

International Journal of Agronomy and Agricultural Research (IJAAR)

ISSN: 2223-7054 (Print) 2225-3610 (Online) http://www.innspub.net Vol. 8, No. 3, p. 88-96, 2017

RESEARCH PAPER

OPEN ACCESS

In silico identification of NaCl responsive genes in apple

Pouya Gharbi¹, Nasser Mahna^{*1}, Nader Farsad-Akhtar², Majid Norouzi³

¹Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran ²Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran ³Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

Article published on September 30, 2017

Key words: Apple, Arabidopsis thaliana, Gene, In silico, Salinity

Abstract

Salinity is one of the major abiotic stresses, limiting the productivity of agricultural crops. The present research designed to find and evaluate sodium chloride-responding genes in *Malus domestica* which have homologs in *Arabidopsis thaliana*. We found in the literature that there are 112 *Arabidopsis* proteins categorized in 28 osmotic stress responsive groups and performed a comparative analysis against *Malus domestica* database in GDR and eventually could identify 212 *Malus domestica* sequences. These genes were identified according to the high similarity percentage, high consequently alignment score, low E-value and the pattern sequence coverage. The analysis indicated a high number of sequences and diverse genes from all mentioned categories in apple. One of the most frequent ones came up with unknown function. Analyzing these sequences with an unknown function lead to the annotation of 45 *Malus domestica* sequences. By collecting a bunch of genes probably having a function in salt or osmotic stress responses in apple, we could have a better understanding about how a plant in Rosaceae can survive in salt stress condition.

* Corresponding Author: Nasser Mahna 🖂 Email: n.mahna@gmail.com

Introduction

Salinity is one of the most important factors restraining the yield of agricultural crops affecting adversely germination, plant vigor and crop yield (Munns and Tester, 2008). Salinity which is mostly caused by NaCl is a soil circumstance described by a high concentration of soluble salts. Soils are classified as saline when the EC is 4 dS/m or more (Anonymous, 2015), which is equivalent to approximately 40mM NaCl and generates an osmotic pressure of approximately 0.2 MPa.

Osmotic stress conditions trigger various physiological reactions including defense and metabolic pathways with a role in survival and growth. Salinity tolerance is caused by the genes that confine the amount of salt uptake from the soil and its transport through the plant, put ions in balance in and out of the cells, and control leaf development and the time senescence begins (Munns, 2005).

Apple is one of the 20 most productive crops in the world when measured by tonnage (Anonymous, 2016). This important horticultural crop is prone to yield and growth reductions in saline soils (Ferree and Warrington, 2003). Soil remediation cannot merely alleviate the salinity issue and breeding more tolerant crops would address more efficiently this economic disaster. Through identification of putative salt stress tolerance-involved genes in apple, further information about the response mechanisms for osmotic stresses in Rosaceae would be concluded and perhaps valuable criteria for crop improvement challenges would be provided.

Material and methods

Identification of genes

The genes involved in salt uptake and transport of *Arabidopsis* were obtained from the studies of Apse *et al.* (1999), Gaxiola *et al.* (2001), Laurie *et al.* (2002), Shi *et al.* (2003), Liu *et al.* (2000), Liu *et al.* (1998) and Seki *et al.* (2002).

Identification of protein sequences

The protein sequences of these NaCl-inducible genes were obtained from the NCBI database, at FASTA format, and the locus tags of each gene was used as query sequences.

Identification of genes function

A brief description of each gene was obtained from the NCBI database. This information helped us to categorize genes, and revealed the function of some unknown genes that their function had already identified.

After this step, the protein sequences of *Arabidopsis thaliana* (as a model plant) compared with apple, in order to look for similar sequences against the *Malus domestica* database, using the BLASTp in the Genome Database for Rosaceae (GDR) website.

Result and discussion

In *Arabidopsis*, Seki *et al.* (2002) recognized 103 coding genes out of 7,000 genes and categorized them in 27 functional groups with a more than five-fold increased expression in response to osmotic stress. We used these genes and the genes form other references (see Materials and Methods) to find putatively involved genes in salinity tolerance in apple.

Arabidopsis thaliana is a leading genetic model system for discovering the molecular and biochemical basis of many important biological processes in plants, including the responses of a plant to environmental conditions such as salinity (Taiz and Zeiger, 2010).

Malus domestica is one of the most appreciated horticultural fruit crops in the world. Apple is liable to yield and growth cutbacks in saline soils (Ferree and Warrington, 2003). The draft apple genome has been recently published, in which the majority of the genes have not yet been functionally annotated (Velasco *et al.*, 2010). According to this record, apple has about 57000 genes, more genes than the human genome (about 30000).

Similar sequences often originate from the same ancestral sequence (Claverie and Notredam, 2007). This means that similar sequences possibly have the same ancestor, sharing a similar structure, and a similar function. This principle is true even for the sequences from very different organisms (Claverie and Notredam, 2007). Two very similar proteins or gene sequences are called homologs if 25 percent of the amino acid in two sequences be identical, the length of protein sequences be at least 100 amino acids and the E-value in comparison of two sequences be less than 10^{-4} (Claverie and Notredam, 2007). According to these, there were only 8 seed sequences that didn't have homology in apple genome database (Table1). According to similarity percentage (positives), the highest frequency of gene sequences was in the range of %70-%80 (Fig. 1).

Table 1.	Eight seed	sequences	that didn'	t have ho	mogeneity ir	ı apple gen	ome database.
I upic II	Eight beed	bequenees	that aran	c mare no	mogement, n	r uppie gen	onio aatababo.

Query	Positives	Identities	E-value	Gap percentage	Alignment
sequences					score
At1g42990	60	44	0.014	-	37.7
At2g18050	66	51	2e-29	6	125
At4g02380	65	57	7e-20	8	92.8
At1g73920	41	26	1e-22	11	106
At1g15430	54	39	9e-40	16	160
At1g55280	65	50	5e-28	3	122
At4g38060	58	44	3e-15	11	78
At1g76650	60	42	2e-30	6	128

Fig. 1. The frequency of gene sequences in different similarity percentage.

The genes with unknown function were among the most appearing categories in expression analyses in terms of osmotic stress response in *Arabidopsis* which have got great attention from scientists as new candidate genes for crop improvement. The role of 25 genes in this category were identified based on the NCBI database (Table 2).

The identified genes involved in transcription regulation were from the gene families of bZIP, Zinc finger, WRKY, NAC, MYB, Homeodomain and DREB/ERF. It was a surprising result that there was no bZIP homolog in apple. This transcription factor function in many pathways such as osmotic stress tolerance and has been identified in many plants. The DREB/ERF protein family had the highest number of sequences in comparison to the other transcription factors. This result was predictable, because 144 out of about 1,600 transcription factors found in *Arabidopsis thaliana* are members of the DREB/ERF-like family (Dietz *et al.*, 2010).

Zinc finger proteins are small structural motifs coordinated by one or more zinc ions to stabilize the fold (Krishna *et al.*, 2003). Zinc fingers proteins can variably bind DNA, RNA, proteins, or other small, useful molecules, based on their binding specificity (Ravasi *et al.*, 2003).

Query	Positives	E-value	Alignment	Description
sequences			score	
At1g02660	70	0	743	Alpha/beta-hydrolases super family protein
At1g11360	77	7e-84	307	Alpha hydrolases-like protein
At1g17380	46	4e-23	105	Jasmonate-zim-domain protein 5
At1g19180	58	2e-48	189	Jasmonate-zim-domain protein 1
At1g55280	65	5e-28	122	Lipase/lipoxygenase, PLAT/LH2 family protein
At1g63010	85	0	1008	Major facilitator super family with SPX domain
At1g76650	60	2e-30	128	Calcium-binding protein CML38
At2g21620	78	4e-65	244	Dessication responsive protein
At2g26560	79	e-155	544	Phospholipase A 2A
At2g40140	65	0	653	Zinc finger CCCH domain-containing protein
At2g41190	74	e-175	613	Trans membrane amino acid transporter family
At2g41640	70	e-167	587	Glycosyl transferase family 61 protein
At3g61060	80	1e-99	360	Phloem protein 2-A13
At4g25670	64	4e-47	184	Conserved peptide upstream ORF 12
At4g27520	54	3e-60	229	Early nodulin-like protein 2
At4g30650	88	3e-24	107	Putative low temperature and salt responsive
At4g33050	74	e-166	582	Calmadulin-binding protein
At4g36040	64	9e-35	143	Chaperon protein
At4g37390	85	0	919	Indole-3-acetic asid-amino synthetase GH3.2
At5g09440	72	1e-95	346	Protein exordium like 4
At5g22290	70	2e-68	256	Membrane-tethered transcription factor
At5g42050	68	e-140	375	Development and cell death domain protein
At5943260	89	1e-44	175	Chaperon protein dnaJ-like protein
At5950100	72	3e-71	265	Putative thiol-disulfide oxido reductase DCC
At5g63160	76	e-118	422	BTB and TAZ domain protein 1

Table 2. Identification of some unknown sequences.

It is obvious that all of the analyzed categories can contribute to an increase in salt tolerance, however potential roles of some them seem more relevant. The genes that control salt uptake and transport have an important role in salt tolerance (Munns, 2005). NHX1, AVP1, HKT1, SOS1, SOS2 and SOS3 are the analyzed gene sequences in this group (Table S1). All the sequences in this group had a high alignment score, a low E-value and a high similarity. These genes have a function in Na⁺ transport. Because of negative electrical potential in plant cells (about -180 mV), the regulation of Na⁺ uptake looks more difficult and energy-demanding than Cl-. The prevention of Na⁺ uptake from the apoplast demands more ion selectivity and energy costs in comparison to the avoidance of Cl⁻ uptake: whenever the cytosolic Cl⁻ concentration is very low, Cl⁻ would enter a cell passively, otherwise not. Moreover, genetic variance of salt tolerance in plants shows a correlation with their capacity in limiting the rate of Na⁺ transport to leaves (Munns, 2005).

HKT1 has a role in limiting root-to-shoot movement of Na through unloading Na from the xylem (Sunarpi *et al.*, 2005).

Rus *et al.* (2006) demonstrated that HKT1 has a function primarily in the root to regulate shoot Na, and Davenport *et al.* (2007) could illustrate the role of HKT1 in Na efflux from the root xylem by using radioactive Na (23 Na). Interestingly, HKT1 had only one homolog in apple (Table S1).

Active ion transportation takes place through symporters and antiporters that can transport ions against an electrochemical potential gradient. The difference in electrochemical potential of a coupled solute, usually H^+ , can drive this transportation. The NHX family of antiporters (Na⁺/H⁺exchangers) are selective for Na⁺, while the rest being highly selective for an ion other than Na⁺ (Munns, 2005).

Overexpression of *NHX1*, a tonoplast membrane protein that pumps Na⁺ into the vacuole, has increased salt tolerance in many plants (Zhang and Blumwald, 2001; Davenport, 2007; Chen *et al.*, 2008). Li *et al.* (2017) expressed constitutively RtNHX1 from a recretohalophyte *Reaumuria trigyna* in *Arabidopsis* and could improve salt tolerance in transgenic *Arabidopsis* plants. The query sequence of NHX1 resulted in three counterparts in apple (Table S1). Two types of tonoplast H⁺electrogenic pumps have been reported: 1) a multi-subunit V-type (vacuolar type) ATPase and 2) the AVP1 H⁺-pyrophosphatase (PPase) respectively having ATP or pyrophosphate (PPi) as their substrates (Gaxiola *et al.*, 2007; Paez-Valencia *et al.*, 2011). The overexpression of AtAVP1 which encodes a type I vacuolar H⁺-pyrophosphatase, has increased salt tolerance in transgenic *Arabidopsis* (Gaxiola *et al.*, 2001), rice (*Oryza sativa*) (Zhao *et al.*, 2006), alfalfa (*Medicago sativa*) (Bao *et al.*, 2009), creeping bentgrass (*Agrostis stolonifera*) (Li *et al.*, 2010), cotton (*Gossypium hirsutum*) (Pasapula *et al.*, 2011), peanut (*Arachis hypogaea*) (Qin *et al.*, 2013). *AVP1* had five homologs in apple (Table S1).

	Table S1. Identified	candidates among	abiotic stress	responsive gene	e categories in Ap	ple.
--	----------------------	------------------	----------------	-----------------	--------------------	------

Category	Locus tag	Positives (%)	Identity (%)	Gaps (%)	E-Value	Alignment score	Number of sequences
bZIP Transcription Factor	At1g42990	60	44	-	0.014	37.7	1
	At3g10740 At3g06500	81 78	69 66	2 5	0 0	951 910	1 1
Carbohydrate Metabolism	At3g60130 At5g18670 At2g04240	72 76 01	57 59 82	1 3 0	e-158 e-180	556 627 1650	1 1 2
	At2g43820 At2g53180	69 80	55 67	7 0	e-138 0	490 1164	2 1 1
Cellular Metabolism	At3g45300 At2g39210	87 81 66	80 70	7 1	e-180 0	629 829	1 1
Cellular Structure Organization and	At1g03220 At1g03220 At3g10720	77 88	49 63 76	13 2 -	e-50 e-243	337 530 440	1 1 1
Biogenesis	At5g62350 At5g20230	74 50	54 39	5 11	e-55 2e-33	211 139	1 2
Cytochrome P450	At2g34500 At3g26220	79 68	67 47	2 3	0 e-133	672 473	1 2
Detoxification Enzyme	At2g31570 At2g29450	87 70	74 48	- 2	5e-68 3e-51	253 198	1 2
DNA Nucleus DREB/ERF	At2g18050 At2g22190	66 71	64 51 62	2 6 14	2e-29 e-160	004 125 230	2 3 3
Transcription Factor	At4g17500 At5g43450	69 70	58 53	12 1	5e-78 e-110	288 394	3
Ethylene Biosynthesis	At1g17020	70 77 70	59 57	2	e-121	431	2
Fatty Acid Metabolism	Atig/3480 At4g09760 Atig/3920	70 83 41 81	57 64 26	0 11 2	e-136 1e-22	400 483 106	2 1 1 2
Ferritin	At5g01600	81 81	68	3	4e-90	0/3 328	2
Heat Shock Protein	At3g46230 At1g16030	86 90	73 82	2 -	6e-64 0	239 1077	7 2
Homeodomain Transcription Factor	At2g35940	64	52	17	e-175	708	3
Membrane Protein	At5g54170 At1a30360	64 81	48 66	5 1	e-116 0	417 983	2 2
MYB Transcription Factor	At1g01060	45	34	28	7e-84	309	1
NAC Transcription Factor	At5g63790 At4a27410	70 81	62 72	16 6	4e-86 e-107	315 360	1 2
	At2g47180 At1g09350	85 82	78 73	4 5	e-162 e-144	567 509	- 2 2
Osmoprotectant	At1g60470 At3g57520	77 84	70 75	4	e-145	510 748	3
Direct 11	At5g20830	91 97	81	0	0	1366	4
Photosynthesis	At4g15530	87	78	1	0	1511	1

Category	Locus tag	Positives (%)	Identity (%)	Gaps (%)	E-Value	Alignment score	Number of sequences
Plant Defense	At3g55430 At4g13580 At2g40000 At5g06860	73 81 71 77	56 71 53 64	4 1 8 0	e-141 2e-95 e-145 e-120	499 345 511 429	3 2 2 2
Protein degradation	At1q47128	82	68	3	0	684	3
Protein Kinase	At2g31880	79	63	1	0	803	1
	At5g25110	84	72	0	0	635	3
Protein Phosphatase	At4g26080 At3a11410	70 72	60 60	11 10	e-113 e-134	407 476	7
Poproductive development	At5g56750	82	73	8	e-143	504	2
	At3g22370	86	73	1	e-124	441	4
Secondary Metabolism	At2g38240	75	60	1	e-126	448	2
Senescence-related	At1a58360	81	55 66	3	0	684	3
Transport Protein Ion channel Carrier	At1g08930	68	48	3	e-121	483	2
Transport i roteni fon enanner earrier	At5g20380	77	67	5	0	695	2
	At2g22500	84	71	3	e-127	452	4
	At5g22290 At1a11210	70 47	52 22	8 15	2e-68 2e-26	256 116	1
	At1g15430	47 54	39	16	9e-40	160	1
	At1g55280	65	50	3	5e-28	122	1
	At1g63720	65	54	8	2e-56	216	1
	At1909890 At1a76600	/2 64	5/ 47	4 16	2e-09 2e-42	324 169	1
	At2g26560	79	69	0	e-155	544	5
	At2g32240	69	50	6	0	1256	2
	At2g38820	67	48 60	10 5	5e-80	295 612	1
	At3q17800	74 78	64	э 3	e-1/5 e-147	516	1
	At4g21570	88	74	0	e-132	469	1
	At4g25670	64	53	13	4e-47	184	1
	At4g27520 At4g20650	54 88	40 80	10	3e-60 3e-24	229 107	3
	At4g38060	58	44	11	3e-15	78	1
	At5g02020	55	48	20	2e-29	125	1
Unknown Protein	At5g42050	68 72	58 60	11 5	e-140 2e-71	375	1
	At3g61060	80	69	5 1	1e-99	360	4
	At4g37390	85	76	1	0	919	3
	At5g63160	76	61	3	e-118	422	1
	At13943200 At1a76650	60	62 42	- 6	2e-30	1/5 128	1
	At1g29395	78	59	4	3e-59	225	3
	At2g40140	66	53	15	0	653	2
	A14936040 At4a33050	64 74	50 61	8 7	9e-35 e-166	143 582	2
	At5g09440	72	61	8	1e-95	346	2
	At1g17380	46	32	19	4e-23	105	1
	At1g02660	70 78	54 66	8	0 40-65	743	3
	At1g27760	81	64	1	e-161	244 565	3
	At1g19180	58	44	11	2e-48	189	1
	At1g63010	85	75	3	0	1008	2
	At1a11360	70 77	58 66	8	e-107 7e-84	587 307	2
Water Channel Protein	At2a37180	70	60	2	e-101	366	-
WP KY Transcription Easter	At2g30250	61	45	_ 12	3e-91	332	2
	At5g13080	92	82	-	4e-46	180	2
Zine Finger Transcription Factor	At2g19580	80 57	64 46	5	e-112 1e-120	400	1
Zare i inger i ranscription i actor	At2g31380	5/ 70	40 57	5	5e-72	268	1

Category	Locus tag	Positives (%)	Identity (%)	Gaps (%)	E-Value	Alignment score	Number of sequences
	At5g27150	89	79	0	0	867	3
	At1g15690	94	88	0	0	1092	2
Salt Untaka and transport	At4g10310	68	53	4	e-142	501	1
Sait Optake and transport	At2g01980	69	58	10	0	1272	2
	At5g35410	85	75	2	0	644	2
	At5g24270	88	76	2	1e-84	310	2

*The information is for best hits

*The number of sequences column shows the number of other hits

There is another pathway called SOS which contains three proteins cooperating to enhance the efflux of Na⁺ from cells in response to salinity. These three proteins of SOS pathway, SOS1, SOS2 and SOS3 have an important function in responding to NaCl oversupply in A. thaliana (Zhu et al., 2000). The first noted reaction to an increase in Na⁺ around the roots is an upsurge in cytosolic free Ca^{2+} ; the extracellular addition of Na⁺ could trigger the flux of Ca^{2+} into the cytosol across the plasma membrane as well as the tonoplast (Kiegle et al., 2000; Moore et al., 2002; Tracy et al., 2008). Increase in cytosolic Ca²⁺, sensed by SOS3, a Ca^{2+} binding protein, binds Ca^{2+} initiating SOS3 binding directly with SOS2 (Halfter et al., 2000). SOS2 is a protein kinase which can phosphorylate other proteins. Binding of SOS3 to SOS2 activates this phosphorylase activity and then the SOS2/SOS3 complex phosphorylates SOS1 in the plasma membrane (Quintero et al., 2002). This phosphorylation increases the Na⁺ pumping activity of SOS1 which in turn increases the efflux of Na⁺ from cells. The SOS1 and SOS2 genes are upregulated after exposure to NaCl to enhance further the Na⁺ efflux (Shi et al., 2002).

Conclusion

Many of the osmotic stress responsive proteins were data-mined from the literature on *Arabidopsis thaliana* and comparatively analyzed against *Malus domestica* database. Some 212 *Malus domestica* sequences were identified according to the high similarity percentage, high consequently alignment score, low E-value and the pattern sequence coverage. The genes found in this *in silico* discovery belonged to diverse functional categories, however, those with unknown function in apple were the most frequent (45 sequences). We hope this information may pave the way for identification and functional characterization of the osmotic stress tolerance related genes in apple.

References

Anonymous. 2016. United States Department of Agriculture Agricultural Research Service, Research www.ars.usda.gov.

Anonymous. 2017. Genome Database for Rosaceae, www.rosaceae.org/species/malus/malus_x_domestica

Apse MP, Aharon GS, Snedden WA, Blumwald
E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na⁺/H⁺ antiport in Arabidopsis. Science 285, 1256-1258.

Chen S, Tarsio M, Kane PM, Greenberg ML. 2008. Cardiolipin mediates cross talk between mitochondria and the vacuole. Molecular Biology of the Cell **19**, 5047- 5058. 10.1091/mbc.E08-05-0486.

Claverie JM, Notredam C. 2007. Bioinformatics for dummies. 2nd edition. Wiley publishing.

Davenport R. 2007. The Na⁺ transporter AtHKT₁; contorols retrieval of Na⁺ from the xylem in *Arabidopsis thaliana*. Plant, Cell & Environment **30**, 497-507.

Dietz KJ, Vogel MO, Viehhauser A. 2010. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signaling. Protoplasma **245**, 3-14.

Ferree DC, Warrington IJ. 2003. Apples: Botany, production and uses. CABI; First edition.

Gaxiola RA, Palmgren MG, Schumacher K. 2007. Plant proton pumps. FEBS Letters **581**, 2204-2214.

Gaxiola RA. Jisheng L, Undurraga S, Dang L, Allen G, Alper SL, Fink GR. 2001. Drought and salt tolerant plants result from overexpression of the AVP1 H⁺ -pump. Proceedings of the National Academy of Sciences of the United States of America **98**, 11444–11449.

Halfter U, Ishitani M, Zhu JK. 2000. The *Arabidopsis* SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences of the United States of America **97**, 3735-3740.

Kiegle E, Moore C, Haseloff J, Tester M, Knight M. 2000. Cell-type specific calcium responses to drought, NaCl, and cold in Arabidopsis root: a role for endodermis and pericycle in stress signal transduction. The Plant Journal **23**, 267-278.

Krishna SS, Majumdar I, Grishin NV. 2003. Structural classification of zinc fingers: survey and summary. Nucleic Acids Research **31**, 532-550.

Li N, Wang X, Ma B, Du C, Zheng L, Wang Y. 2017. Expression of a Na+/H+ antiporter RtNHX1 from a recretohalophyte *Reaumuria trigyna* improved salt tolerance of transgenic Arabidopsis thaliana Journal of Plant Physiology. In press. https://doi.org/10.1016/j.jplph.2017.07.015

Moore CA, Bowden HC, Scrase-Field S, Knight MR, White PJ. 2002. The deposition of suberin lamellae determines the magnitude of cytosolic Ca²⁺ elevations in root endodermal cells subjected to cooling. The Plant Journal **30**, 457-65. Munns R, Tester M. 2008. Mechanisms of salinity tolerance. The Annual Review of Plant Biology **59**, 651-681.

Munns R. 2005. Genes and salt tolerance: bringing them together. New Phytologist Journal **167**, 645-663.

Paez-Valencia J, Patron-Soberano A, Rodriguez-Leviz A, Sanchez-Lares J, Sanchez-Gomez C, Valencia-Mayoral P, Diaz-Rosas G, Gaxiola R. 2011. Plasma membrane localization of the type I H⁺ -PPase AVP1 in sieve element-companion cell complexes from Arabidopsis thaliana. Plant Science **181**, 23-30.

Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM. 2002. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na⁺ homeostasis. Proceedings of the National Academy of Sciences of the United States of America **99**, 6061-9066.

Ravasi T, Huber T, Zavolan M, Forrest A, Gasterland T, Grimmond S, Hume DA. 2003. Systematic characterization of the zinc-fingerontaining proteins in the mouse transcriptome. Genome Research **13**, 1430-1442.

Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. The Plant Journal **31**, 279-292.

Shi H, Lee BH, Wu SJ, Zhu JK. 2002. Overexpression of a plasma membrane Na⁺/H⁺ antiporter gene improves salt tolerance in *Arabidopsis thaliana*. Nature Biotechnology **21**, 81-85.

Sunarpi HT, Motoda J, Kubo M, Yang H, Yodo K. 2005. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. The Plant Journal **44**, 928-938.

Taiz L, Zeiger E. 2010. Cellular and whole plant response to salinity stress. Plantphysiology. www.plantphys.net. **Tracy FE, Gilliham M, Dodd AN, Webb AAR, Tester M.** 2008. NaCl-induced changes in cytosolic free Ca2⁺ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant, Cell & Environment **31**, 1063-1073.

Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, *et al.* 2010. The genome of the domesticated apple (*Malus* × *domestica* Borkh.) Nat Genet 2010: **42**, 833-839. **Zhang HX, Blumwald E.** 2001. Transgenic salttolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology **19**, 765-768.

Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B. 2000. Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature **406**, 90-94.