

International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print) 2222-5234 (Online) http://www.innspub.net Vol. 11, No. 4, p. 312-319, 2017

RESEARCH PAPER

OPEN ACCESS

Comparison of *in vitro* antioxidant activity of *Phellinus baumii* and *Trametes versicolor*

Shumaila Shaheen¹, Feroza H. Wattoo^{*1}, Muhammad Gulfraz¹, Nasir M. Minhas², Muhammad F. Nasir³, Shagufta Perveen⁴

¹University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan.

²Department of Plant Breeding and Genetics, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan.

^sDepartment of Entomology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan.

*National Institute of Genomics & Advance Biotechnology (NIGAB), National Agriculture Research Council, Islamabad, Pakistan.

Key words: Antioxidants, Phellinus baumii, Trametes versicolor, Free radicals, Hydrogen peroxide

http://dx.doi.org/10.12692/ijb/11.4.312-319 Article pub

Article published on October 30, 2017

Abstract

The deleterious effects of oxidative stress caused by accumulation of free radicals in human body has gathered tremendous attention in the recent years. Wild medicinal mushrooms are rich in secondary metabolites that make them effective against a wide range of diseases. The present study was conducted to determine the antioxidant activity of two wild mushroom species; *Phellinus baumii* and *Trametes versicolor* from Pakistan. The 80% methanolic extract of each mushroom species was prepared and tested by using *in vitro* antioxidant assays such as 2, 2-diphenyl-1-picrylhydrazy (DPPH) and hydrogen peroxide (H₂O₂) scavenging assays. The results revealed that *P. baumii* possessed remarkable antioxidant activity against free radicals by showing (83.4±0.1%) and (81.9 %±1.0%) scavenging effects on DPPH and H₂O₂ radicals as compared to *T. versicolor*. In addition, the total phenolic content was measured by Folin-Ciocalteau assay, indicating the presence of high phenolic content in *P. baumii* (27.9±2.68 mg GAE/g dw) as compared to 6.18±2.2mg GAE/g dw for *T. versicolor*. These findings suggested that *P. baumii* could be used as a source of natural antioxidants in pharmaceutical industry.

* Corresponding Author: Feroza H. Wattoo 🖂 drfhwattoo@uaar.edu.pk

Introduction

Free radicals, which mostly occur in the form of reactive oxygen species (ROS), are produced as byproducts during the cellular metabolism that plays a significant role in cell signaling and homeostasis. Moreover, environmental factors also contribute to enhance their rate of production (Valko et al., 2007). However, when their concentration increases above a desired level, they adversely disturb the natural physiological antioxidant mechanisms in the body. To control increased concentration of free radicals, organisms have evolved several cellular strategies that can detect and detoxify them (Finkel and Holbrook, 2000). Among them is the maintenance of an equilibrium between oxidants and antioxidants for normal body functioning (Ferreira et al., 2009). An imbalance in this equilibrium my lead to overproduction of free radicals resulting in oxidative stress that can damage cellular DNA, lipids as well as proteins (Shanlin et al., 1998; Ridnour et al., 2005) resulting in many diseases including neurodegenerative disorders (Perry et al., 2008), aging, cancer, diabetes as well as atherosclerosis (Barja, 2004; Shah and Channon, 2004; Valko et al., 2006).

In more detail, the defense strategy against free radicals include both enzymatic and non-enzymatic antioxidants. All the cells in the eukaryotic organism contain several endogenous enzymes such as catalase, superoxide dismutase, glutathione peroxidases and glutathione reductase among others that can scavenge free radicals (MatÉs et al.,1999) The endogenous non-enzymatic antioxidant defenses mechanism include α -tocopherol, glutathione, vitamin C and E, lipoic acid, natural flavonoids and other compounds (McCall and Frei, 1999). The higher level of these free radical scavengers can be achieved through higher consumption of fruits, vegetables and legumes along with avoiding the factors that cause their production such as tobacco, xenobiotics, radiations and environmental pollutants (Lachance et al., 2001).

Interestingly, mushrooms are known to contain phenolic compounds (Kim *et al.*, 2008) that have shown enormous ability of quenching oxygen-derived free radicals by a mechanism in which a hydrogen atom or an electron is donated to free radicals (Yuting et al., 1990). Consequently, these have been frequently used as part of traditional Chinese medicine. A relatively less studied mushroom type, the Phellinus baumii (also known as Forest Gold) belongs to the family Hymenochaeteae and is found very effective against heart or liver diseases, gastrointestinal cancer, disorders related to stomach and gynecopathy (Zeng et al., 2008). It has been shown to contain various bioactive substances including triterpenoids, polysaccharides and flavones (Song et al., 2005). Another type, the Trametes versicolor (also known as turkey tail) has been similarly used as a medicinal mushroom belonging to the Polyporaceae family. It has been found effective against the infections of the digestive, urinary and upper respiratory tracts and liver diseases including hepatitis B and chronic active hepatitis as well as to improve general immune weakness and tumors (Ying, 1987).

In order to lower the level of oxidants in the body, several synthetic antioxidants such as BHA (2-tertbutyl-4-methoxyphenol) and BHT (2,6-di-tert-butyl-4-methylphenol) are being used but they cause several side effects in long run. Thus, there is a need to discover natural antioxidants. In this study, we assessed the *in vitro* antioxidant activities of *P. baumii* and *T. versicolor* to explore more about their beneficial effects on human health.

Materials and methods

P. baumii was collected from *Acacia nilotica* trees growing on the Margalla Hills in Islamabad while *T. versicolor* was collected from Murree, Pakistan. All mushrooms were washed thoroughly with distilled water, cut into small pieces, finely milled to a fine powder (200 mesh), lyophilized, and stored at -80°C. DPPH, Folin-Ciocalteau reagent, hydrogen peroxide, gallic acid and vitamin C were purchased from Sigma Chemical Co. (St. Louis, MO, USA). All other chemicals used in the study were of analytical grade.

Preparation of Mushroom Extracts

Extraction was done by shaking 2g of each mushroom powder with 100 mL of 80% methanol for 24 h at 25°C under dark conditions, centrifugation was done

at 5000*g* for 10min and extract was filtered by using Whatman filter paper 1. The extract was saved while the residue was extracted twice with 80% methanol. To get dried extract, rotary evaporator at 45°C was used to evaporate the methanol while lyophilizer was employed for the removal of the remaining water content. The dried extract thus obtained was weighed and stored by preventing light exposure at -20°C (Liu *et al.*, 2013).

In vitro antioxidant activity assays

DPPH (2, 2-diphenyl-1-picrylhydrazy) radical scavenging Assay

The DPPH radical scavenging activity of the selected mushrooms were evaluated by using the method described by (Shimada *et al.*, 1992). Briefly, different concentrations of the extract (0.08mg/mL-1.3mg/mL) was added to 450µL of Tris-HCl. Then 1 mL solution of DPPH (0.2mM DPPH in methanol) was added and the reaction mixture was kept at room temperature for 30min in a dark room. The absorbance of the mixture was measured at 517nm. The percentage scavenging activity was measured by using following formula:

Scavenging activity (%) = $[1 - (A_1 - A_0)/A_0] \ge 100$ Whereas A_0 = absorbance of control (80% methanol), A_1 = absorbance of samples.

Hydrogen Peroxide (H₂O₂) Scavenging Assay

The assay was performed by using the method described by (Ruch *et al.*, 1989). A mixture was prepared by using different concentration of mushroom samples (0.1-2mg/mL), 0.6mL of H_2O_2 solution (40mM) and 2.4mL of phosphate buffer (0.1M) was incubated at room temperature for 10min. The absorbance of the reaction mixture was measured spectrophotometrically at 230nm. Vit C was taken as positive control. The following formula determined the scavenging activity:

Scavenging activity (%) = $[1 - (A_1 - A_0)/A_0] \ge 100$ Whereas, A_0 = absorbance of control (water instead of sample),

 A_1 = absorbance of sample

Determination of Total Phenolic Content

For the determination of total phenolic content in the methanolic extracts of mushrooms, Folin-Ciocalteu

method was used as described by (Liu *et al.*, 2009). Briefly, each sample extract (1mg/mL) was mixed with 10% Folin-Ciocalteu reagent in a dark room and allowed to react at 30°C for 5min. Then 800µL of 700mM sodium carbonate solution was added and left for 2h after which absorbance (760nm) of the reaction mixture was measured. Gallic acid was used to calculate standard curve and the results were expressed as mg of gallic acid equivalents (GAE) per gram of dry weight (mg GAE/g dw).

Statistical Analysis

The results were expressed as mean of three measurements \pm standard deviation, computed by using Excel program from MS office 2016. One-way analysis of variance (ANOVA) was used for the comparison of means of two mushroom species followed by t-test by using GraphPad Prism Software (La Jolla, CA, www.graphpad.com). The statistical significant level was set at p <0.05.

Results

DPPH Radical Scavenging Assay

As shown in Fig. 1A, at a concentration of 50μ g/mL, the DPPH scavenging activity for the Vc was $92.7\pm0.21\%$. Whereas in case of mushrooms, *P. baumii* showed $83.2\pm0.11\%$ scavenging activity against DPPH radicals while *T. versicolor* scavenged $13.7\pm0.16\%$ DPPH radicals. The IC₅₀ values for Vc, *P. baumii* and *T. versicolor* were 0.14 ± 0.18 mg/mL, 0.27 ± 0.002 mg/mL and 4.37 ± 0.025 mg/mL respectively (Table 1).

Table 1. IC_{50} values of mushrooms by using DPPH scavenging assay expressed as mg/mL.

No. of obs.	Samples	IC ₅₀ (mg/mL)	
1	Ascorbic acid (Vc)	0.14 ± 0.001	
2	P. baumii	0.27 ± 0.002	
3	T. versicolor	4.37 ± 0.025	
Data are expressed as mean \pm SD (n=3).			

Fig. 1. Scavenging activity of methanolic extract of *P*. *baumii* (A) *T. versicolor* (B). Data are presented as means \pm SD of triplicates. The linear equations of Vc and the extracts were shown as follows. Vc: y = 0.364x-1.5598 (R² = 0.9992*); *P. baumii*: y = 0.0017x-3.2943 (R² = 0.9952*); *T. versicolor*: y = 0.0983x + 6.951 (R² = 0.9981 *). The symbol * followed with the determination coefficient shows the significant level at 0.05.

Assay of H₂O₂ Scavenging Activity

As depicted in Fig. 2, mushrooms methanolic extracts and V_C all exerted concentration dependent H₂O₂ scavenging activities. At the concentration of 500µg/mL, Vc showed 100% scavenging activity against H₂O₂ while methanolic extracts of P. baumii and T. versicolor showed 81.9±1.0% and 65±0.72% scavenging activity respectively. The IC₅₀ value for standard Vc, P. baumii and Τ. versicolor were 0.04±0.03mg/mL, 0.06±0.01mg/mL and 0.42±1.6mg/mL respectively (Table 2). Since the phenolic compounds are good electron donors so they denote electrons to free radicals H₂O₂ to convert it to H₂O (Ruch et al., 1984).

Table 2. IC_{50} values of mushrooms by using H_2O_2 scavenging assay expressed as mg/mL.

Fig. 2. The scavenging activity on H_2O_2 by methanolic extracts of *P. baumii* (A) and *T. versicolor* (B). Data are represented as mean \pm SD of triplicates.

Determination of Total Phenolic Content

In the present study, the mean total phenolic content of the extracts was measured by using equation Y =0.0577x+0.0203 for the quantitative determination of total phenolic content expressed as gallic acid equivalent per gram dry weight of the sample (Fig. 3). As depicted in Table 3, TPC in *P. baumii* methanolic extract was found to have a value (27.9±2.68mg GAE/g dw) while *T. versicolor* showed (6.18±2.2mg GAE/g dw) of total phenolic content that was 4.5 folds lesser than *P. baumii*. It was also less than previously reported TPC (46.01±0.98mg GAE/g dw) in the ethanolic extracts of *T. versicolor* from India (Sheikh *et al.*, 2014).

Table 3. Total phenol content of mushrooms.

No. o	of obs. Mushrooms Total ph	nenols (mg GAE/g dw)	
1	P. baumii	$27.9 \pm 2.68^{*}$	
2	T. versicolor	$6.18 \pm 2.2^{*}$	
Total	phenolic content (mg GA	E/g dw), *Indicates	
significant difference (p < 0.05). Data is presented as			

Fig. 3. Gallic acid standard curve.

315 Shaheen *et al.*

Discussion

Mushrooms are an important functional food that not only fulfills dietary requirements but also have beneficial effects in terms of reducing the risks of many diseases. It is well known that polyphenols are the key constituents that contribute to the antioxidant properties of vegetables, fruits and mushrooms (Ferreira et al., 2007). The DPPH radical scavenging assay is an extensively used method to evaluate the antioxidant activity of natural products. In this assay, the presence of antioxidants in the sample is determined through the color change of stable DPPH radical from purple to yellow due to reduction of DPPH to DPPH-H. Spectrophotometric assays were done by using five different concentrations of 80% v/v methanolic extracts of mushrooms and it was found that the scavenging activity was directly correlated to the concentration of extracts. Results demonstrated that P. baumii showed considerable antioxidant activity in all in vitro assays as compared to T. versicolor. In this study, 50µg/mL of P. baumii extract scavenged 83.2±0.11% DPPH radicals which is almost 10 folds more active than earlier study on P. baumii from South Korea where 500µg/mL of methanolic extract showed 85% scavenging activity on DPPH radicals (Shon et al., 2003). The other mushroom, T. versicolor showed higher inhibitory activity than methanolic extracts from China (24.6% scavenging activity at a level of 0.64mg/mL) (Mau et al., 2002), whereas lower than the methanolic extracts of T. versicolor from Japan where 0.5µg/mL of extract showed 40.0% scavenging activity against DPPH radicals (Kamiyama et al., 2013) and also lower than ethanolic extracts from India (71.88 ± 0.84% scavenging activity at the level of 100µg /mL) (Sheikh et al., 2014).

In addition to DPPH, H_2O_2 is another type of free radical, extensively used in *in vitro* antioxidant studies. Although not very reactive, but it forms hydroxyl radicals in the cell on reaction with superoxide or ferrous anion radicals as it can easily penetrate in cellular membranes (Chun-hui *et al.*, 2007). Because of this, H_2O_2 is the most precarious free radical that may harm various important cellular processes. In our study, both mushrooms showed considerable scavenging activity against H_2O_2 radicals with *P*. *baumii* being more active with an IC₅₀ value of 0.06±0.01mg/mL as compared to 0.42±1.6mg/mL for *T. versicolor*.

Phenolics are aromatic compounds having one or more hydroxyl groups that allows them to act as reducing agent by donating hydrogen atom or electron to the free radical (Sheikh et al., 2014; Li et al., 2009). A higher phenolic content was observed for P. baumii (27.9±2.68 mg GAE/g dw) as compared to *T. versicolor* $(6.18\pm 2.2$ mg GAE/g dw) that could be directly correlated to its higher antioxidant activity. It was also much higher than previously reported (338±8µg/mL of caffeic acid equivalents) in P. baumii from South Korea (Shon et al., 2003). The results revealed that the P. baumii exhibited significantly higher scavenging activity against free radicals as compared to T. versicolor that could be related to the presence of high amounts of phenolic compounds in it. The concentration of phenolic compounds in mushrooms also vary depending on the nature of substrate that effects its functional, organoleptic and chemical properties (Michael et al., 2011). The higher antioxidant activity shown by P. baumii may be due to the fact that it was growing on the Acacia nilotica tree that is rich in phenolics and other secondary metabolites (Sultana et al., 2007) while T. versicolor was growing on dead wood log. Previous studies have also shown that Phellinus species produce a yellowish polyphenol called hispidin which made this mushroom a very good source of natural antioxidant (Wang et al., 2007). So, more rich the mushroom is in the concentration of phenolic compounds higher will be its antioxidant activity.

Conclusion

This study clearly demonstrated the effectiveness of methanolic extracts of *P. baumii* against free radicals as compared to *T. versicolor* which was possibly due to the accumulation of high amounts of phenolic compounds in it. Further investigations on the isolation of potential compounds responsible for antioxidant activity may contribute to beneficial medicinal effects of this mushroom and it could be used as a new source of natural antioxidants.

Acknowledgements

This research was supported by Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, Pakistan and Higher Education Commission of Pakistan (HEC). The authors acknowledge Dr. Kishwar Sultana (Ex-Plant Pathologist at PMAS-Arid Agriculture University, Rawalpindi) for the identification of mushrooms.

References

Barja G. 2004. Free radicals and aging. Trends in Neurosciences **27(10)**, 595-600. https://doi.org/ 10.1016/j.tins.2004.07.005

Chun-hui L, Chang-hai W, Zhi-liang X, Yi W. 2007. Isolation, chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of Aloe barbadensis Miller irrigated with sea water. Process Biochemistry **42(6)**, 961-970. https://doi.org/10.1016/j.procbio.2007.03.004

Ferreira ICFR, Baptista P, Vilas-Boas M, Barros L. 2007. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food chemistry **100(4)**, 1511-1516.

https://doi.org/10.1016/j.foodchem.2005.11.043

Ferreira ICFR, Barros L, Abreu R. 2009. Antioxidants in wild mushrooms. Current Medicinal Chemistry **16(12)**, 1543-1560.

https://doi.org/10. 2174/092986709787909587

Finkel T, Holbrook NJ. 2000. Oxidants, oxidative stress and the biology of ageing. Nature **408(6809)**, 239-247.

https://doi.org/10.1038/35041687

Kamiyama M, Horiuchi M, Uman K, Kondo K, Otsuka Y, Shibamoto T. 2013. Antioxidant/antiinflammatory activities and chemical composition of extracts from the mushroom Trametes versicolor. International Journal of Food *Sciences and* Nutrition *2*, 85-91.

https://doi.org/10.11648/j.ijnfs.20130202.19

Kim MY, Seguin P, Ahn JK, Kim JJ, Chun SC, Kim EH, Seo SH, Kang EY, Kim SL, Park YJ, Ro HM, Chung IM. 2008. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. Journal of Agricultural and Food Chemistry **56(16)**, 7265-7270. https://doi.org/10.1021/jf8008553

Lachance PA, Nakat Z, Jeong WS. 2001. Antioxidants: an integrative approach. Journal of Nutrition 17, 835-838. http://dx.doi.org/10.1016/ S0899-9007(01)00636-0

Li HY, Hao ZB, Wang XL, Huang L, Li JP. 2009. Antioxidant activities of extracts and fractions from Lysimachia foenum-graecum Hance. Bioresource Technology **100**, 970-974. https://doi.org/10.1016/j.biortech.2008.07.021

Liu J, Jia L, Kan J, Jin CH. 2013. In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food and Chemical Toxicology **51**, 310-316. https://doi.org/10.1016/j.fct.2012.10.014

Liu L, Sun Y, Laura T, Liang X, Ye H, Zeng X. 2009. Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex kudingcha CJ Tseng.. Food chemistry **112(1)**, 35-41. https://doi.org/10.1016/j.foodchem.2008.05.038

Mates JM, Pérez-Gómez C, Castro DANI. 1999. Antioxidant enzymes and human diseases. Clinical Chemistry **32(8)**, 595-603.

https://doi.org/10.1016/ S0009-9120(99)00075-2

Mau JL, Lin HC, Chen CC. 2002. Antioxidant properties of several medicinal mushrooms. Journal of Agricultural and Food Chemistry **50(21)**, 6072-6077.

https://doi.org/10.1021/jf0201273

Mc Call MR, Frei B. 1999. Can antioxidant vitamins materially reduce oxidative damage in humans?. Free Radical Biology and Medicine **26(7-8)**, 1034-1053.

https://doi.org/10.1016/S0891-5849(98)00302-5

Michael HW, Bultosa G, Pant LM. 2011. Nutritional contents of three edible oyster mushrooms grown on two substrates at Haramaya, Ethiopia, and sensory properties of boiled mushroom and mushroom sauce. International Journal of Food Science and Technology **46(4)**, 732-738. https://doi.org/10.1111/j.1365-2621.2010.02543.x

Perry G, Moreira PI, Santos MS, Oliveira CR, Shenk JC, Nunomura A, Smith MA, Zhu X. 2008. Alzheimer disease and the role of free radicals in the pathogenesis of the disease. CNS and Neurological Disorders Drug Targets **7(1)**, 3-10. https://doi.org/10.2174/187152708783885156

Ridnour LA, Isenberg JS, Espey MG, Thomas DD, Roberts DD, Wink DA. 2005. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proceedings of the National Academy of Sciences of USA. **102(37)**,13147-13152.

https://doi.org/10.1073/pnas.0502979102

Ruch RJ, Cheng SJ, Klaunig JE. 1989. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Journal of Carcinogenesis **10(6)**, 1003-1008.

https://doi.org/10.1093/carcin/10.6.1003

Ruch RJ, Chug SU, Klaunig JE. 1984. Spin Trapping of Superoxide and Hydroxyl Radicals. Method in Enzymology **105**, 198-209. https://doi.org/0.1016/S0076-6879(84)05026-6

Shah AM, Channon KM. 2004. Free radicals and redox signalling in cardiovascular disease. Heart Journal 90, 486-487.

http://dx.doi.org/10.1136/ hrt.2003.029389

Shanlin FU, Davies, MJ, Stocker R. 1998. Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque. Biochemical Journal **333(3)**, 519-525. https://doi.org/10.1042/bj3330519 Sheikh IA, Vyas DEEPAK, Ganaie MOHDANIS, Dehariya K, Singh VINITA. 2014. HPLC determination of phenolics and free radical scavenging activity of ethanolic extracts of two polypore mushrooms. International Journal of Pharmacy and Pharmaceutical Sciences **6(1)**, 679-684.

Shimada K, Fujikawa K, Yahara K, Nakamura T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry **40(6)**, 945-948.

https://doi.org/10.1021/jf00018a005

Shon MY, Kim TH, Sung NJ. 2003. Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food chemistry **82(4)**, 593-597. https://doi.org/ 10.1016/S0308-8146(03)00015-3

Song L, Sun PI, Guo BB, Wei HH, Chen LJ. 2005. Recent studies on Sang Hunag. Edible Fungi of China **24(3)**, 7.

Sultana B, Anwar F, Przybylski R. 2007. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food chemistry **104(3)**, 1106-1114. https://doi.org/10.1016/j.foodchem.2007.01.019

Valko M, Rhodes C, Moncol J, Izakovic MM, Mazur M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions **160(1)**, 1-40. https://doi.org/10.1016/j.cbi.2005.12.009

Wang Y, Shang XY, Wang SJ, Mo SY, Li S, Yang YC, Ye F, Shi JG, He L. 2007. Structures, biogenesis, and biological activities of pyrano [4, 3-c] isochromen-4-one derivatives from the fungus Phellinus igniarius. Journal of Natatural Products **70(2)**, 296-299.

https://doi.org/10.1021/np060476h

Ying CC. 1987. Icons of medicinal fungi from China. Science Press 277.

Yuting C, Rongliang Z, Zhongjian J, Yong J. 1990. Flavonoids as superoxide scavengers and antioxidants. Free Radical Biology *and* Medicine **9(1)**, 19-21.

https://doi.org/10.1016/0891-5849(90)90045-K

Zeng NK, Wang QY, Su MS. 2008. Discussion on the mushrooms used for traditional Chinese medicine "Sanghuang". Edible Fungi of China **27(2)**, 56-59.