

116 Saif et al.

Int. J. Biosci. 2017

RESEARCH PAPER OPEN ACCESS

Genomic data mining through python language

Rashid Saif*1, Kinza Qazi2, Talha Tamseel2, Saeeda Zia3

1Institute of Biotechnology, Gulab Devi Educational Complex, Lahore, Pakistan

2Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan

3Department of Mathematics, National University of Computer and Emerging Sciences

Lahore, Pakistan

Key words: Python, Sequence analysis, Python syntax, Programing data structure

http://dx.doi.org/10.12692/ijb/11.3.116-125 Article published on September 27, 2017

Abstract

Pythonis a rigorous programming language, which may be used for many purposes including genomic data

mining. This language was designed to emphasize on code readability and syntax, which allows programmer to

express code in lesser space with comprehensive and exhaustive manner. Different analysis through Python can

be conducted during dry labs sessions, which infer concrete and generalizable results from the wet lab genomic

experiments, such as gene expression analysis, phylogenetic, GC percentage and gene sequencing. In this article,

built-in Python functions like variables, stings, operators and formatting styles are introduced, and short

programs are structured, implemented and executed. Basic operators are used to perform calculations through

this language, gene sequences are analyzed and small built-in functions e.g. “length, print, integers and types” of

Python are also conversed in this communication. Case sensitive commands are elaborated to avoid errors

during the process of computing. This endeavor also shed light on the topic that how different Python methods

and functions may be used to compute data structures, dictionaries, sets, lists, tuples, loops and statements on

the genomic sequences. Finally, different programs are constructed to count undefined bases in a given sequence

with the help of statement, condition functions based on Boolean expressions, loops function are also used to

analyze undefined amino acids present in protein sequences with the help of “for” and “while” loops.

* Corresponding Author: Rashid Saif  rashid.saif37@gmail.pk

International Journal of Biosciences | IJB |

ISSN: 2220-6655 (Print), 2222-5234 (Online)

http://www.innspub.net

Vol. 11, No. 3, p. 116-125, 2017

http://dx.doi.org/10.12692/ijb/11.3.116-125
http://www.innspub.net/

117 Saif et al.

Int. J. Biosci. 2017

Introduction

Python is a high level programming language which is

designed to emphasize on code readability and

syntax, which allows users to express code in less

space and user friendly manner. As compare to C++

or C#, it consumes less space, execute in lesser time

and have short syntax. Python language is use to

create different programs for web and software

development, but it is also applicable in the field of

computational biology (List et al., 2017). In

bioinformatics, Python is used to create and code

different programs, like phylogenetic tree, count of

GC percentage in DNA sequence, transcription and

translation of DNA sequence, gene expression data

analysis, clustering techniques(Oliphant, 2007). It is

an object oriented language, which can keep large

programs well organized and occupy less space.

Object oriented language is based on object, rather

than procedures. Every model or class is considered

as an object with some attributes, one most important

advantage of scripting language is that, it does not

rerun the entire program like C language which runs

the program after compilation, as C is a procedural

language everything run in a sequenced manner. In

Python everything is object based, so when demanded

object class is called compiler compile it and show on

interpreter without measuring any sequences. Python

interpreter and compiler is available in two versions,

Python 2.x and 3.6, later one is the most appropriate

and updated version with new set commands. Python

3.6 comes with two types of prompts, one is python

IDEL and second one is python 3.6 GUI. Python have

large data storage in build-in libraries. Data

structures, loops, variables, strings, tuples and many

other built-in function and methods are used to

analyze data(Perkins, 2010).

Python methods

Python as a Calculator

Python have several commands that are similar to C

and C++.First, open a python interpreter by typing

Python in window's search bar. There are some basic

immutable data types which is used to perform

different minor operations in Python, such as int,

float, str etc. (Mann, 2010).

These data types are used to work Python as a

calculator. Open Python IDEL and type 5+5 after the

prompt execution e.g. after pressing enter you will see

that it executes the answer in next line as 10.

>>> 5+5

10

Let's try another calculation like 10.5-2*3 the answer

is 4.5 (in Python 2 the answer is 4 because it doesn't

able to deal with decimals).

>>> 10.5-2*3

4.5

To write an exponential function in Python, write it as

*(asterisk). These assignment operators are used in

Python to calculate different values.

>>> 10**2

Division in Pythons is done by using / operator by

writing 12/5 in interpreter, the answer is 2 but in

Python 3 the answer is 2.4. This happen in Python 3,

because it has a build-in function of float, which is not

in Python 2. In Python 2 to get accurate answers add

“.0” after 12 and then division operator, so the answer

will be 2.4

>>> 12/5

2 (in Python 2)

2.4 (in Python 3).

To compute remainder in division, use % operator for

example 17%2, remainder is 1. In Python, the order of

operations is same like in math multiplication, takes

precedence over addition or subtraction. So, the

answer to this question, 5*3+2 will be 17. Numbers

have different types.To find out the type of a number,

type (5) and the answer is type int, 3.5 is type float.

>>> (5)

Type 'int'

>>>3.5

Type 'float'.

Sequence Analysis Commands and Syntax

In biological sequence analysis, Python uses very

important string data type. String is a series of letters

which is written within quotes. Type anything within

single or double quotes, which is declared as a string

(Kinser, 2010). For small strings, single quotes will be

used and for paragraphs double quotes, such as;

118 Saif et al.

Int. J. Biosci. 2017

>>> ' actg'

>>> ' this is a stop codon, isn't it?'

Error

Errors occurred, because Python interpreter reads

quotes and execute the phrase. In this case, it reads ('

this is a stop codon, isn’) this statement only and give

error for afterwards statement. To avoid this,use

double quotes and type long phrases

>>> "this is a stop codon, isn't it?"

For writing multiple statements within a same string

another method is used by adding triple quotes before

and after the strings.

>>> """

dna 1 actttttttttttttttttttttttttttaccacttactac

dna 2 aattctftgatacactgctttc

dna 3 tgtgaacctttgactctctac

"""'\ndna 1 actttttttttttttttttttttttttttaccacttactac\ndna

2aattctftgatacactgctttc\ndna 3 tgtgaacctttgactctctac\n'

This method is appropriate, when more than one

sequence will be added to the same string.

But this method after execution comes out with line

breaks (end of the line)“\n” which makes executed

statement scribbled, to elude such type of syntax,

escape characters are used.

Escape Characters Feature

\n new line

\\ Backslash

\t new tab

\" double quotes

To appraise such type of inconvenience backslash

after triple quotes at the starting of code is inserted.

By this command no more line breaks comes out after

execution. Now, the string looks really nice, no more

line breaks (\n).

Print ("""\dna 1 actttttttttttttttttttttttttttaccacttactac

dna 2 aattctftgatacactgctttc

dna 3 tgtgaacctttgactctctac""")

out put

dna 1 actttttttttttttttttttttttttttaccacttactac

dna 2 aattctftgatacactgctttc

dna 3 tgtgaacctttgactctctac

Print is a built-in function of Python use to print

string statement in Python.

>>> print ('acttctactaactgttcgtcatc')

Acttctactaactgttcgtcatc.

Basic String Operators

There are some basic string operators used in Python

which performs different function.

(+) operator is used to concatenate two strings.

>>> 'atgactac' + 'actgcgc'

'atgactacactgcgc'

(in:) operator is used to check, member, union and

intersection behavior present between two strings.

'atgactacactgcgc'

>>> 'actg' in 'acatgctgttac'

False

Variables in Python

Variables are storage containers for numbers and

strings, without describing variable, string cannot be

executed in program(Oliphant, 2007). Instead of

manipulating strings and numbers, variables are

important to store direct data in it and assign some

name to it. To assign a variable, assignment operator

(=)is used after variable name and then write its

description.

>>> dna_sequence="acctcactgtgtgactc"

After entering, this variable is declared with a name of

dna_sequence, to check the defined variable, type its

name and it is implemented.

>>> dna_sequence

'acctcactgtgtgactc'

If variable is not defined, it will give an error like this

>>>dna

Traceback (most recent call last):

File "<pyshell#12>", line 1, in <module>

dna

Name Error: name 'dna' is not defined

Change the value of variables associated with names,

suppose value is assigned to variable.

Considered, ifa=4 is assigned to a same value b=4,

this cannot change the value of a, but assign a same

value to b.

>>> a=4

>>> b=4

>>>b

119 Saif et al.

Int. J. Biosci. 2017

4

>>>a

4

Increase the values of variable by doing this method.

>>> b=b+3

>>>b

7

Variables are case sensitive, means that variable are

different and can only start with alphabets and after

that any character is placed. If any other character

except alphabet added as initial of name Python gives

error.

Built-in Functions of Python

Python have a lot of built-in function such as, print(),

return(), tuple(), sum(), Boolean(), open(),

dictionary(),etc. all these functions are invaluable

functions present in python tool kit, and used by

passing several string and other datatype arguments

with in the brackets.

“Print” is a built-in function of Python which is usedto

print string statement in Python.

>>> print ('acttctactaactgttcgtcatc')

Acttctactaactgttcgtcatc

Input codes:

dna=input("enter a dna sequences:")

output:

enter a dnasequences: actgtcatctctctactacgcgtgtc

After enteringDNA sequence in output, variable

named as “dna” assigned in Python library.

Integer is another built-in function use to covert

string into an integer.

Input:

>>> actual_number=int(my_number)

Input:

>>>type (actual_number)

Output:

<class 'int'>

>>>type (my_number)

Output:

<class 'str'>

Length function:

>>>len (dna) 26.

Information Retrieval from Genomic Data

As discussed earlier that how Python can be used for

different mathematical and computational purposes,

Python is also useful in data sciences especially in

bioinformatics, different programs of biological data

will structured and analyze through Python(Lesk,

2013). Some imperative programs in Python is to

count percentage of base contents, and find undefined

bases etc.

GC percentage count using Python

DNA sequences consists four nitrogenous bases, each

base pair of DNA have specific amount of percentage

present in sequences. To find GC percentage in DNA

sequences, through Python different data structures

are designed to count GC percentage in a sequence.

Before proceeding towards percentage coding, there

are few terminologies which are necessary to

understand.

Get DNA Sequence from User

DNA='actgacgcatgcacgtcttgctgactctgcgac'

After getting sequence from user it is required to

count presence of G's and C's in sequences. After GC

percentage is counted.

Dna. count is a function use to count nucleotides

amount in entered sequence.

Dna. find is also a method used to find individual

nucleotide present on different position.

To count G's and C's following code is compose in

Python interpreter.

Input

>>> no_c=DNA. Count ('c')

>>>no_c

Output

11

Input

>>>no_g=DNA.count('g')

>>>no_g

8

120 Saif et al.

Int. J. Biosci. 2017

Here is a coding to compute GC %

>>>gc_percent= (no_c + no_g)*100.0/DNA_length

>>> gc_percent

57.57575757575758

It is not necessary to compose all this in Python

interpreter, to make program more interactive write

this entire code in simple text file and save it with

extension (.Py), then open this file in Python shell and

press F5 to execute this program. Figure 1 shows the

print statement for GC percentage, write code in

resource file and print statement is executed in

interpreter.

Fig. 1. Pseudocode for count GC percentage of a given sequence.

Print ("the DNA sequence GC content is",

gc_percent,"%")

The DNA sequence GC content is 57.57575757575758

%

Above given percentage is ambiguous and large, to

make this percentage count more clear and precise,

formatting command is used which is written right

after the print statement as %5.3f

Here % indicates the following format, 5 is the total

number of digits, 3 indicates the digits followed by

decimal and f is the formatting style.

Formatting Commands

%d is use to transformed into integers

>>> print ("%d" % 10.6)

10

%3d is used to give space

Print("%3d" % 10)

 10

%e is used to convert power of scientific notation

>>> print ("%e" % 10.6)

1.060000e+01.

Data Structures

List is one of the most important data structures. To

create a list, type a sequence of values enclosed in

square brackets. These values don't have to be the

same type(Hamelryck and Manderick, 2003).To

create a list it is necessary that value which is entered

in list should be declared already and stored in

computer memory, so when list is created computer

automatically pick the value and assigned it in the list.

Suppose here list of gene expression is created which

contain gene string, and three float values which are

the p values of gene expression.

gene_expression is a variable which hold this list.

gene_expression = ['gene', 5.19e-08, 0.0012817,

6.23e-06]

>>> gene_expression

['gene', 5.19e-08, 0.0012817, 6.23e-06]

Same like string, list variable is also starts with 0

index, from these indexing it’s easy to access

individual values by typing a command and index

position. Since index is starts from zero so the third

element will be at index two.

121 Saif et al.

Int. J. Biosci. 2017

To find the value in list type the index number and it

tells what value is at this position.

>>> gene_expression[2]

0.0012817

>>> gene_expression [0]

'gene'

List can also be modified to change the values if

previous value is changed or another new gene is

introduced categorized in same list rather than

making new list, it is easy to modify same list. But

Python is also case sensitive so it does not allow to

add another value in list which have no index

position(Kinser, 2010).Here index of 3 is used so it is

not able to add any other value on index 4. By this it

means, list can only be replaced old objects with new

one and do not add new objects by enlarging its space.

>>> gene_expression [0] ='braca1'

>>> print (gene_expression)

['brca1', 5.19e-08, 0.0012817, 6.23e-06]

another important point on case sensitive issue is

noticed, suppose braca1 is another string which is

replaced earlier have some changed values like

sequence of As, Gs, Cs and Ts are unknown before

and written as Ns but know these bases are known

and replaced with instring here Python gives an error.

So we can’t change string value because it is

immutable data type while variable is mutable data

type.

There is another command which is very important to

slice a list, suppose there is some values which were

no more in use so this slice command is used to

eliminate that value and a new list is created. Figure 2

shows how to return on previous list, other than this

new p value is also added to list and remove previous

one which changes the list.

Fig. 2. Pseudocode to compute data structures of lists and different methods used in list.

>>> gene_expression [-2:]

[0.0012817, 6.23e-06]

>>> gene_expression[1:3]=[2.45e-06]

>>> print (gene_expression)

['brca1', 2.45e-06, 6.23e-06]

Like string, concatenation operator is also used in list

to add new data in it.

>>> gene_expression+[4.3301,9.02e-02]

['brca1', 5.19e-08, 0.0012817, 6.23e-06, 4.3301,

0.0902]

Some functions used in strings are also applicable in

list such as deland Len functions.

>>>len(gene_expression)

4

>>>del gene_expression[3]

>>> gene_expression

['braca1', 5.19e-08, 0.0012817]

Extend method is used in which all items appended in

a list.

>>>gene_expression. Extend ([6.23e-06, 4.3301,

0.0902])

122 Saif et al.

Int. J. Biosci. 2017

>>> gene_expression

['braca1', 5.19e-08, 0.0012817, 6.23e-06, 4.3301,

0.0902]

Sorting of list is another important method use in

Python programming. This method is often used.

Suppose a variable name my list is created with list of

numbers, sort function will sort the elements of list

numerically. Here there are two different sort

methods are used to sort same list.

>>>mylist= [23,3,9,12,13,5,.5]

>>>sorted (mylist)

[0.5, 3, 5, 9, 12, 13, 23]

>>>mylist.sort ()

>>>mylist

[0.5, 3, 5, 9, 12, 13, 23]

Tuples

List and string tuples are also important data

structure which consist a number of values separated

by commas. Unlike list tuples are immutable, and

usually contain heterogeneous sequences elements.

Tuples does not contain any string type. Tuples also

have index.

>>> t= 1, 2,3,4,5

>>>t

(1, 2, 3, 4, 5)

Sets

Another data structure is the set. A set is an ordered

collection with no duplicate elements. In other words,

sets are lists with no duplicate entries, and since they

are in order, they don't have an index. Same like a

mathematical terms of sets having union and

intersection properties (Perkins, 2010).

Let’s see an example of set with respect to gene data.

The gene ontology annotations associated with the

gene brca1. Mutations in this gene are responsible for

approximately 40% of inherited breast cancers, and

more than 80% of inherited ovarian cancers.

To create a set of terms for brca1, we introduce by

mistake, the term DNA repair twice. If we check the

brca1 variable now, we notice that Python removed

the duplicated element. So, DNA repair element only

appears once(Cock et al., 2009).

>>> brca1= {'DNA repair','zinc ion

binding','DNAbinding','proteinubiquitination','DNA

repair'}

>>> brca1

{'DNA repair', 'DNA binding', 'zinc ion binding',

'protein ubiquitination'}

So, in this way many sets can be created, as

mentioned earlier that sets can perform arithmetic

operation so some special keys can be used in that

term.

To concatenate or union(|)this sign is used between

two sets name.

>>> brca1 | brca2

{'double stranded break repair', 'protein

ubiquitination', 'zinc ion binding', 'heat shock

protein', 'DNA repair', 'h4 histone acetyltransferase

activity', 'DNA binding'}

(&) operator is used for intersection and (–) is used

for difference between two sets.

Dictionaries

Dictionaries are those data structures in which data is

saved for further Python programming. Dictionaries

can stored multiple values in it, and make a reference

key to store multiple values relates with

key(Goodstadt, 2010). DNA sequences are of different

types, transcription factor motifs are one of type

which might have different motifs which have

different reference DNA sequences. Keys which is

used as motifs are immutable, it can be numbers or

even strings(Przulj, 2013).

TF_motif = {'sp1': 'gggcgg', 'c/EBP':'attgcgcaat','oct-

1':'cacagtgt'}

To obtain any value from dictionary just type its key

within square brackets.

>>>print ("the recognition sequence for sp1

transcription is %s." % TF_motif ['sp1'])

The recognition sequence for sp1 transcription is

gggcgg.

123 Saif et al.

Int. J. Biosci. 2017

To add new key in dictionary following statement is

used,

>>> TF_motif ['AP-1'] ='tgagtca'

>>> TF_motif

{'sp1': 'gggcgg', 'c/EBP': 'attgcgcaat', 'oct-1': 'cacagtgt',

'AP-1': 'tgagtca'}

To get the length of dictionary Len function is used.

Statements and loops

Statements and loops are used in decision making in

Python programming, if one or more condition can be

applied to same program then run time of a program

should be considered(Pearson and Lipman, 1988). To

make program precise with least run time, statements

will be used. If, else andelif (used to test several

conditions in one structure) are some basic

statements used in Python. Let’s generate a block of

code to see how statements can executes in if

condition. Suppose there are some undefined bases in

DNA sequence to find those bases following condition

is used. Figure 3 shows the “If” statements execution

when below given condition is true.

Fig. 3. Pseudocodes to compute statements and conditions through if’s and else’s statement.

If, elif and else statements

>>>dna=input ('ENTER DNA SEQUENCE:')

ENTER DNA SEQUENCE:

aaaaacgactgtgacnnnnaccgtactac

>>>if 'n' in dna :

nbases=dna. Count ('n')

print ('dna sequence has %d undefined bases'

%nbases)

DNA sequence has 4 undefined bases.

if 'n' in dna :

nbases=dna. count ('n')

print ('dna sequence has %d undefined bases' %

nbases)

elif 'n' in dna :

print ("dna has undefined bases ")

else:

print ("dna sequence has no undefined bases ")

dna sequence has no undefined bases.

The condition in statements is called as Boolean

expressions, which is either true or false(Anders et

al., 2014). Boolean expression are formed with the

help of comparison, identity and membership

operators.

Loops

Loops are another important and core operations in

any programming language, major aspect of loops is

less run time and precise code(Pearson and Lipman,

1988). Rather than computing a large code in loops,

add a small block of code and execute it over and over

124 Saif et al.

Int. J. Biosci. 2017

again. So loops are those operations in data structures

which is used to execute different statement of “if”

and “else”. Loops work on different conditions if

conditions are true, loop is executed.

Fig. 4. Pseudocode of while and for loops to compute all positions of donor splice site candidates in the

sequences, with the help of while loop and for loop, and also unknown protein sequences were identified.

Now let’s discuss a program compiled in Python with

the help of loops. Figure 4 shows two types of loops

for loop and while loop.

ENTER DNA SEQUENCE:

acaacatcgatcgacagcagcagcacttttt

>>>pos=dna.find ('gt',0)

>>> while pos>-1 :condition statement

print("Donor splice site condidate at position

%d"%pos)

pos=dna.find('gt',pos+1) block of code to execute

while loop if true.

>>>pos=dna.find('gt',0)

>>>dna

'acaacatcgatcgacagcagcagcacttttt'

>>>motifs= ["attccgt","aggggtttcg","gtagc"]

>>>for m in motifs:

print(m,len(m))

attccgt 7

aggggtttcg 10

gtagc 5

>>>protein='acattsdvikuuuoakswhgraschvyywwwfe'

>>>for i in range (len (protein)):

If protein[i] not in

abcdefghijklmnopqrstuv’:

Print ("protein contain invalid amino acid %s at

position %d"% (protein[i],i))

Protein contain invalid amino acid w at position 17

Protein contain invalid amino acid y at position 26

Protein contain invalid amino acid y at position 27

Protein contain invalid amino acid w at position 28

Protein contain invalid amino acid w at position 29

Protein contain invalid amino acid w at position 30

References

Anders S, Pyl PT, Huber W. 2014. HTSeq–a

Python framework to work with high-throughput

sequencing data. Bioinformatics 32(2), 166-169.

http://dx.doi.org/10.1093/bioinformatics/btu638

Cock PJ, Antao T, Chang JT, Chapman BA, Cox

 CJ, Dalke A, Friedberg I, Hamelryck T, Kauff

F, Wilczynski B. 2009. Biopython: freely available

Python tools for computational molecular biology and

bioinformatics. Bioinformatics 25(11), 1422-1423.

http://dx.doi.org/10.1093/bioinformatics/btp163

Goodstadt L. 2010. Ruffus: a lightweight Python

library for computational pipelines. Bioinformatics

26(21), 2778-2779.

www.10.1093/bioinformatics/btq524

125 Saif et al.

Int. J. Biosci. 2017

Hamelryck T, Manderick B. 2003. PDB file

parser and structure class implemented in Python.

Bioinformatics 19(17), 2308-2310.

http://dx.doi.org/10.1093/bioinformatics/btg299

Mann C. 2010. Python for bioinformatics.

Kybernetes 39(8)

http://dx.doi.org/10.1108/k.2010.06739hae.004

Lesk A. 2013. Introduction to bioinformatics. Oxford

University Press.

List M, Ebert P, Albrecht F. 2017. Ten Simple

Rules for Developing Usable Software in

Computational Biology. PLOS Computational Biology

13(1), e1005265.

http://dx.doi.org/10.1371/journal.pcbi.1005265

Oliphant TE. 2007. Python for scientific computing.

Computing in Science & Engineering 9(3), 10-20.

http://dx.doi.org/10.1109/mcse.2007.58

Pearson WR, Lipman DJ. 1988. Improved tools

for biological sequence comparison. Proceedings of

the National Academy of Sciences 85(8), 2444-2448.

http://dx.doi.org/10.1073/pnas.85.8.2444

Perkins J. 2010. Python text processing with NLTK

2.0 cookbook. Packt Publ.

Przulj N. 2013. Introduction to the special issue on

biological networks. Internet Mathematics 7(4), 207-

208.

http://dx.doi.org/10.1080/15427951.2011.621769

