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Abstract 

   
Cereals are the most important staple foods for mankind worldwide and represent the main constituent of 

animal feed. Their toxicity depends on several factors including the dose, route of exposure, and chemical 

species, as well as the age, gender, genetics, and nutritional status of exposed individuals. A study was 

conducted to determine the effect of different concentrations of lead on morphological parameters (root 

length), the concentrations of chlorophyll in plant leaves provide information about the physiological state of 

plants and were determined using a spectrophotometer. Seed were grown under laboratory conditions at 0, 

0.15, 0.3 and 0.6 g/l of metal ions of lead. The experiment was evaluated in Petri dishes over a period of 14 

days. All results, when compared to control, showed Pb adversely affecting the morphological and 

physiological parameters of the test plants. All  cereal  species showed very higher decrease (p< 0.001) in 

radicle length to increased level of Pb (CH3COO)2. However, a significant decrease of radicle number for all 

plants was observed at concentrations 0.6 g/l of metal. The increase in lead concentration also caused a 

decline in the net rate of chlorophyll total in Triticoseale wittmack. Among the 4 studied plants, the most 

sensitive to Pb exposure were Triticoseale wittmack. 
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Introduction 

Cereal grains were the first agricultural attempts by 

early man, and people still enjoy them today 

depending on where they live and what grows there 

well. Cereal grains are grown in greater quantities and 

provide more food energy worldwide than any other 

type of crops; they are therefore staple food crops. In 

their natural form, they are a rich source of vitamins, 

minerals, carbohydrates, fats, oils and protein 

(Sarwar et al., 2013). The   increasing   demand   for 

food safety stimulated research regarding the risk 

associated with consumption of foodstuffs 

contaminated by pesticides, heavy metals and/or 

toxins. Food safety issues and potential health risks 

make as one of the most serious environmental 

concerns (Gebregziabher and Tesfaye, 2014). 

 

Heavy metal pollution has become a worldwide 

concern due to the increasing levels of pollution and 

its obvious impacts on human health. These are of 

great concern from the public health point of view, 

and being environmental pollutants it can occur 

naturally in the environment and can come from 

industrial (e.g. mining, metallurgical, incineration, 

pesticide etc.) or agricultural sources(e.g. pesticide 

and fertilizers use). These contaminants are highly 

toxic and may accumulate in seafood, whose 

consumption can represent an important route of 

human exposure to these harmful substances and 

ultimately threaten human health (Antizar-Ladislao, 

2008).In biological systems, heavy metals have been 

reported to affect cellular organelles and components 

such as cell membrane, mitochondrial, lysosome, 

endoplasmic reticulum, nuclei, and some enzymes 

involved in metabolism, detoxification, and damage 

repair (Wang and Shi, 2001). Metal ions have been 

found to interact with cell components such as DNA 

and nuclear proteins, causing DNA damage and 

conformational changes that may lead to cell cycle 

modulation, carcinogenesis or apoptosis (Chang et 

al., 1996; Wang and Shi, 2001; Beyersmann and 

Hartwig, 2008). 

 

Therefore, it is important to assess heavy metal 

pollutant concentrations in crops to ensure safe food 

production and prevent environmental and public 

health risks. 

The main objective to the following research is to 

study cereals cultivars responses to lead acetate stress 

during growth and determining cultivars for optimal 

tolerance. 

 

Materials and methods 

Plant growth and lead treatment 

Four species of cereals (Triticum durum, Triticum 

aestivum, Hordeum vulgare and Triticoseale 

wittmack) were used in the experiment to study the 

effects of lead (Pb). Experiment was performed in 

February 2017 in a plant biology laboratory, 

University of Tebessa, Algeria. Prior to germination, 

seeds were surface-sterilized with 10% (v/v) sodium 

hypochlorite for 10 min and rinsed several times with 

distilled water. Next, 10 seeds were placed in petri 

dishes (90-mm diameter) on filter paper and were 

treated separately with solutions containing 0.15, 0.3 

and 0.6 g Pb L-1, supplied as lead acetate Pb 

(CH3COO)2. Control treatments were supplied with 

nutrient solution. The experiment was completely 

randomized and consisted of four treatments 

replicated three times.  

 

Studied parameters  

The parameters studied during this work are: 

 

Radicle length  

Maximum length of seed roots was determined as the 

longest root length, on average, of the sample of ten 

seedlings (Simmons et al., 1995). 

 

Number of radicle 

This parameter is obtained by counting the total 

number of roots for each treatment and dividing it by 

the total number of grains (germinated or not) 

(Harrièche, 2004). 

 

Chlorophyll content 

Pigments were extracted by grinding 0.1 g freshly 

sampled leaves in 80% acetone at room temperature 

for 72 h in the dark according to Arnon (1949). 

Photosynthetic pigments of all the samples were 

extracted in triplicate to minimize experimental 

errors. Chlorophyll contents were measured by using 

absorbance recorded at647 nm and 663 nm for 

maximum absorption of chlorophyll-a and 

chlorophyll-b respectively.  
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The extinction coefficients were determined by a UV-

Vis spectrophotometer. Pigment contents were 

calculated in µg·g-1 fresh weight by applying the 

absorption coefficient equations described by 

Lichtenthaler (1987). 

 

Statistical analysis 

In all experiments, three replicates were performed 

for each sample, and each treatment was repeated 

three times. Data presented here are mean values and 

standard deviation (±SD). Too-way analysis of 

variance (ANOVA) was carried out using post hoc 

multiple comparison from the SNK test to determine 

the difference between the levels of Pb-stress in each 

studied parameter (a significance level of 0.05 was 

used for all statistical tests). 

 

Results  

The results of a different analysis of the variance 

(ANOVA) indicated clearly that the treatments 

operated by the various concentrations of lead, 

exerted a very highly significant effect on the 

parameters studied of the different species.

 

 

Fig. 1. Effect of lead on radicle length of cereals. Results are the mean of three replicates ± SD.*Asterisks indicate 

significant differences between the treatments and the control of the same plant species 

(*p<0.05;**p<0.01;***p< 0.001). 

Radicle length  

The effects of metal stress on radicle length have been 

showed in Figure 1. Comparison of radicle length 

means in different metal levels showed that when 

metal level increase, seedlings radicle length 

decrease. In fact, when Pb was absent (0 gl-1), radicle 

length was almost 22 cm in control seeds (Triticum 

durum) as well as in Triticum aestivum, Hordeum 

vulgare and Triticoseale wittmack seeds. With the 

presence of Pb (CH3COO)2 (0.15 to 0.6  gl-1), Pb 

seems to have an inhibitor action and the length of 

the radicle is being shortened in depending on the 

concentration of Pb (CH3COO)2. The most reduction 

in radicle length related to 0.6 gl-1 (5,1.25,4 and 3,5 

cm respectively in Triticum durum, Triticum 

aestivum, Hordeum vulgare and Triticoseale 

wittmack plants). But, for all lead levels, reduction 

was significantly higher in Triticum aestivum plant 

than in other cereals. 

 

Number of radicle 

Exposing root vegetables to different levels of Pb 

resulted in reductions of number as shown in Figure 

2. A retarded development in Pb-treated plants 

compared to the controls was observed. In the 

presence of 0.6 gl-1, significant reduction was found 

in number of radicle for the four species of cereals 

(P<0.05), and a marked decrease in root number was 

observed at 0.15, 0.3 g Pb L-1 in Triticum durum 

Chlorophyll content. 
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Total chlorophyll content in leaves did not change 

significantly after treatment of wheat and barley 

plants with lead acetate (figure 3). In Triticoseale 

wittmack exposed to 0.15, 0.3 and 0.6 g Pb L-1 total 

chlorophyll contents were markedly reduced from the 

14 day of experiment.  

Total chlorophyll content was decreased by 25,18 % 

(P < 0.05), 56,83 % (P < 0.001) and 50,11 % (P < 

0.001) on 0.15, 0.3 and 0.6 g Pb L-1respectively. 

 

 

 

Fig. 2. Effect of lead on radicle number of cereals. Results are the mean of three replicates ± SD.*Asterisks 

indicate significant differences between the treatments and the control of the same plant species 

(*p<0.05;**p<0.01;***p< 0.001). 

Discussion 

Toxic effects of cereals have been widely described by 

many workers (Souahi et al., 2014; Tegegne, 2015). 

At low concentrations, lead inhibits the growth of 

roots and aerial plant parts (Islam et al., 2007; 

Kopittke et al., 2007). This inhibition is stronger for 

the root, which maybe correlated to its higher lead 

content (Liu et al., 2008). Lead toxicity may also 

cause swollen, bent, short and stubby roots that show 

an increased number of secondary roots per unit root 

length (Kopittke et al., 2007).Arias et al. (2010) 

reported significantly inhibited root elongation in 

Mesquite (Prosopis sp.). In several plant species, 

including Triticum aestivum (Dey et al., 2007; Kaur 

et al., 2013), Z. mays L. (Kozhevnikova et al., 2009), 

Pisum sativum (Malecka et al., 2009), and Sedum 

alfredii (Gupta et al., 2010), a decrease in the 

lengthand in root dry mass under Pb toxicity have 

been reported (Mun-zuroglu and Geckil, 2002). 

However, the effect of low concentrations is not 

clearly established, and the observed growth 

inhibition is not necessarily correlated to a reduction 

in biomass (Kosobrukhov et al., 2004; Yan et al., 

2010).  

 

Photosynthesis inhibition is a well-known symptom 

of lead toxicity (Xiong et al., 2006; Hu et al., 2007; 

Liu et al., 2008; Piotrowska et al., 2009; Singh et al., 

2010; Cenkci et al., 2010). This inhibition is believed 

to result from the following indirect effects of lead 

rather than from a direct effect: distorted chloroplast 

ultra structure from the affinity lead has for protein N 

and Sligands (Elzbieta and Miroslawa, 2005; Islam et 

al., 2007), decreased ferredoxin NADP+reductase 

and delta-aminolevulinic acid dehydratase (ALAD) 

activity at the origin of chlorophyll synthesis 

inhibition (Gupta et al., 2009; Cenkci et al., 2010), 

inhibition of plastoquinone and carotenoid synthesis 

(Kosobrukhov et al., 2004; Chen et al., 2007; Liu et 

al., 2008; Cenkci et al., 2010), obstruction of the 
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electron transport system (Qufei et al., 2009), 

impaired uptake of essential elements such as Mn and 

Fe (Chatterjee et al., 2004; Gopal and Rizvi, 2008) 

and substitution of divalent cations by 

lead (Gupta et al., 2009; Cenkci et al., 2010), 

inhibition of Calvin cycle enzymatic catalysis (Mishra 

et al., 2006; Liu et al., 2008), and increased 

chlorophyll ase activity (Liu et al., 2008). 
 

 

Fig. 3. Effect of lead on the concentrations of chlorophyll total in cereals leaves. Results are the mean of three 

replicates ± SD.*Asterisks indicate significant differences between the treatments and the control of the same 

plant species (*p<0.05;**p<0.01;***p< 0.001). 

Moreover, the effect of lead toxicity varies with plant 

species, i.e., hyper accumulators naturally tolerate 

more lead toxicity than do sensitive plants (Arshad et 

al., 2008). 

 

Conclusion 

The increasing metal pollution of agricultural soils 

makes necessary studies about the response of crop 

plants to different levels of contamination in order to 

evaluate their potential use in phytoremediation.  

 

It is obvious from our results that lead treatment even 

at low concentrations induces large disturbances in 

profound metabolic changes (e.g. in photosynthetic 

capacity), and finally in a strong inhibition of plant 

growth. 

 

In the assayed conditions, Triticoseale wittmack was 

the most sensitive to the applied Pb concentrations. 

Future experiments will be aimed at searching for the 

mechanisms responsible for the improved protection 

of Triticoseale wittmack against the deleterious 

effects of lead. 
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