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Abstract 

The upcoming concern for the healthier lifestyle demands the first most obvious thing that is the healthy food 

intake. Apart from the enormous role of lactic acid bacteria in promoting health benefits of the food by their 

direct involvement in food fermentations, here we will be discussing the general characteristics and their 

importance along with the recent tools and techniques by quoting Lactococcus lactis as a model, leading to their 

increased utilization in industries for variety of purposes. 
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Introduction 

The term “lactic acid bacteria” comprises a diverse 

group of bacteria that are intricately linked to humans 

and animals. These microbes occur naturally in 

different environments, such as, the gastrointestinal, 

oral and respiratory tracts and are also found in food 

products such as milk, meat, plant products and wine 

(Van Reenen & Dicks, 2011). Each individual has a 

specific microbiome playing direct role for 

maintaining health of the host. Several species of gut 

microbes have been identified by various techniques 

and the composition of this metabolically active 

microbiota is linked to many disease states 

(Gueimonde & Salminen 2004).  

 

LAB are commonly rod or cocci shaped Gram-

positive, low-GC, non-motile, non-sporulating and 

non-respiring microbes which include the genera: 

Carnobacterium, Enterococcus, Lactobacillus, 

Lactococcus, Leuconostoc, Oenococcus, Pediococcus, 

Streptococcus, Tetragenococcus, Vagococcus and 

Weiss Ella (Michael E. Stiles & Holzapfel, 1997) 

(Makarova et al., 2006). The classification into 

different genera is based upon the morphology, 

carbon metabolism, growth in the range of 

temperatures, acid, alkaline and salt stress tolerance 

(Khalid, 2011). Apart from the diverse characteristics, 

LAB are also related metabolically and 

physiologically. PCR based methods targeting 16S 

rRNA was used few decades back to determine the 

relatedness of LAB associated with food products 

leading to changes in their taxonomic classification. 

LAB are also classified on the basis of GC content 

lower and upper than 50% (Michael E. Stiles & 

Holzapfel, 1997) (Calo-mata, Arlindo, Boehme, & 

Barros-velazquez, 2008).  

 

LAB are involved in food fermentations and used as 

starter cultures for the production of fermented food 

products where they inhibits the growth of pathogenic 

microbes such as Clostridium and Staphylococcus by 

acidification of the environment due to production of 

large amount of lactic and thus lowering the pH of the 

food products. LAB also contribute flavor to the food 

by their metabolism and helps in preserving and 

improving nutritional qualities of the food (M E 

Stiles, 1996).  

LAB ferment sugars via three different pathways 

resulting in homo-, hetero-, or mixed acid 

fermentation. Under anaerobic conditions 

homofermenters produce only lactic acid through 

Embden-Meyerhof-Parnas pathway (Thomas, Ellwood, 

&Longyear, 1979) (Smith, Hillier, Lees, & Jago, 1975). 

This high metabolic rate of lactic acid production is due 

to higher activity of lactate dehydrogenate leading to 

the regeneration of NAD+. Due to this focused 

phenomenon it has become easy to redirect the 

metabolic fluxes towards the production of other 

metabolites as well (Jeroen Hugenholtz and Michiel 

Kleerebezem, 1999). Heterofermenters produce 

equimolar amounts of lactic acid, carbon dioxide and 

ethanol or acetate through phosphoketolase pathway, 

redox potential of the system determines the ratio of 

ethanol and acetate produced (Axelsson, 1998) (Garvie, 

1980) (Kandler, 1983).  

 

Mixed acids are produced by homofermenters such as 

Lactococcus lactis during glucose limitation (Fordyce, 

Crow, & Thomas, 1984), during growth on other 

sugars (Karin Hofvendahl & Hahn-Hägerdal, 

1997)(Åkerberg C, Hofvendahl K, Zacchi G, 1998) 

(Qian, Stanley, Hahn-Hagerdal, & Radstrom, 1994) 

(Garrigues et al., 1997) (Thomas, Turner, & Crow, 

1980), or at increased pH and decreased temperature 

(K. Hofvendahl, Van Niel, & Hahn-Hägerdal, 1999). 

In general the increased carbon flux through the 

pathways results in homolactic mode while the 

limited carbon flux results in accumulation of mixed 

acid products (Garrigues et al., 1997). The same 

homofermentive pathway is utilized during the mixed 

acid fermentation; only the metabolism through the 

pyruvate node differs, resulting in formation of 

ethanol, acetate and formate in addition to lactic acid 

(Karin Hofvendahl, 2000). 

 

Characteristics of lactic acid bacteria 

Genomics 

The size of the genome of typical LAB ranges from 1.7 

Mbp to 3.4 Mbp with a GC content of 35%-50%. 

Thousands of LAB strains have been completely 

sequenced with the advancement of next generation 

sequencing technology. 
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LAB shows a reductive genomic evolution, which 

means the reduction in genome size, most likely due 

to adaptation in nutrient rich environments, from 

plant to milk, which has been shown in L. lactis 

isolated from plant to adaptive evolution in milk 

(Douillard & de Vos, 2014) (Bachmann, Starrenburg, 

Molenaar, Kleerebezem, & Vlieg, 2012). The 

reduction in genome size is due to the prevalent 

presence of pseudo genes (genes that have lost their 

function during the course of evolution), which is 

most often seen in LAB than in other bacteria 

(Makarova et al., 2006) (Schroeter & Klaenhammer, 

2009). Thus the loss of genes during the course of 

evolution is complemented by the enhancement of 

genes required for the uptake of amino acids, sugars, 

peptides, etc. to take up the nutrients from the 

environment instead of synthesizing them denovo 

(Schroeter & Klaenhammer, 2009) (Douillard & de 

Vos, 2014). LAB genomes also contained transposons 

and many LAB harbor plasmids required for the 

growth in specific environments and carry genes 

required for growth in milk (Siezen et al., 2005). So 

the plasmids and other mobile genetic elements have 

shaped the evolution of LAB by facilitating horizontal 

gene transfer (Douillard & de Vos, 2014) 

 

Metabolism 

LAB lacks the functional electron transport chain and 

hence they rely on substrate level phosphorylation for 

ATP synthesis. Substrate uptake is mediated by the 

phosphoenolpyruvate (PEP)- dependent 

phosphotransferase system, which is also the main 

system for carbon catabolite repression, and a major 

regulator of carbohydrate metabolism in bacteria. Sugar 

is also transported by sugar- specific permeases 

alternatively (Postma, Lengeler, & Jacobson, 1993) 

(Carr, Chill, & Maida, 2002). The extra cellular substrate 

is utilized by the two modes of fermentation pathways: 

1. Homofermentation pathway 

This employs the typical Embden-Meyerhof-Parnas 

(EMP) pathway that involves the oxidation of one 

mole of glucose into two moles of pyruvate 

concomitant with two moles of ATP generation. Two 

moles of pyruvate are then reduced to two moles of 

lactate by enzyme lactate dehydrogenase, 

thus regenerating the NAD+. Mannose and galactose 

can also be utilized through PTS or specific permeases 

that can enter into glycolsis by conversion into 

glucose-6-phosphate through the Leloir pathway or 

tagatose-6-phosphate pathway (Salminen & Wright, 

2011). This pathway leads to the conversion of over 

95% of sugar into lactic acid and hence called the 

homofermentation pathway (Gaspar, Carvalho, 

Vinga, Santos, & Rute, 2013). 

 

2. Mixed acid fermentation pathway 

In this condition the pyruvate formed in the EMP 

pathway is not totally converted into lactate, instead 

pyruvate is processed by pyruvate-formate lyase or 

pyruvate dehydrogenase to produce acetyl-CoA that is 

further converted into acetate and ethanol (Thomas et 

al., 1979) (Kandler, 1983). The significant amounts of 

lactate along with acetate and ethanol are called mixed 

acid products. Pyruvate is also converted into α-

acetolactate leading to the formation of diacetyl, acetoin 

and 2,3-butanediol that are important flavor compounds 

in dairy industry (Salminen & Wright, 2011). 

 

3. Heterofermentation pathway 

This involves the entry of either pentose or glucose-6-

phospahte directly into pentose phosphate pathway 

instead of EMP pathway. A reaction catalyzed by 

phosphoketolase leads to the formation of 

glyceraldehyde-3-phosphate that enters glycolysis 

and acetyl phosphate that further forms acetate and 

ethanol (Khalid, 2011) (Salminen & Wright, 2011) 

(Kandler, 1983). 

 

Proteolytic system 

The ability of LAB to adapt in nutritional rich 

environment is very important characteristic as they 

show reduction in genome size; so the loss of ability 

to synthesize nutrients is complemented by gain in 

ability to utilize nutrients from the environment 

(Schroeter & Klaenhammer, 2009) (Douillard & de 

Vos, 2014). This is possible due to the proteolytic 

ability of LAB, particularly those adapted to dairy 

environment, as they encode cell surface proteinases 

to break the protein into range of peptides that can be 

further taken up by specific transport systems (Kunji, 

Mierau, Hagting, Poolman, & Konings, 1996). 
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Stress tolerance 

Tolerance to different type of stresses is an important 

characteristic that distinguishes different species of 

LAB. One of the examples of self-imposed stress is 

lactic acid stress that comes through the 

accumulation of lactic acid, a major end product of 

sugar fermentation. LAB are relatively acid tolerant 

but ultimately the cell physiology is affected by the 

acid stress (Even et al., 2002). Food related LAB 

encounter drastic temperature fluctuations and they 

counteract the effects of heat stress by the induction 

of various heat shock proteins (HSPs) (Craig, 1985). 

LAB are less sensitive to osmotic stress commonly 

encountered in food industry as compared to several 

pathogenic microorganisms (Sleator & Hill, 2001). 

LAB are usually microaerophilic lacking a functional 

electron transport chain and catalases, however some 

of them are aero tolerant.  

 

They have been shown to undergo respiration if external 

heme and/or menaquinones are supplied(Pedersen, 

Gaudu, Lechardeur, Petit, & Gruss, 2012). The cell 

envelope acts as first line of defense against any 

environmental changes, modification in the chemical 

composition of both cell wall and the membrane induced 

by stress have been shown in increasing cell survival 

(Bush, 2012) (Papadimitriou et al., 2016). Actually LAB 

inhabits in different stress environments that are mostly 

nutritious to overcome their auxotrophies. Although 

none of the LAB has been categorized initially as an 

extremophile, but there are reports showing several 

species or strains that can tolerate or even grow in harsh 

environments (Mills, Stanton, Fitzgerald, & Ross, 2011) 

(Sheh & Fox, 2013) (Kleynmans, Heinzl, & Hammes, 

1989) (Lo et al., 2004). 

 

Importance of lactic acid bacteria 

Probiotics 

Probiotics are defined as “living microbes, which 

upon intake in certain numbers exert health benefits 

beyond inherent basic nutrition”. LAB strains 

including Lactobacillus, Enterococcus and 

Bifidobacterium species have also been found to exert 

probiotics benefits when they are consumed as food 

components or as food supplements (Guarner & 

Schaafsma, 1998).  

They are the natural residents of the human gut and 

along with the other bacterial species form the intestinal 

‘microflora’. They can withstand the low pH of the 

stomach and colonize the large intestine where they 

secrete antimicrobial compounds and antioxidants that 

inhibit the growth of pathogens and scavenge free 

radicals. Also they reside in the intestinal surface thus 

preventing other microbes entering the body (Ljungh & 

Wadström, 2001). 

 

Starter cultures 

LAB play a major role in food fermentation where 

they are the primary constituent of industrial starter 

cultures involved in the production of a variety of 

dairy products. The type of starter cultures used for 

the fermentation determines the quality of the 

fermented products such as aroma, shelf life, and 

preservation. Starter cultures of different LAB species 

contributes differently to final flavor and texture of 

the food products (Smit, Smit, & Engels, 2005). Some 

LAB species such as Lactococcus, Lactobacillus, 

Pediococcus and Enterococcus can be used in the 

preservation of fermented meats, fish, vegetables, soy 

sauce, wine etc. by the combined effect of the 

bacteriocin and lactic acid production that inhibits 

the growth of pathogenic bacteria and help LAB to 

dominate the microflora of the food products (M E 

Stiles, 1996) (Klaenhammer, 1993). 

 

Cell factories 

The long traditional use of LAB in food fermentation 

and by humans has provided LAB a generally 

recognized as safe (GRAS) status by the US Food and 

Drug Administration Agency (Gaspar et al., 2013). 

LAB has a relatively simple carbon metabolism that 

makes them important targets for metabolic 

engineering for the production of food ingredients, 

nutraceuticals and also non-food related commodity 

chemicals. There are various examples from each 

category such as alanine which is a natural sweetener 

and used as food additive, Nice system has been used 

to overexpress the alanine dehydrogenase from 

Bacillus sphaericus in LDH deficient strain of L. 

lactis for homoalanine production (Hols et al., 1999). 

Diacetyl is an important flavor compound 

contributing the buttery aroma of dairy products is a 

side product of LAB metabolism.  
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Different metabolic engineering strategies have been 

used for diacetyl production from glucose or lactose 

instead of citrate that follows the natural means of 

diacetyl synthesis by LAB through citrate utilization 

(Gosalbes, Esteban, Galan, & Perez-Martinez, 2000) 

(Kleerebezemab, Hols, & Hugenholtz, 2000). Also, 

acetaldehyde is an important aroma compound like 

diacetyl specifically in yogurt, L. lactis over 

expressing pyruvate decarboxylase from Z. mobilis 

along with native NADH oxidase leads to high level 

acetaldehyde production (Bongers, Hoefnagel, & 

Kleerebezem, 2005). Various LAB has been exploited 

for production of high value metabolites such as 

polyols, vitamins and exopolysaccharides.  

 

Polyols or sugar alcohols are common sugar 

substitutes in food products; xylitol, mannitol and 

sorbitol are the most widely used polyols whose 

production has very well shown in various LAB 

strains (Monedero, Pérez-Martínez, & Yebra, 2010). 

LAB are attractive targets for vitamin overproduction 

as they have the ability to synthesize B vitamins 

(Sybesma, Burgess, Starrenburg, Van Sinderen, & 

Hugenholtz, 2004) (Santos, Wegkamp, De Vos, Smid, 

& Hugenholtz, 2008). Increased EPS production 

through metabolic engineering in L. lactis has also 

been achieved using NICE system (Looijesteijn, Boels, 

Kleerebezem, & Hugenholtz, 1999). LAB has been 

used in industries for large-scale production of lactic 

acid due to their ability to convert over 90% of sugar 

into lactic acid.  

 

Lactic acid is a raw material for pharmaceutical 

industries and biodegradable plastic industries, LAB 

strains has been tailored to produce optically pure L-

lactic acid through fermentative processes (Kylä-

Nikkilä, Hujanen, Leisola, & Palva, 2000). L. lactis 

has also been engineered for ethanol production by 

introducing genes from Zymomonas mobilis 

(Christian Solem, Dehli, & Jensen, 2013). 2,3-

butanediol along with mannitol has been produced in 

L. lactis by cofactor engineering (Gaspar, Neves, 

Gasson, Shearman, & Santos, 2011). Also, LAB, 

mainly Lactococcus lactis, have been developed into 

cell factories for the production of hydrolytic enzymes 

and therapeutic proteins (Vos & Hugenholtz, 2004) 

(Cammarota et al., 2000) (Steidler et al., 2000).  

Various LAB have also been exploited for the 

production of recombinant proteins due to the 

availability of food-grade controlled gene expression 

systems, of which the nisin controlled gene 

expression system has gained the much popularity 

(Mierau & Kleerebezem, 2005). 

 

Lactococcus lactis at a glance 

Lactococcus lactis belongs to the group of lactic acid 

bacterium under the family Streptococcaceae. It is 

gram-positive cocci, mesophilic growing optimally at 

30 degress and pH=7. It can be isolated from plants 

or dairy environments (Rademaker et al., 2007). L. 

lactis has two subspecies namely subsp. lactis and 

subsp. cremoris.  

 

The common examples from both the subspecies are 

the most widely used laboratory strains IL1403 and 

MG1363. The IL1403 was derived from the L. lactis 

subsp. Lactis biovar diacety lactis CNRZ157 by curing 

the citrate plasmid while MG1363 is a plasmid-free 

derivative of the dairy strain NCDO712 (Chopin, 

1984) (Gasson, 1983). Among all LAB, L. lactis is one 

of the most widely studied organism of this group, 

due to its tremendous industrial importance.  

 

It is used as starter in the dairy industries for the 

synthesis of fermented food products (Kelly, Ward, & 

Leahy, 2010). Lactose is a major carbon source found 

while growth of these bacteria in milk, however they 

have the ability to consume various mono and 

disaccharides as substrates. Lactic acid is the primary 

fermentation product produced during anaerobic 

conditions, known as homolactic fermentation. It also 

undergoes mixed acid fermentation during micro 

aerobic condition producing significant amounts of 

formate, acetate and ethanol. Also metabolism of LAB 

is very important for contributing the final product 

properties like flavor, texture and shelf life 

(Kleerebezemab et al., 2000). L. lactis has been 

engineered to become a cell factory for the production 

of wide variety of chemicals including recombinant 

proteins, therapeutic proteins, vaccine antigens, 

flavor ingredients and nutraceuticals etc. (Morello, 

Llull, Miraglio, Langella, & Poquet, 2008) (Bahey-el-

din, Gahan, & Griffin, 2010) (Vos & Hugenholtz, 

2004) (Vuyst, 2004). 
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Tools for studying Lactococcus lactis 

A large number of tools have been developed to 

manipulate cells at the molecular level. With the 

advancement of different omics-techniques one can 

study the biology of the cell at the systems level. Apart 

from the tools designed for DNA manipulation, two 

important tools has been specifically developed for 

modulating gene expression which are first established 

in L. lactis and later applied to other LAB. One is the 

construction of synthetic promoter libraries and another 

is the inducible gene expression system. 

 

1. Controlled gene expression systems 

NICE system is the most commonly known controlled 

gene expression system used for the lactic acid 

bacteria (Mierau & Kleerebezem, 2005)(Kuipers, 

Ruyter, Kleerebezem, & Vos, 1998). There are various 

advantages of using nisin as an inducer for 

overexpression of recombinant proteins. The nisin is 

considered to be safe to use that makes the system 

food grade and it is highly sensitive, so very small 

amount of it is required for induction (0.1- 5 ng/ ml) 

that does not inhibits the growth of other microbes in 

a starter culture during fermentation (Mierau & 

Kleerebezem, 2005) (Kuipers, de Ruyter, 

Kleerebezem, & de Vos, 1997). Also the expression 

level is linear with the amount of inducer used in a 

dynamic range that can be more than 1000 folds (Vos, 

1995) (Willem, 1996). 

 

Similar systems using another bacteriocin sakacin as 

inducer was developed for other LAB as well (Sorvig, 

Mathiesen, Naterstad, Eijsink, & Axelsson, 2005) 

(Nguyen et al., 2011). Also attempts have been made 

to develop zinc controlled gene expression systems in 

L. lactis (Llull & Poquet, 2004).  

 

2. Synthetic promoter libraries 

A synthetic promoter library (SPL) consists of a 

library of promoters with the fixed consensus 

sequences and randomized spacers in between 

(Hammer, Mijakovic, & Jensen, 2006) (Dehli, Solem, 

& Jensen, 2012) (Mijakovic, Petranovic, & Jensen, 

2005). SPL has been shown in modulating gene 

expression in a dynamic range of up to thousand folds 

(Peter Ruhdal Jensen & Hammer, 1998) (P R Jensen 

& Hammer, 1998). 

SPL results in continuous range of activity in 

comparison to traditional approaches that involves 

either knockout of a gene of interest or its 

overexpression by a strong promoter. This approach 

has been used to study glycolytic flux control in L. 

lactis (Koebmann, Solem, & Jensen, 2006) (C Solem, 

Koebmann, & Jensen, 2008) (Christian Solem, 

Petranovic, Koebmann, Mijakovic, & Jensen, 2010). 

This method has also been used in other LAB such as 

L. plantarum (Rud, Jensen, Naterstad, & Axelsson, 

2006).  

 

Other genetic tools 

Apart from inducible gene expression systems and 

SPL, some basic genetic tools are also important for 

studying LAB. Numerous plasmids have been 

generated for creating indels in chromosomal DNA of 

L. lactis by homologous recombination. One example 

is pINT1 and another is pGhost system, both are 

derived from pWV01 plasmid, one is non-replicating 

and another has thermo-sensitive replication (Otto, 

Vos, & Gavrieli, 1982) (Maguin, Duwat, Hege, & 

Ehrlich, 1992)(Biswas, Gruss, Ehrlich, & Maguin, 

1993). After that the pORI series was created to make 

use of both the above systems (Leenhouts, Venema, & 

Kok, 1998) (Law et al., 1995).  

 

Later the pCS1966 was developed which was derived 

from pBluescript to manipulate the chromosome (Le 

Bourgeois, Lautier, Mata, & Ritzenthaler, 1992). It 

involves the selection of integration at non-permissive 

temperature and counter selection at permissive 

temperature confirming the excision of plasmid. 

Erythromycin is used as selection marker for 

integration and 5-fluoroorotate; a toxic pyrimidine 

analogue is used as counter selection marker to 

confirm the excision of plasmid from the 

chromosome (Christian Solem, Defoor, Jensen, & 

Martinussen, 2008).  

 

A derivative of pCS1966, pSEUDO plasmid, was also 

designed for integration into a pseudo locus (neutral 

region) in L. lactis (Pinto et al., 2011). Transposes 

based approaches have also been designed for 

chromosomal integrations in other LAB. 

 



 

316 Gupta  

 

Int. J. Biosci. 2017 

Although site-specific integration systems originating 

from temperate bacteriophage naturally exist in many 

LAB such as Lactobacillus and Streptococcus 

thermopiles (Goh et al., 2009) (Douglas & 

Klaenhammer, 2011).  

 

There have always been advances in development of 

molecular biology tools for easing the process of 

chromosomal DNA manipulation. Recently ssDNA 

recombinering have become very popular for 

silencing the effect of targeted locus (Pijkeren & 

Britton, 2012). Along with the existing tools for 

recombine ring CRISPR/Cas9 based genome editing 

has become much popular (Jiang, Bikard, Cox, Zhang, 

& Marraffini, 2013) (Sander & Joung, 2014) (Gomaa 

et al., 2014) (Selle, Klaenhammer, & Barrangou, 

2015) (Selle et al., 2015). The CRISPRs (clustered 

regularly interspaced short palindromic 

repeats)/Cas9 employs the RNA-guided DNA editing 

technology to introduce double stranded breaks into 

genomes leading to specific, markerless 

insertions/deletions or replacement of targeted locus 

(Huang, Zheng, Jiang, & Hu, 2015).  

 

The gram-positive bacteria are infamous for being 

difficult to engineer, however using CRISPR/Cas9 

assisted homologous recombination it has been 

possible to do clean gene deletions in Clostridium 

beijerinckii NCIMB 8052 (Wang et al., 2015). A 

combined approach of single-stranded DNA (ssDNA) 

recombinering along with the CRISPR–Cas9 have 

been shown in LAB Lactobacillus reuteri by Jee-

Hwan Oh and Jan Peter van Pijkeren (Oh & van 

Pijkeren, 2014). In general CRISPR/Cas9 mediated 

genome editing has potential to modify the genome of 

LAB and other gram-positive bacteria with reduced 

off target effects (Oh & van Pijkeren, 2014).  

 

Conclusion 

The increasing applications of lactic acid bacteria 

demands for the development of more tools that can be 

extended to other LAB along with Lactococcus lactis. 

With the recent advancement of genome level 

manipulation tools one can exploit the microbe’s 

machinery to stably produce their product of interest.  
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