

RESEARCH PAPER

International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print), 2222-5234 (Online) http://www.innspub.net Vol. 10, No. 5, p. 146-158, 2017

OPEN ACCESS

Chemical composition and antibacterial activity of essential oilfrom leaves and twigs of *Pistacia lentiscus* growing in Mostaganem Province (Algeria)

ARABI Abed^{1*}, Djibaoui Rachid¹, Malihac Catherine², Sisbane Ismahene³, Lattab Aicha¹, Bechelaghem Nadia¹, Dahah Hichem¹, Reziga Charef⁴, Ettalhi Mehdi⁴, TALEB Farida⁵, Ouar Korichi Mounira⁵, Dahloum Lahouari⁶

'Laboratory of Microbiology and Plant Biology, University of Mostaganem, Algeria

²OrganicandMacromolecular Chemistry Reserach UnitUniversity of Le Havre, France

^sLaboratory of Food Technology and Nutrition, University of Mostaganem, Algeria

*Laboratory of Medical Analysis, Health Public Department, Public Hospital of Aïn-Tedeles, Mostaganem, Algeria

⁵Laboratory of Enterobacteriology, Pasteur Institut, Algiers, Algeria

⁶Laboratory of Animal and Applied physiology, University of Mostaganem, Algeria

Key words: Pistacia lentiscus, Essential oil, Chemical composition, Antimicrobial activity.

http://dx.doi.org/10.12692/ijb/10.5.146-158

Article published on May 18, 2017

Abstract

This study was designed to examine the chemical compositionand the antibacterial activity of essential oil of *Pistacia lentiscus*(Anacardiaceae) from Mostaganemprovince (northwest of Algeria).Oil was obtained using the hydrodistillation method (Clevenger type) and subsequently analyzed by Gas Chromatography–Mass Spectrometry (GC–MS). The *in vitro* antimicrobial activity against some clinical pathogens was evaluated using the agar diffusion method, the minimum inhibitory concentrations (MIC) were also determined against the same microorganisms using the microdilution method.Among the 50 constituents identified (representing 99.9% of the oil composition) of which the monoterpene hydrocarbons are the dominated (72.43%); α -pinene (42.13%), sabinene (6.46%), γ -terpinene (6.21%) et α -terpinolene (2.18%) being the main components.Antimicrobial activity revealed that the essential oil had promising anti-microbial effects against several multiresistant bacteria, giving satisfactory zone diameter values (40.00, 24.71, 24.60, 23.54, 16.07, 14.58 and 12.86 mm) and MIC values (0.05, 0.1, 0.1, 0.2, 0.2, 0.2 and 0.1%) forgram-negative bacteria: *Helicobacter pylori, Escherichia coli, Morganella morganii, Enterobacter cancerogenus* and *Serratia fonticola* and gram-positive bacteria: *Staphylococcus aureus* and *Enterococcus faecalis*, respectively.

* Corresponding Author: Arabi Abed 🖂 arabi.abed@univ-mosta.dz

Introduction

Medicinal plants have been used in traditional medicine since ages. Currently, despite the multiplicity of curative sbstances, the search on medicinal plants have led to discovernovel drug against diverse diseases (Derwich et al. 2010). The Word Health Organization (WHO) has also indicated thatherbal medicines serve the health needs of about 80 percent of the world's population ; especially for millions of people in the vast rural areas of developing countries (Hosseinzadeh et al., 2015). Essential oils, also called volatile odoriferous oil, are aromatic oily liquids extracted from different parts of plants :Leaves, peels, barks, flowers, buds, seeds, and so on (Tongnuanchan and Benjakul, 2014). There are at least 150 types of essential oils that have been traded in the international market (Kusumaand Mahfud,2017).*Pistacia* lentiscus(Anacardiaceae)is known by its long utlisation in folk medicine since the ancient Greeks.It is an evergreen shrub or small tree from1to 8meters tall (Iauk et al., 1996).P. lentiscusis very common in the mediterranean basin, it is found in the wild, in scrub and scrubland in all types of soil, although it prefers siliceous soils(More and White, 2005). The essential oil and gum of the citedplant have been widely used as food and drink additives in the Mediterranean region, without any toxicity reported (Loutrari et al., 2006; Ghalem and Mohamed, 2009).

The essential oil of Pistacia lentiscus is also used in cosmetics, perfumery and as a flavoring agent in food preparations (Daferera et al., 2002).In Algeria, the leaves of Pistacia spp.were used to purify water andto increase the time of conservation of dry figs and sundried tomatoes; they are also used as natural preservatives for fish and meat products (Djenane et al., 2011). Scientific findings also revealed the wide pharmacological activities from various parts of Pistacia, such as antioxidant, antimicrobial, antiviral, anticholinesterase, anti-inflammatory, antinociceptive, antidiabetic, antitumor, antihyperlipidemic, antiatherosclerotic, and hepatoprotective activities and also their beneficial effects in gastrointestinal disorders(Bozorgiet *al.*,2013;Remila*et al.*,2015; Della*iet al.*, 2013). According to Van der Berg (1998), the essential oil of this plant has ananti-*Helicobacter pylori* activity and can be beneficial in the treatment of peptic ulcer.

Therefore, due to the importance of this plant, we conducted the present study to investigate the chemical composition of essential oil of *Pistacia lentiscus*harvestedfrom Mostaganem region (Algeria) and to evalute its antibacterial potential against many of pathogens.

Material and methods

Studyarea and plant material

The samples of aerial parts (leaves and twigs) of *Pistacia lentiscus*(Fig. 1), wereharvested in March 2016 from the Mostaganem province located at 35°55'52" N, 0°05'21" E, at an altitude of 85 m and with an area of 2269 km² large. The region is characterized by a Mediterranean climate and showed relatively abundant populations of *Pistacia*. The average yearly temperatures and total precipitation amounts are 17.9°C and 347mm(www.fr.climate-data.org).

Essential oil extraction

A sample of 250 g of whole fresh leaves and twigs of *Pistacia lentiscus*were subjected to hydrodistillation in a Clevenger apparatus (Fig. 2) for 3 h with 2000 ml of distilled water according to Duru *et al.* (2003).The essentiel oil obtained was dried over anhydrous sodium sulfate (Na₂SO₄). The oil was finally stored in obscurity at 4°C until further analysis (Gardeli *et al.*, 2008). The yield of essential oil was calculated using the equationbelwo (Kusuma and Mahfud, 2017).

$$y = \frac{\mathbb{V}}{w} \times 100$$

Where: y is the oil yield (%, w/w), V is the weight of extracted oil (g), and W is the weight of fresh plant parts (g).

Essentiel oil analysis

The analysis of the essentialoil was performed using a shimadzu GC-2010 chromatograph connected to an MS-QP2010 SE mass spectrometerat *Organic* and *Macromolecular Chemistry* Research *Unit*(URCOM),

University of Le Havre, France.

Essential oil was initially diluted o 1/100 (v/v) in ethanol 96°. The separation of compounds was carried out on a ZB-5MS capillary column (5% phenyl, 95% dimethylsiloxane, 30 m × 0.25 mm, 0.25 µm film thickness). The carrier gas used was Helium (He) at a flow rate of 1 ml/min. The volume of injections was 1 μ L of a ethanol-solution oil, injected in split mode (ratio split 1/50). The column was programmed initially at 50°C for 3 minincreased gradually to 270°C with a 5 °C/min heating ramp and subsequently maintained for 15 min. The mass spectrometer wasoperated in electron impact mode with ionization energy of 70 eV, the analyzer iscarried out in the scanning range of 35-300 m/z. Oils components were identified by co-injection with standards (wherever possible) and confirmed with National Institute of Standards and Technology (NIST) V.2.0 GC-MS library. The relative concentration of each compound in the essential oil was expressed as percentage by peak area normalization (Babushok et al., 2011).

Antibacterial activity of essentiel oil

The essential oil of *Pistacia lentiscus* was screened against seven bacterial species relatively resistant to the antibiotics usually used in therapy : five Gramnegative (*Helicobacter pylori*, *E.coli*, *Morganella morganii*, *Enterobacter cancerogenus*and*Serratia fonticola*) And two gram positive (*Staphylococcus aureus* and *Enterococcus faecalis*).*Helicobacter pylori* was isolated from gastric biopsies of a patient suffering from a gastric ulcer at the Pasteur Institute, Algiers, whilethe other bacteria were isolated from the stools of20 patients hospitalized in Ain Tedeles district, Mostaganem.All bacteria were identified by studing theircell morphology and by biochemical tests using API system (API 20 E, API 20 NE, STAPH and API CAMPY bioMérieux Marcy-l'Etoile, France).

The aromatogram is a labtest that allows phytotherapists to analyze in vitro the antibacterial activity of essentiel oils and to more accurately select those essential oils best able to suppress or destroy the trageted germs (Peter and Kate Damian, 1995). Different types of aromatograms, in solid, liquid, are exploitable. However, in everyday practice, the solid medium is the simplest and most easily reproducible (Pibiri, 2005).

The antibacterial activity of essential oils was determined by the agar diffusion method (Hazzit*et al*, 2009).Hense, Petri dishes (90 mm) were prepared by pouring 20 ml of Muller Hinton Agar (MHA) medium and allowed to solidify and to dry for 30 min.McFarland density of bacterial culture was adjusted in normal saline (85%, v/v) using densitometer to achieve the final concentration of~10⁶ UFC/ml of each test bacteria individually (Mohapatra *et al.*, 2011) and 0.1 ml of standardized inoculum supspension (0,5 McF~10⁶ UFC/ml) was poured and uniformly extended and the inoculum was allowed to dry for 5 min.

To prepare the sample stock solution, a volume of pure essential oil was dissolved at 10% (v/v) in dimethylsulfoxide (DMSO) (Sigma Aldrich-Química, S.A.). Then, sterile filter paper discs of 6 mm diameter (Filter LAB ANOIA, Barcelona, Spain) were impregnated with 5 μ L of essential oil using a micropipette. The dishes were left for 15 min at room temperature to allow diffusion of the essential oil and then incubated at 37 °C for 24 hours. A negative control was carried out by deposition of 5 μ l of DMSO on disks stored on a previously inoculated medium of the tested bacterium. Each assay in thisstudy was replicated 3 times.

Laboratory growth of *Helicobacter pylori* is difficult and can be achieved by using complex media containing serum, blood, or blood derivatives (Olivieri *et al.*, 1993). For the Antimicrobial test againt *Helicobacter pylori*, the inoculated plates were incubated in MHA plus 10% horse blood for 48 h at 37° C under microaerophilic environment, obtained with a GENbox Microaer paper sachet (Biomerieux) inside an anaerobic jar (oxygen concentration, 5%; CO₂ concentration, 10%) and incubated for 48-72 h at 37° C (Medouakh, 2010).After incubation, the diameter of the clear zone around the disc was measured using a slurry foot and expressed in millimeters (mm) as antimicrobial activity. The sensitivity of the tested bacteria to the essential oil is classified according to the halos of inhibition diameters : \emptyset <8 mm: resistant bacteria; 9 mm< \emptyset <14 mm: sensitive bacteria; 15 mm< \emptyset <19 mm: very sensitive bacteria and \emptyset >20 mm: extremely sensitive bacteria(Ponce *et al.*, 2003).

The antibacterial tests and the determination of the minimum inhibitory concentration (MIC) are carried out according to the method reported by Remmal *et al.* (1993) and Farah *et al* (2001). The essential oil is emulsified in 10% (DMSO) in order to disperse the compounds and to improve their contact with the microorganisms tested.Dilutions were prepared at 1/10, 1/25, 1/50, 1/100, 1/200, 1/300, 1/400 and 1/500 in DMSO solution. A volume of 1.5 ml of each of the dilutions is added to test tubes containing 13.5

ml of the nutrient agar MHA previously sterilized for 20 min at 120°C, cooled to 45°C and poured into Petri dishes. The final concentrations of essential oil are : 1/100, 1/250, 1/500, 1/1000, 1/2000, 1/3000, 1/4000 and 1/5000 (v/v). Negative Controlscontaining culture medium and DMSO alone were also prepared.

Results and discussion

Chemical composition of Pistacia lentiscus essentiel oil

The average yield of the essentiel oil extracted from leaves and twigs of *Pistacia lentiscus* was 0,39 %. This finding agrees with results of Arab *et al.* (2014) in the Boumerdes province,Algeria,Zrira *et al* (2003) in Morocco and Congiu *et al* (2002) in Sardinia. Our values were however highest than those reported in Tunisia (Amri *et al.*, 2012) and Greec (Tsokou *et al.*, 2007).

Table 1. Chemical composition of volatile oil isolated by hydrodistillation from *Pistacia lentiscus* from Mostaganem region, Algeria.

Compound ^a	RT (min)	RI	Area	%	
Tricyclene	7.475	921	601719	0.24	
α-Thujene	7.6	925	594140	0.24	
α-Pinene	7.87	934	104477800	42.13	
Camphen	8.34	949	2910112	1.17	
Sabinene	9.07	972	16021996	6.46	
β-Pinene	9.21	976	4370203	1.76	
β-Myrcene	9.575	988	3367891	1.36	
α-phellandrene	10.11	1005	1521771	0.61	
α-Terpinene	10.45	1016	10162820	4.1	
o-Cymene	10.69	1023	1792977	0.72	
Limonene	10.84	1028	4471214	1.8	
β-Phellandrene	10.89	1030	4329380	1.75	
E-β-Ocimene	11.05	1035	502755	0.2	
Z-β-Ocimene	11.385	1045	3715100	1.5	
Butyrate iso amyl	11.705	1055	1205552	0.49	
y-Terpinene	11.77	1057	15413257	6.21	
α-Terpinolene	12.615	1084	5417549	2.18	
2-Nonanone	12.77	1089	1987035	0.8	
Linalool	13.065	1098	297633	0.12	
Nonanol	13.125	1100	1046866	0.42	
iso-Amyl isovalerate	13.275	1105	426275	0.17	

Terpinen-4-ol	15.575	1180	15434061	6.22
α-Terpineol	16	1194	7313787	2.95
Isopentyl hexanoate	17.565	1248	915591	0.37
Isopamyl hexanoate	17.625	1250	509819	0.21
Bornyl acetate	18.565	1282	2562876	1.03
2-Undecanone	18.77	1289	2615408	1.05
2-Tridecanol	19.05	1299	243635	0.1
β-Elemene	21.435	1388	316135	0.13
Charyophelene	22.265	1420	10991141	4.43
Isoamyl benzoate	22.685	1437	655542	0.26
α-Humulene	23.18	1456	1810825	0.73
β-Cadinene	23.575	1471	234555	0.09
y-Muurolene	23.645	1474	597657	0.24
Germacrene D	23.82	1481	3357121	1.35
Valencene	24.18	1495	309789	0.12
α-Muurolene	24.23	1497	563572	0.23
y-Cadinene	24.6	1512	391191	0.16
Cubebol	24.715	1517	2397832	0.97
Spathulenol	26.155	1576	423032	0.17
Caryophyllene oxide	26.305	1582	250775	0.1
Globulol	26.38	1585	328341	0.13
Cubenol	27.255	1621	280067	0.11
T-Muurolol	27.345	1625	586024	0.24
Epi-Cadinol	27.705	1639	3847662	1.55
Muurolol	27.77	1642	833174	0.34
α-Cadinol	27.975	1651	4920965	1.98
Bisabolol	28.07	1654	237741	0.1
Benzyl Benzoate	30.42	1751	279968	0.11
Manool oxyde	35.105	1943	255446	0.1
Monoterpenes				
Hydrocarbons				72.43
Oxygenated				9.29
Sesquiterpenes				
Hydrocarbons				7.48
Oxygenated				5.69
Ketones				1.85
Alcohols				0.52
Esters				2.64
Unknown				0.1
Total identified				99.9

^a Compounds listed in order of elution from an ZB-5MS capillary column.

RT: Retention time obtained by chromatogram (Fig. 3).

RI: Retention index.

The oil yield of *Pistavia lentiscus* seems to depend on the nature of plant parts used, the extraction method and geographical origin. According to Okoh *et al.* (2007), the yield of essential oil showed a maximum at the full flowering stage (0.97%) and a minimum during the pre-flowering stage (0.13%).

The constituents of leaves and twigs essential oil of *Pistacia lentiscus* are listed in order of their elution on the ZB-5MS capillary column (Fig. 3).

The GC-MS analysis of te *Pistacia lentiscus* essential oil resulted in the detection of 50 components

comprising 99.9% of the oil (Table 1). The essential oil was characterized by a high percentage of monoterpene hydrocarbons (72.43%), followed by oxygenated monoterpenes (9.29%) and sesquiterpene hydrocarbon (7.48%),while the oxygenated sesquiterpenoid fraction was 5.69%. Similar findings have been reported in the literature (Dob *et al.*, 2006).Different compounds have been observed in several studies of the chemical composition of essential oils of *pistacia lentiscus* in the Mediteranian countries (Castola *et al.*, 2000;Ben Douissa *et al.*, 2005; Derwich *et al.*, 2010).

Table 2. Antibacterial activity of essentiel oil of *Pistacia lentiscus* collected in the region of Mostaganem, Algeria against seven pathogenic bacterial strains.

	Oil concentrations								
Strain	1/100	1/250	1/500	1/1000	1/2000	1/3000	1/4000	1/5000	NC
Нр	-	-	-	-	+	+	+	+	+
Ec	-	-	-	+	+	+	+	+	+
Mm	-	-	-	+	+	+	+	+	+
Enc	-	-	+	+	+	+	+	+	+
Sf	-	-	+	+	+	+	+	+	+
Sa	-	-	-	+	+	+	+	+	+
Ef	-	-	+	+	+	+	+	+	+

- : inhibition ; + : growth ; *Hp* : *Helicobacter pylori* ; *Ec* : *Escherichia coli* ; *Mm* : *Morganella morganii* ; *Enc* : *Enterobacter cancerogenus* ; *Sf* : *Serratia fonticola* ; *Sa* : *Staphylococcus aureus* ; *Ef* : *Enterococcus faecalis*, NC = negative control.

In this study α -pinene (42.13%)was the major compound of the essential oil.This compound was also abundant in the samples from Oran, Algeria (19.0%) (Dob *et al.*, 2006),France (31.9%) (Castola *et al.*, 2000), Spain (13.0%) (Ana Fernández *et al.*, 2000) and Morocco (16.1% - 38.5%) (Zrira *et al.*, 2003). The others main constituents of the oil were sabinene (6.46%), terpinen-4-ol (6.22%), y-terpinene (6.21%), charyophelene (4.43%), α -terpinene (4.1%), α -terpineol (2.95%) and α -terpinolene (2.18%). Furthermore, this majority is also observed in the chemical composition of the essential oil of *pistacia lentiscus* in spain, whose main compounds were α pinene (24.9%) followed by terpinen-4-ol (6.8%), sabinene (4.6%), y-terpinene (3.3%), α -terpineol

(2.0%) (Ana Fernández et al., 2000). However, the oils obtained from fresh leaves of Pistacia lentiscus collected in Tunisia (Aissiet al., 2016) displayed a different profile than that detected in the presentstudy since it consisted mainly of germacrene D (11.9%), α-pinene (9.9%), limonene (8.5%), δcadinene (8.5%), β -caryophyllene (8.2%) and terpinen-4-ol (5.1%). Similarly, comparing our results with those reported by Kivçak et al (2004), the major compounds n Turky were terpinene-4-ol (29.2%), β caryophyllene (29.2%)and p-cymene (7.1%). According to Olga Tzakou et al., (2017) the common feature for the samples of Pistacia atlantica studied, as well as for the most studied Pistacia species, is the biosynthesis of monoterpenoids as the

(2.5%), α -terpinene (2.2%) and trans-caryophyllene

main class of compounds in their essential oils, irrespective of the observed variability of the terpene composition of the oils.

The chemical composition of essential oils can vary among speciesand among the different plant parts in the same species.Boelens and Jimenez (1991) reported that the main constituents of the gum oil were: 79% α -pinene and 3% β -myrcene; of the leaf oil: 11% α -pinene and 19% β -myrcene; of the unripe-fruit oil: 22% α -pinene and 54% β -myrcene, and of the ripe-fruit oil: 11% α -pinene and 72% β -myrcene. Other factors can affect the oil chemical composition such as climate, soil quality, harvest season, genetics (Cunha*et al.*,2013) and nutrients (Djenane *et al.*, 2011). Otherwise, yield and composition of the oils were correlated with herbivores, weather parameters (day length, temperature and humidity) and to the attack of fungal pathogens, particularly in the months of rainfall (Hassiotis*et al*, 2010).

Table 3. Mean values of Diameter of Inhibition Zone (DIZ, mm) and Minimal Inhibitory Concentration (MIC) of essentiel oil of *Pistacia lentiscus* collected in the region of Mostaganemagainst seven pathogenic bacterial strains.

Strain	DIZ	MIC %	Oil sensivity
Helicpbacter pylori	40.00	0.05	ExS
E.coli	24.71	0.1	ExS
Morganella morganii	24.60	0.1	ExS
Enterobacter cancerogenus	16.07	0.2	VS
Serratia fonticola	14.58	0.2	S
Staphylococcus aureus	23.54	0.2	ExS
Enterococcus faecalis	12.86	0.1	S

ExS= Extra sensitive ; VS= Very sensitive ; S= Sensitive.

Antimicrobial activity

Lately it has been targeted the interest for biologically active molecules, isolated from plant species to eradicate pathogenic microorganisms.

The *in vitro*antibacterial activity of *Pistacia lentiscus* essential oil were qualitatively and quantitatively assessed by the presence or absence of inhibition zones and MIC values, respectively.

As seen in tables2 and 3, the essential oil of *Pistacia lentiscus* has displayed an important inhibitory activity against both gram positive and gram negative bacteria tested where the average diameter of inhibition zone ranged from 12.86 to 40.00 mm(table 3)as also reported in the literature (Magiatis *et al.*, 1999; Koutsoudaki *et al.*, 2005; Mharti *et al.*, 2011).

The diameters of the inhibition zonesallowed us to classify the bacterial strains according to their

sensitivity to the essential oil tested according to the spectrum indicated above (Ponce *et al.*, 2003).For gram-negative bacteria, the largest zones of inhibition were obtained for *Helicobacter pylori*, *E. coli* and *Morganella morganii* (40.00, 24.71 and 24.60 mm, respectively). It was thus considered that these organisms were extra sensitive to the oil. In addition, *Enterobacter cancerogenus*was found to be more sensitive to the oil than*Serratia fonticola* (16.07 and 14.58 mm, respectively).In the case of gram positive bacteria,*Staphylococcus aureus*has provedto be more sensitive than *Enterococus faecalis* with inhibition diameters of 23.54 and 12.86 mm, respectively.

The Minimal Inhibitory Concentration (MIC) was defined as the lowest concentration of the test samples where the absence of growth was recorded (Ponce *et al.*, 2003). The MIC of essential oil of *Pistacia lentiscus* was tested at concentrations ranging from 1/100 to 1/5000 (v/v).

Fig. 1. Pistacia lentiscusof Mostaganem province, Algeria.

As seen in table (3), the essential oil of *Pistacia lentiscus* revealed a strong inhibitory activity against all germs tested. Although, the microorganisms studied did not express the same sensitivity. The data indicated that *Helicobacter pylori* is inhibited at a concentration of 1/1000 (v/v), while *Escherichia coli*, Morganilla morganii and Staphylococcus aureuswere inhibited at a concentration of 1/500 (v/v). Howevere, a higher MIC value (1/250) (v/v) was obtained with *Enterobacter cancerogenus* and *Enterococcus faecalis*.

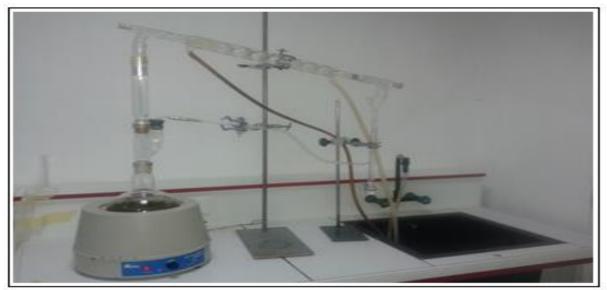


Fig. 2. The experimental setup for Pistacia lentiscusessential oilextraction by hydrodistillation (Clevenger type).

Differences in MIC values of bacteria may be related to differential susceptibility of bacterial cell wall, which is the functional barrier to minor differences present in the outer membrane in the cell wall composition (Zhao *et al.*, 2001). Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which itself is surrounded by an outer membrane containing lipopolysaccharide which creates a barrier toward hydrophobic compounds such as those found in essentiel oils.While, grampositive bacteria lack an outer membrane but are surrounded by layers of peptidoglycan many times thicker than is found in the gram-negatives (Silhavy*et al.*, 2010).

Koutsoudaki *et al* (2005) and Burt (2004) reported that plant extracts are more active against grampositive than gram-negative bacteria. However, results of this study are supported byZaika (1988) hypothesis who proposed that gram-positive bacteria are more resistant than gram-negative bacteria to the antibacterial properties of plant volatile oils. Indeed, several researchers have reported that there is a relationship between the most abundant volatile compounds in the essential oil tested and the antimicrobial activity(Ghalem and Mohamed, 2009; Koutsoukadi *et al.*, 2005).According to Rios and Recio (2005), extracts or oils from plant species with MIC values below 100 μ g/ml are considered

promising as potential antimicrobial agents. Halouiet al(2015) reported that leaves essential oil exhibit a higher antibacterial effect with MIC values of 0.015, 0.5, 1 and 4 % fold least compared to twigs essential oil with MIC values of 0.5, 4, 4 and 16% against Bacillus subtilis, Staphylococcus aureus, E. coli and Pseudomonas aeruginosa, respectively. According to Hafseet al. (2017) the minimum inhibitory concentration for Mycobacterium aurum, Bacillus sp.andStaphylococcus aureus was 1/250 (v/v), while the most resistant strains were Pseudomonas aeruginosa, Enterococcus faecalis and Salmonella sp.with an MIC of 1/125 (v/v). In an other hand, Medjkaneet al(2016) reported a strong antimicrobial activity of Pistacia lentiscus essential oil against algerian clinical isolates of Helicobacter pyloriwith a MIC of 1/5000 (v/v).

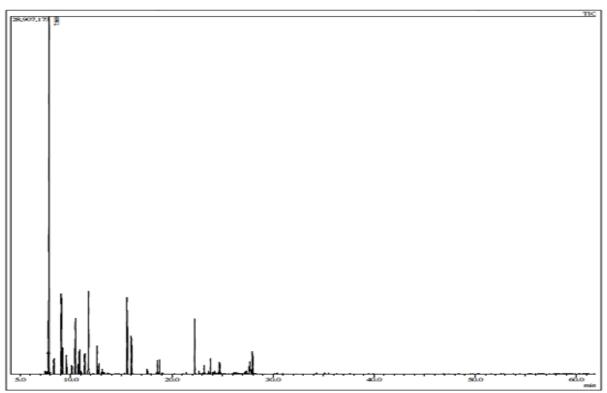


Fig. 3. Chromatogram of Pistacia lentiscus from Mostaganem, Algeria.

In the presanted work, α -pinene (42.13%) is the main compound of essential oil of *Pistacia lentiscus* studied. Several authors reported that essential oils rich in α -pinene have demonstrated potential antibacterial activity.Naturally,the antibacterial efficacy of essential oil of *pistacia lentiscus* is due to a number of its components working synergistically (Derwich et al., 2010).

Conclusion

This work was carried out to study the chemical composition of the essential oils of *Pistacia lentiscus* and to evaluate its antibacterial activity in vitro. Based on the results of composition analysis of oil, α -

pinene was detected as the main compounds. The results of the antibacterial activity tests indicate that essential oil of *Pistacia lentiscus exhibited high* degree of inhibitory *activity against* most of the seven *tested pathogens*. Overall, this study further support the view that *Pistacia lentiscus* are promising as naturel source with antibacterial activity and thus confirm its potentiel uses as antimicrobial agents for industrial applications such as pharmaceutical, perfumery and food preservation. Nonetheless, *in vivo* studies should be conducted to justify and evaluate the potential use of *Pistacia lentiscus* oil.

Acknowledgements

We gratefully acknowledgeLazreg Hafida, MaazouzOum Keltoum(Faculty of life and natural sciences, *University of Mostaganem*)andOthman Mohamed (URCOM EA 3221, University of Le Havre, France) for their logistical assistance and support.We wish also to thank Debba Mohamed Bachir (Departmentof agricultural sciences, *University of Mostaganem*)for his kind identification of plant material.

References

Aissi O, Boussaid M, Messaoud C. 2016. Essential oil composition in natural populations of *Pistacia lentiscus* L. from Tunisia : Effect of ecological factors and incidence on antioxidant and antiacetylcholinesterase activities. Industrial Crops and Product **91**, 56-65.

http://doi.org/10.1016/j.indcrop.2016.06.025.

Amri I, Hamrouni L, Manana M, Jamoussi B. 2012. Chemical composition and herbicidal effects of *Pistacia lentiscus* L. essential oil against weeds. International Journal of Medicinal and Aromatic Plants **2**, 558-565.

Arab K, Bouchenak O, Yahiaoui K. 2014. Phytochemical and evaluation of the antimicrobial and antioxydant activity of essentials oils and phenolic pompouds of *Pistacia lentiscus* L. Journal of Fundamental and Aplied Sciencs **6(1)**, 79-93. http://dx.doi.org/10.4314/jfas.v6i1.7. Babushok VI, Linstrom PJ, Zenkevich IG. 2011.Retention indices for frequently reported compounds of plant essential oils. Journal of Physical Chemistry 40.

http://doi.org/10.1063/1.3653552.

Boelens MH, Jimenez R. 1991. Chemical Composition of the Essential Oils from the Gum and from Various Parts of *Pistacia lentiscus* L. Flavour and Fragrance Journal **6**, 271-275. http://dx.doi.org/10.1002/ffj.2730060406.

Bozorgi М, Memariani Z, Μ Mobli, Mohammad Hossein, Salehi Surmaghi, Mohammad Reza Shams-Ardekani, Roja Rahimi. 2013. Five Pistacia species (Pistacia vera, Pistacia atlantica, Pistacia terebinthus, Pistacia khinjuk and Pistacia lentiscus) : A Review of their traditional uses, phytochemistry, and pharmacology. The Scientific World Journal.

http://dx.doi.org/10.1155/2013/219815.

Burt S. 2004. Essential oil : their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology **94**, 223-253.

http://doi.org/10.1016/j.ijfoodmicro.2004.03.022.

Castola V, Bighelli A, Casanova J. 2000. Intraspecic chemical variability of the essential oil of *Pistacia lentiscus* L. from Corsica. Biochemical Systematics and Ecology **28**, 79-88.

http://doi/org/10.1016/S0305-1978(99)00038-1.

Congiu R, Falconieri D, Marongiu B, Piras A, Porcedda S. 2002. Extraction andisolation of *Pistacia lentiscus* L. essential oil by supercritical CO₂. Flavour and Fragrance Journal **17**, 239-244. http://doi.org/10.1002/ffi.1095.

Cunha LCS, de Morais SAL, Martins CHG, Martins MM, Chang R, de Aquino FJ T, A de Oliveira, Moraes TS, Machado FC, da Silva CV, Evandro A do Nascimento. 2013. Chemical composition, cytotoxic and antimicrobial ectivity of essential oils from *Cassia bakeriana Craib*. against aerobic and anaerobic oral pathogens. Molecules **18**, 4588-4598.

http://dx.doi.org/10.3390/molecules18044588.

Daferera D, Pappas C, Tarantilis PA, Polisiou M. 2002. Quantitative analysis of α -pinene and β myrcene in mastic gum oil using FT-Raman spectroscopy. Food Chemistry 77, 511-515. http://doi.org/10.1016/S0308-8146(01)00382-X.

Damian P, Damian K. 1995. Aromatherapy : scent and psyche : using essential oils for physical and emotional well-bing. Healing Arts Press edition (September 1).

Dellai A, Souissi H, Borgi W, Bouraoui A, Chouchane N. 2013. Antiinflammatory and antiulcerogenic activities of *Pistacia lentiscus* L. leaves extracts. Industrial Corps and Products **49**, 879-882.

http://doi.org/10.1016/j.indcrop.2013.07.010.

Derwich E, Manar A, Benziane Z, Boukir A. 2010. GC/MS Analysis and in vitro antibacterial activity of the essential oil isolated from leaf of *pistacia lentiscus* growing in Morocoo. World Applied Sciences Journal **8(10)**, 1267-1276.

Djenane D, Yanguïela J, Montañés L, Djerbal M, Roncalés P. 2011. Antimicrobial activity of *Pistacia lentiscus* and *Satureja montana* essential oils against *Listeria monocytogenes* CECT 935 using laboratory media : Efficacy and synergistic potential in minced beef. Food Control **22**, 1046-1053. http://doi.org/10.1016/j.foodcont.2010.12.015.

Dob T, Dahmane D, Chelghoum C. 2006. Chemical composition of the essential Oils of *Pistacia lentiscus* L. from Algeria. Journal of Essential Oil Research **18**, 335-338.

http://dx.doi.org/10.1080/10412905.2006.9699105.

Duru ME, Cakir A, Kordali S, Zengin H, Harmadar M, Izumi S, Hirata T. 2003. Chemical composition and antifungal properties of essential oils of three *Pistacia* species. Fitoterapia **74**, 170-176. http://doi.org/10.1016/S0367-326X(02)00318-0.

Farah A, Satrani B, Fechtal M, Chaouch A, Talbi M. 2001. Composition chimique et activités antibactérienne et antifongique des huiles essentielles d'*Eucalyptus camaldulensis* et son hybride naturel (clone 583). Acta Botanica Gallica **148** (3), 183-190. http://dx.doi.org/10.1080/12538078.2001.10515886.

Fernández A, Camacho A, Fernandez C, Altarejos J, Perez P. 2000. Composition of the essential oils from galls and aerial parts of *Pistacia lentiscus* L. Journal of Essential Oil Research 12, 19-23.

http://dx.doi.org/10.1080/10412905.2000.9712031.

Gardeli C, Vassiliki P, Athanasios M, Kibouris T, Komaitis M. 2008. Essential oil composition of *Pistacia lentiscus* L. and *Myrtus communis* L. : Evaluation of antioxidant capacity of methanolic extracts. Food Chemistry **107**, 1120–1130.

http://doi.org/10.1016/j.foodchem.2007.09.036.

Ghalem BR, Mohamed B. 2009. Antimicrobial activity evaluation of the oleoresin oil of *Pistacia vera*L. African Journal of Pharmacy and Pharmacology 3(3), 092-096.

Hafse M, Fikri Benbrahim K, Farah A. 2017. BIological activities of taounate's pistacia lentiscus essential oil. Journal of Advances in Biology **10(1)**, 2039-2043.

https://doi.org/10.24297/jab.v10i1.5976.

Haloui T, Farah A, Balouiri M, Chraibi M, Fadil M, Fikri Benbrahim K, Belrhiti Alaoui A. 2015. Bacteriostatic and bactericidal profile of leaves and twigs essential oils of Moroccan *Pistacia lentiscus* L. Journal of Applied Pharmaceutical Science **5(06)**, 050-053.

http://doi.org/10.7324/JAPS.2015.50607.

Hassiotis CM, Lazari DM, Vlachonasios KE.

2010. The effects of habitat type and diurnal harvest on essential oil yield and composition of *Lavandula angustifolia* Mill. Fresenius Environmental Bulletin **19(8)**, 1491-1498.

Hazzit M, Baaliouamer A, Veríssimo AR, Faleiro ML, Miguel MG. 2009. Chemical composition and biological activities of Algerian *Thymus* oils. Food Chemistry **116**, 714-721. http://doi.org/10.1016/j.foodchem.2009.03.018.

Hosseinzadeh S, Jafarikukhdan A, Hosseini A, Armand R. 2015. The application of medicinal plants in traditional and modern medicine : A review of *Thymus vulgaris*. International Journal of Clinical Medicine **6**, 635-642.

Iauk L, Ragusa S, Rapisarda A, Franco S, Nicolosi VM. 1996. In vitro antimicrobial activity of *Pistacia lentiscus* L. extracts : Preliminary report. Journal of Chemotherapy **8(3)**, 207-209. http://doi.org/10.1179/joc.1996.8.3.207.

Kivçak B, Akay S, Demirci B, Baser K. 2004. Chemical composition of essential oils from leaves and twigs of *Pistacia lentiscus*, *Pistacia lentiscus* var. chia and *Pistacia terebinthus* from Turkey. Pharmaceutical biology **42**, 360-366.

http://dx.doi.org/10.1080/13880200490519677.

Koutsoudaki C, Krsek M, Rodger A. 2005. Chemical composition and antibacterial activity of the essential oil and the gum of *Pistacia lentiscus* var. chia. Journal of Agricultural and Food Chemistry **53** (20), 7681-7685.

http://dx.doi.org/10.1021/jf050639s.

Kusuma HS, Mahfud M. 2017. The extraction of essential oils from patchouli leaves (Pogostemon cablin Benth) using a microwave air-hydrodistillation method as a new green technique. The Royal Society of Chemistry 7, 1336-1347.

http://dx.doi.org/10.1039/C6RA25894H.

Loutrari H, Magkouta S, Pyriochou A, Koika

V, Kolisis FN, Papapetropoulos A, Roussos C. 2006. Mastic oil from*Pistacia lentiscus* var. chia. inhibits growth and survival of human K562 leukemia cellsand attenuates angiogenesis. Nutrition and Cancer **55 (1)**, 86-93.

http://dx.doi.org/10.1207/s15327914nc5501 11.

Magiatis P, Melliou E, Shaltsounis AL, Chinou IB, Mitaku S. 1999. Chemical composition and antimicrobial activity of the essential oils of *Pistacia lentiscus* var. chiao. Planta Medica **65**, 749-752. http://dx.doi.org/10.1055/s-2006-960856.

Medjkane M, Allem R, Medjahed H, Taleb F, Merouane A, Mouffok F. 2016. Antimicrobial activity of the essential oil isolated from *Pistacia lentiscus* leaves against *Helicobacter pylori* algerian clinical isolates. Journal of essential oil-bearing plants **19**, 466-474.

http://doi.org/10.1080/0972060X.2015.1119659.

Medouakh L. 2010. Mise en evidence de *Helicobacter pylori* à partir des biopsis gastriques et son antagonisme avec les lactobacciles. Thèse de Doctorat es sciences, université dOran, Algérie. 234 p.

Mharti FZ, Lyoussi B, Abdellaoui A. 2011. Antibacterial activity of the essential oils of *Pistacia lentiscus* used in Moroccan folkloric medicine. Natural Product Communications-Journals **6(10)**, 1505-1506.

Mohapatra DP, Thakur V, Brar SK. 2011. Antibacterial efficacy of raw and processed honey. Biotechnology Research International. 6 pages. http://dx.doi.org/10.4061/2011/917505.

More D, White J. 2005. Encyclopédie des arbres plus de 1800 espèces et variétés du monde. Flammarion 18, 797.

Okoh OO, Sadimenko AA, Afolayan AJ. 2007. The effects of Age on the yield and composition of the essential oils of Calendula officinalis. Journal of Applied Sciences **7(23)**, 3806-3810.

http://doi.org/10.3923/jas.2007.3806.3810.

Olivieri R, Bugnoli M, Armellini D, Bianciardi S, Rappuoli R, Bayeli PF, Abate L, Esposito E, De Gregorio L, Aziz J, Basagni C, Figura N. 1993. Growth of *Helicobacter pylori* in media containing cyclodextrins. Journal of Clincal Microbiology **31**, 160-162.

Pibiri MC. 2005. Assainissement microbiologique de l'air et des systèmes de ventilation au moyen des huiles d'huile essentielle. Thèse de Doctorat. Ecole Polytechnique Fédérale de Lausanne, EPFL.

Ponce AG, Fritz R, Del Valle C, Roura SI. 2003.Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. Food Science and Technology **36**, 679-684. http://doi.org/10.1016/S0023-6438(03)00088-4.

Remila S, Atmani-Kilani D, Delemasure S, Connat JL, Azib L, Richard T, Atmani D. 2015. Antioxidant, cytoprotective, anti-inflammatory and anticancer activities of *Pistacia lentiscus* (Anacardiaceae) leaf and fruit extracts. European Journal of Integrative Medicine **7**, 274-286. <u>http://doi.org/10.1016/j.eujim.2015.03.009</u>.

Remmal A, Tantaoui-Elaraki A, Bouchikhi T, Rhayour K, Ettayebi M. 1993. Improved method for determination of antimicrobial activity of essential oils in agar medium. Journal of Essential Oil Research **5**, 1179-1184.

Rios JL, Recio MC. 2005. Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology **100**, 80-84.

http://doi.org/10.1016/j.jep.2005.04.025.

Silhavy TJ, Kahne D, Walker S. 2010. The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology 2, 1-16.

http://doi.org/10.1101/cshperspect.a000414.

Tongnuanchan P, Benjakul S. 2014. Essential Oils : Extraction, Bioactivities, and their uses for food preservation. Journal of Food Science **79**, 1231-1249. http://doi.org/10.1111/1750-3841.12492.

Tsokou A, Georgopoulou K, Melliou E, Magiatis P, Tsitsa E. 2007. Composition and enantiomeric analysis of the essential oil of the fruits and the leaves of *Pistacia vera* from Greece. Molecules **12**, 1233-1239. http://doi.org/10.3390/12061233.

Tzakou O, Bazos I, Yannitsaros A. 2007. Volatile metabolites of *Pistacia atlantica* Desf. From Greece. Flavour FragrJournal **22**, 358-362.

http://dx.doi.org/10.1002/ffj.1805.

Van der Berg KJ, Horst J, Boon JJ, Sudmeijer O. 1998. Cis-1,4- poly- β -myrcene; the structure of the polymeric fraction of mastic resin (*Pistacia lentiscus* L.) elucidated. Tetrahedron Letters **39**, 2645-2648.

http://doi.org/10.1016/S0040-4039(98)00228-7.

Zaika LL. 1988.Spices and herbs : their antimicrobial activity and its determination. Journal of Food Nutrition **9**, 97-118.

Zhao WH, Hu ZO, Okubo S, Hara Y, Shimamura T. 2001. Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant *Staphylococcus aureus*. Antimicrob. Agents Chemother **45**, 1737-1742. http://doi.org/10.1128/AAC.45.6.1737-1742.2001.

Zrira S, Elamrani AA, Bendjilali B. 2003. Chemical composition of essential oil of *Pistacia lentiscus* L. From Marocco-a seasonal variation. Flavour And Fragrance Journal **18**, 475-480. http://doi.org/10.1002/ffj.1221.