4414 

OWAFRNN 65.76 14.41 0.7751 0.6064 0.6133 0.6787 0.4903 

SS-FKNN 71.19 8.61 0.7730 0.6742 0.6576 0.7191 0.5328 

SS-FVQRNN 72.99 6.88 0.8027 0.6505 0.6638 0.7158 0.5526 

SS-OWAFRNN 66.25 4.23 0.7867 0.6066 0.6846 0.6852 0.4607 

 

Conclusion  

This article presents a novel ‘self-training’ based 

semi-supervised Ordered Weighted Average Fuzzy-

rough Nearest Neighbour Classifier (SS-OWAFRNN) 

for cancer sample classification from gene expression 

datasets. The scarcity of the training samples is 

handled by the semi-supervised learning technique, 

whereas overlapping, vague and indiscernibility 

present in the cancer subtype classes of microarray 

gene expression datasets are dealt with by the fuzzy 

and rough set theory in the proposed method. The 

efficiency of the proposed SS-OWAFRNN method is 

validated using eight real-life gene expression cancer 

datasets in terms of six validity measures viz., 

accuracy, precision, recall, Macro F1, Micro F1 and 

kappa. It is seen from the experimental results that 

the proposed SS-OWAFRNN method achieved a 

better result in terms of all most all the validity 

measures for seven datasets, namely, Colon cancer, 

Brain Tumor, SRBCT, Lymphoma, Prostate cancer, 

Ovarian cancer and Leukemia. In contrast, the 

nearest competitive SS-FVQRNN method performed 

better in terms of all the validity measures for only 

one Lung cancer dataset. The promising results 

achieved from the proposed method motivate us to 

apply a semi-supervised learning framework to other 
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classifiers. The proposed method may also be 

validated on other microarray / micro-RNA gene 

expression cancer datasets in the future.   
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