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Abstract 

   
The human central nervous system (CNS) infections remain the leading cause of intensified morbidity and mortality rates 

around the world. Vanquish the barriers that protect the brain from pathogens is a prerequisite to develop meningitis. The 

commonest pathogens, pneumococcus, meningococcus, E. coli, H. influenzae are main causative agents in children and adults; 

are associated with high morbidity and mortality. Bacteria have evolved a variety of different strategies for breaching the 

blood–brain barrier (BBB), evade the immune system and enter CNS. For this purpose, they use a variety of different virulence 

factors, allowing them to adhere to and overcome these barriers. These virulence factors arbitrate adhesion host cell invasion, 

intracellular survival, host cell signaling and induction of inflammation. The CNS will ultimately be invaded by the bacteria, 

causing inflammation of meninges, increased permeability of BBB, and pleocytosis in cerebrospinal fluid (CSF) as well as 

nervous tissue infiltration. Some of these mechanisms are different, but others are shared by some pathogens. Supplementary 

understanding of these processes, especially, differences between the blood-brain barrier and the blood-cerebrospinal fluid 

barrier, and Virulence factors used by pathogens are still required. 
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Introduction 

Various meningeal pathogens have the ability to 

colonize skin as well as various mucosal surfaces of 

individuals who are otherwise healthy. In different 

cases, host cellular barriers are penetrated by the 

bacteria for initiation of local infection which causes a 

systemic spread. A relation between high grade 

bacteraemia and meningitis development has been 

indicated for some of the bacteria (Moxon & Ostrow, 

1977; Rosenstein et al., 2001). This infers that 

survival of the bacteria in blood is a crucial trait of 

virulence for meningeal pathogens. Upon surviving in 

bloodstream or by spreading via infectious foci in 

surroundings of the brain (sinusitis, mastoiditis), 

central nervous system (CNS) will ultimately be 

invaded by the bacteria, causing inflammation of 

meninges, increased permeability of blood–brain 

barrier (BBB), pleocytosis in cerebrospinal fluid (CSF) 

as well as nervous tissue infiltration. Consequent 

injury of the CNS tissue is resulted by cerebral 

ischemia, hydrocephalus, apoptotic neuronal injury, 

increased intracranial pressure and edema 

(Petersdorf et al., 1962) and is resulted due to toxic 

products made by the bacteria as well as initiation of 

host inflammatory pathways for the clearing of 

infection. Particularly, the uncontrolled inflammatory 

response exhibited by neutrophils (PMNs) has shown 

to be linked with elevated injury to the CNS (Koedel 

et al., 2009). Recently made progress regarding the 

understanding of interactions between host and 

pathogen during bacterial meningitis has been 

summarized in this review, showed by four 

commonest pathogens, S. pneumoniae, 

Meningococcus, E. coli, H. influenza and the very 

rarely meningitis causing S. aureus and K. 

pneumoniae. Common mechanisms as well as steps 

involved in bacterial meningitis pathogenesis are as 

follows, Pathogens that cause meningitis are often 

found colonizing mucosal surfaces as well as exhibit 

similar patterns for the progression of disease. Hence, 

it is logical to think that common strategies are 

followed for advancing from mucosa in bloodstream 

moving further into brain (Quagliarello & Scheld, 

1992). Many bacteria use extracellular matrix 

proteins for binding, such as laminin, fibronectin or 

collagen, to mediate primary attachment followed by 

invasion (Vercellotti et al., 1985). Additionally, some 

of the bacterial adhesins, like that of N. meningitidis, 

also show binding to carcinoembryonic antigen-

related cell adhesion molecule (CEACAM) family 

members of the molecules for cell adhesion (Hauck et 

al., 2006), others, such as E. coli K1 OmpA, identify 

particular glycoproteins in lectin-like manner 

(Prasadarao et al., 1996). Bacterial adhesins binding 

to particular receptors of host cell might lead towards 

signal transduction causing tight attachment of 

bacteria to the host cells or their internalization. One 

of the common entry mechanism is known as “innate 

invasion” which counteracts mechanisms of the 

innate immune system and uses molecular mimicry 

such as mimicking of chemokine platelet activating 

factor (PAF) by the Phosphorylcholine (PCho) 

(Cundell et al., 1995; Gratz et al., 2015). The 

characteristic feature of different bacteria that infect 

the CNS is the ability required for their survival in the 

bloodstream by protecting or all together avoiding 

phagocytosis such as by capsule expression by K. 

pneumoniae (Wu et al., 2011) or by gaining entry in 

the macrophages or Polymorphonuclear leukocytes 

(PMNs) and persisting there as in E. coli K1 (Kim et 

al., 1992).  Nonetheless, prolonged bacteraemia 

sometimes may not be a prerequisite for entrance of 

the bacteria in the CNS, as meningitis can also be 

resulted due to direct invasion by infected tissue 

located in the surrounding. However, there are 

certain barriers to be breached by the bacteria, like 

BBB and blood–CSF barrier (B-CSFB), to acquire 

entrance to brain. They translocate over these 

barriers through a paracellular or intracellular 

process that is dependent on virulence traits specific 

to the pathogen. Cytolytic toxins such as the ones 

expressed by E. coli, GBS, S. pneumoniae and S. 

suis can cause damage to the host cells thus causing 

barrier disruption as well as facilitation of 

paracellular invasion. Barrier breaching in a 

transcellular manner has its basis on the intracellular 

invasion, that often includes bacterial “hijacking” or 

exploitation of pathways and signal platforms as 

shown by N. meningitidis (Coureuil et al., 2009; 

Schubert-Unkmeir et al., 2010). After pathogen 
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reaches brain, bacterial components, or bacteria itself 

are identified by the immune cells residing there like 

astrocytes and microglia, which leads them to get 

activated. Moreover, maven immune cells in the 

circulation like monocytes/ macrophages and 

granulocytes are attracted followed by subsequent 

infiltration of the infected parenchyma of the brain. 

Particularly in the neonates, the immune response 

generated as a result might prove overwhelming and 

disorganized, causing prominent neuronal damage 

and sometimes even death. If infection is survived by 

the host, post-infectious sequelae that are specific to 

the pathogen like blindness, deafness or different 

kinds of mental retardations might take place 

(Edwards et al., 1985). 

 

Pathogenesis of streptococcus pneumoniae 

S. pneumoniae is a pathogenic gram positive microbe 

and is a primary causative agent of bacterial 

meningitis in developing countries (Scarborough & 

Thwaites, 2008). Streptococcus Pneumoniae has 

huge genetic diversity as a bacterial species and 

usually carried asymptomatically by infants in their 

nasopharynx region, these individuals are at an age 

where strong adaptive immune responses are absent 

against capsule comprising of polysaccharide which 

encapsulates majority of the pneumococcal cells 

(Weintraub, 2003). System invasion is done following 

colonization in the nasopharyngeal region which 

allows bloodstream access to the bacteria. Primary 

cause of meningitis is CNS invasion through the 

barriers present for the brain (Iovino et al., 2013). 

 

Majority of findings concerning pneumococcal 

meningitis pathophysiology are derived from the 

autopsies of the brain that only represents cases 

where fatality has occurred or otherwise using animal 

models which objectively have the capability of 

mimicking clinical features of the disease affecting 

humans, as closely as possible. The well-known 

models that are used include rat, mouse, and rabbit. 

Using the knockout technology has made mouse to be 

used a model animal for studying responses of the 

host towards pneumococcus during the meningitis 

(Paul et al., 2003). Also, by using this model, we have 

made observations about cortical brain damage (Klein 

et al., 2006) as well as hippocampal neuronal 

apoptosis (Mitchell et al., 2004). For studying 

processes happening in the CSF related to the 

meningitis such as growth of the bacteria, penetration 

of the antibiotic as well as immune response 

components, rabbit has been used as a model animal 

(Dacey & Sande, 1974; Østergaard et al., 1999). 

 

Nasopharynx colonization by Streptococcus 

pneumoniae 

A prerequisite regarding the bacterial meningitis 

development is the adherence of the microbe to the 

nasopharynx as well its colonization. Numerous 

surface proteins are exhibited by the all the bacterial 

pathogens responsible for causing meningitis and 

these proteins provides interaction between pathogen 

and the host cell. As per an estimate, pneumococci 

has around 500 surface proteins (Wizemann et al., 

2001). Studies conducted previously have reported 

initial binding of S pneumoniae to the carbohydrates 

present on cells of epithelium like GalNAc(β1–4)Gal, 

GalNAc(β1–3)Gal as well to the sialic acid (Andersson 

et al., 1983; Idänpään-Heikkilä et al., 1997). 

Phosphorylcholine seems a primary structure of the 

surface of pneumococci. It has two variants that are 

chemically distinct, one among them has choline 

binding proteins (Cbps) attached to it while the other 

one is free. The most abundant Cbp is Cbp A, which 

serves as one of the important factors of adherence 

for S. pneumoniae. Absence of this protein in the 

mutant variants renders them unable to colonize the 

nasopharyngeal region in the model of an infant rat 

(Rosenow et al., 1997). Cbp D and E are some other 

Cbp family members that are thought to play some 

role in bacterial adherence and Cbp G is supposedly a 

serine protease that might potentially serve two roles 

i.e., serving as a virulence factor in the sepsis and as 

an adherence factor (Gosink et al., 2000). Other 

pneumococcal proteins like IgAl protease and 

neuraminidase NanA further support nasopharyngeal 

colonization. NanA enzymatically results in the 

cleaving of N-acetylneuraminic acid from 

oligosaccharides, glycolipids, mucin and 

glycoproteins that decreases the mucus viscosity to 
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enhance colonization or through exposure of the 

receptors present on the surface of pneumococcus 

cells (Tong et al., 2000). Pneumococcus protein 

called IgAl protease results in inactivation of the of 

human IgA thorough cleaving immunoglobulin 

molecule located at hinge region of the heavy chain, 

providing  pneumococcus with a counter against 

defenses of the host (Reinholdt & Kilian, 1997). 

 

Invasion of Streptococcus pneumoniae and its 

dissemination 

To result in a CNS infection, entry of the 

pneumococcus to the respiratory tract following its 

escape from the mucous defenses is important while 

translocating either to the blood stream which will 

result in invasive disease caused by pneumococci or 

IPD or causing sinusitis or alternatively mastoiditis 

and locally dispersing through the defects in the skull 

or through the vessels that penetrate the skull. It uses 

a whole arsenal of virulence factors to enter into the 

bloodstream including proteins located on its surface, 

capsule made up of polysaccharides and its cell wall. 

The innate invasion mechanism acts against 

mechanisms for innate immune responses and 

implements molecular mimicry for the promotion of 

invasion (Thornton et al., 2010).  

 

Initiation of the innate invasion is carried out by 

bacterial binding to the epithelial layer of the 

respiratory tract. Polymeric immunoglobin receptor 

(pIgR) is bound by choline binding protein A, and 

absorption of the transcytosis machinery for pIgR can 

be done by S pneumoniae which can aid in the 

transversion of the mucosal barrier thus translocation 

of the bacteria is initiated which helps it transverse 

across epithelium of the nasopharynx (Zhang et al., 

2000). Bacteremia of advanced grade then leads 

towards the promotion of meningitis development by 

interactions of host at the blood brain barrier (BBB). 

Binding of the laminin receptor also called LR is done 

by CbpA at cerebrovascular endothelium (Orihuela et 

al., 2009). Other than laminin receptors, platelet 

endothelial cell adhesion molecule-1 (PECAM-1) also 

called as CD31 as well as NanA domain similar to 

lectin have been reported to be a contributing factor 

for the attachment of the pneumococcus to the 

endothelial cells of the blood brain barrier (Iovino et 

al., 2014; Uchiyama et al., 2009). 

 

Translocation of Streptococcus pneumoniae into the 

CNS 

Advanced grade bacteremia also known as sustained 

bacteremia is considered necessary but insufficient 

for entry of the microbe in the subarachnoid space 

(Tuomanen, 1996). For the invasion of the meninges, 

crossing of the physiological barriers located between 

the CNS and the bloodstream is mandatory by blood 

borne pathogen. There are two distinct structures 

separating CNS from the bloodstream: blood-CSF 

barrier and BBB.  

 

After the attachment of bacteria to the cells of 

endothelium or epithelium, process of innate invasion 

again mediates the translocation of the pathogens 

across barriers. Phosphorylcholine (PCho) is 

exhibited by almost every respiratory pathogen on its 

surface and mimicry of PAF chemokine mediates it to 

bind to receptor for platelet activating factor (PAFr) 

in humans (Cundell et al., 1995). In cases pertaining 

to the pneumococcus, addition of phosphorylcholine 

is done to the teichoic acid of the cell wall and to the 

lipoteichoic acid in variable phase manner (Cundell et 

al., 1995). Binding of PCho to PAFr leads towards the 

bacterial uptake mediated via clathrin into vacuole, 

thus providing facilitation to the intracellular 

translocation of the bacteria from bloodstream to the 

brain (Radin et al., 2005). There are also reports of 

vitronectin-αvβ3 integrin complex usage by 

pneumococcus to invade endothelium and 

epithelium(Bergmann et al., 2009). 

 

Other than opting for uptake by receptor meditated 

method to enter in the host cells, pneumococcus also 

acquire access to CNS paracellularly through 

disruption of the integrity of blood brain barrier. 

Cytolysin pneumolysin, a cholesterol dependent 

virulence factor mediates this process (Zysk et al., 

2001) as well as α-glycerophosphate oxidase GlpO 

(Mahdi et al., 2012) by creating H2O2 that causes 

apoptosis of the microvascular endothelium of the 
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brain. Hyaluronidase may also play its role in 

meningitis by degrading the components of 

extracellular matrix (Kostyukova et al., 1995). 

 

Pathogenesis of Streptococcus pneumoniae in the 

brain (CSF) 

Upon gaining access to CNS, pneumococcus gains 

advantage of limited defense mechanisms of the host 

in this region and multiplies rapidly inside the CSF. 

Once it reaches CSF, it becomes more likely that the 

pathogen will survive as the defenses located in the 

CSF of the host are not effective against pathogens 

that have a capsule around them like S pneumoniae. 

Prior to the infection, dominating mechanisms of the 

host such as, immunoglobulins, polymorphonuclear 

leucocytes and components of the complement 

system, are practically absent in cerebrospinal fluid 

(Simberkoff et al., 1980; Smith et al., 1973; Stahel & 

Nadal, 1997). Transmigration of the leucocyte in the 

CSF results due to multiplication of the bacterial 

and/or release of the components by the bacteria. But 

leucocytes fail to phagocytize and kill S. pneumoniae 

in CSF. There is a partial understanding of this 

discrepancy in the functionality. One of them is 

having insufficient concentrations of the complement 

for achieving opsonic activity (Simberkoff et al., 

1980). Concentrations of other crucial bacterial 

opsonin, and particular antibodies for the capsule are 

also found to be lower in normal CSF than a CSF IgG/ 

blood ratio about 1/800. Even though the 

concentrations of IgG in CSF observes an increase 

while bacterial meningitis is present, they 

correspondingly have concentrations below optimal 

levels for achieving opsonic activity (Smith et al., 

1973). Hence, it can be conceived that CSF is a 

localized region found in the humans with host 

immunodeficiency that facilitates pneumococci to 

proliferate in an unrestrained manner, which if left 

untreated can lead towards the death of the host. 

Thus, the CSF can be conceptualised as a localised 

area of host immunodeficiency facilitating 

unrestrained proliferation of pneumococci which, if 

untreated, overwhelms the host until death. While its 

multiplying, release of the numerous highly 

immunogenic components is done by pneumococcus 

which are identified by receptors located on the 

surface of cells responsible for the presentation of the 

antigen that are found in lower quantity in 

cerebrospinal fluid. These receptors are called as 

pattern recognition receptors or PRRs. Recognition of 

these components released by the pathogen via the 

immune system creates a strong inflammatory 

response that leads to impairment of the blood brain 

barrier due to occlusion of the vessels, leukocyte 

recruitment, vasculitis, and vascular deregulation that 

results in aggravated intracranial pressure. 

Exhilaratingly, inflammation present in CNS remains 

detectable when there is sustained bacteremia even 

before the crossing of BBB by the bacteria (Iovino et 

al., 2013). 

 

Intracisternal inoculation of the bacterial cell wall 

components in the animals are enough to trigger the 

whole complex of symptoms associated with 

meningitis, even when the live bacteria is completely 

absent (Tuomanen et al., 1985). It is an important 

observation in clinical settings since lysis of the 

bacteria resulted by treatment through the antibiotics 

causes explosive release due to the cell wall rupturing 

which in turn causes elevated responses from the 

host, adding to the severity of the disease (Nau & 

Brück, 2002). 

 

Pattern recognition receptors 

Pneumococcal meningitis triggers a wide range of 

pathways of PRR which have an influence on not just 

the outcomes by anti-bacterial responses from the 

host but also by associated CNS function disruption. 

The primary PRRs which are responsible for detecting 

pneumococcus in central nervous system are the 

members which belong to Toll-like receptors family 

that includes TLR4, TLR9 and TLR2, and are located 

on the glial cells (Vijay, 2018) as well as NOD2 

belonging to NOD like receptors family also called as 

NLRs (Mook-Kanamori et al., 2011). Cell wall of 

pneumococcus is recognized by TLR2 along with 

lipoteichoic acid and lipoproteins, while TLR9 is 

responsible for sensing DNA of bacteria which 

releases during the autolysis and detection of 

pneumolysin is carried out by TLR4 (Koppe et al., 
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2012). Additionally, intracellular NOD2 recognize 

muramyl peptides from the peptidoglycan of the 

pneumococcus (Liu et al., 2010) and binding of PAFr 

to the teichoic acids bearing PCho takes place 

(Cundell et al., 1995). Recognition of the 

pneumococcus mediated by the inflammasome also 

plays its role in the innate immune response of the 

host. NALP3, the component of inflammasome has 

been described for playing a crucial role in that 

process (Hoegen et al., 2011). 

 

Infiltration of leukocyte and the Cytokine Storm 

Following the activation of the microglial cells 

mediated by the PRRs, proinflammatory responses 

related to the pneumococcal meningitis is driven by 

infiltration of the leukocytes initiated by glia. 

Inflammatory response engagement results in 

activation of numerous signaling cascades causing 

pro-inflammatory mediator production which 

orchestrates an effective immune response. Patients 

affected with pneumococcal meningitis demonstrate 

in their CSF elevated levels of pro-inflammatory 

cytokines such as interleukin-1β, interferon- γ, tumor 

necrosis factor- α, interleukin 2, 6 and 12, as well as 

some anti-inflammatory cytokines such as 

interleukin-10 including tumor growth factor- β and 

some chemokines like CCL2, CCL3, and CXCL8 

(Coutinho et al., 2013). A characteristic of PM is 

chemokines being upregulated in CNS and these 

secreted chemokines work together with additional 

chemoattractants such as ROS, reactive nitrogen 

specie and PAF and also with complement system and 

results in attraction of highly active PMNs towards 

the brain. These PMNs cross the blood brain barrier 

by the tightly knit junctions of the endothelium 

forming the barrier in a process involving multiple 

steps that includes selectins and integrins, leading 

towards the pleocytosis of CSF (Mook-Kanamori et 

al., 2011).  

 

The existence of leukocytes inside CNS contributes 

further towards the establishment of cytokine 

environment by the residing CNS cells, leading 

towards the formation of “cytokine storm”. Levels of 

archetypal inflammatory cytokines including tumor 

necrosis factor, interleukins-1β, interleukin-6 and 

interferon-γ remains constantly noticeable in clinical 

pneumococcus meningitis (Barichello et al., 2010; 

Mook-Kanamori et al., 2012; Yau et al., 2016) and has 

correlation with mortality of meningitis (Grandgirard 

et al., 2013). 

 

Matrix metalloproteinases 

Activated leukocytes secrete matrix 

metalloproteinases or MMPs, which  are 

endopeptidases that are dependent on zinc (Könnecke 

& Bechmann, 2013) and are thought to be specifically 

damaging the blood brain barrier during meningitis. 

MMPs cause degradation of extracellular matrix (Leib 

et al., 2000) while increase in the concentrations of 

MMP9 and MMP8 has been observed in CSF of 

patients present with meningitis (Leppert et al., 

2000), whereas MMP9 is associated with dysfunction 

of the blood brain barrier as well as with neuronal 

apoptosis (Grandgirard et al., 2013; Liechti et al., 

2014). 

 

Disruption of blood brain barrier as a result of 

pathogenesis of S. pneumoniae 

By evading the physiological and immunological 

barriers of the host, pneumococcus gain access to the 

CNS and triggers various inflammatory response 

cascades while recruiting cells of the immune system 

to this site. This process causes the blood brain 

barrier to become permeable allowing S. pneumoniae 

as well as leukocytes to additionally augment the 

immune response of the host through numerous 

positive feedback loops. During the general S. 

pneumoniae pathogenesis in CSF, dysregulation of 

the immune responses can take place in many cases 

of pneumococcal meningitis, contributing to a wide 

range of neurological complications which can cause 

disabilities for a life time, such as disorders associated 

with behaviors, impairments in the cognitive abilities, 

and hearing arrears (Klein et al., 2017). 

 

The pathogenesis of S. pneumoniae is driven by the 

pathological proportion of inflammatory cytokines 

exposure which might also play role in cellular genetic 

modifications that are irreversible via epigenetic 
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processes, hence serving as a contributing factor for 

the altered functions of neurological behavior (Roth, 

2013). 

 

Pathogenesis of Neisseria meningitidis 

Meningococcal sepsis as well as meningococcal 

meningitis both are devastating diseases that affects 

people with a varying incidence ranging from 0.5 

cases per 100 000 to 1000 cases per 100 000, that is 

dependent on epidemiological area. A gram-negative 

bacteria called Neisseria Meningitidis is the 

etiological agent which is also an obligate pathogen 

affecting humans. Nasopharyngeal cavity is colonized 

by meningococcus and 10% people carry this 

asymptomatically at any period in time (Caugant & 

Maiden, 2009). 

 

A prerequisite required for meningitis development is 

interaction between the endothelial cells of the 

human body which form lining of the blood vessels of 

blood-cerebrospinal fluid barrier (B-CSFB) and N. 

meningitidis. 

 

Invasion and dissemination of N. meningitidis 

Binding of the bacteria to the endothelial cells of the 

brain is rudimentary for bacteria to successfully enter 

the CSF. Huge colonies of N. meningitidis have 

reportedly been located in parenchyma, subarachnoid 

space capillaries as well as in choroid plexus in 

histological samples of the brain sections during 

postmortem (Pron et al., 1997). To bind to the host 

cells, N. meningitidis carries is dependent on 

numerous determinants which play their roles in 

making these interactions possible and include a type 

IV pili, two proteins located on the outer membrane 

called Opc and Opa, as well as various newly reported 

minor adhesion proteins or adhesion like proteins 

like autotransporter meningococcal serine protease A 

(MspA) or adhesin complex protein (ACP) (Virji, 

2009). 

 

Type IV pili or Tfp are exhibited by various gram-

negative bacteria and are polymeric filaments. They 

facilitate in establishing the primary contact of N. 

meningitidis to the surface of eukaryotic cells and 

play their role in aggregation of the bacteria, 

migration of the bacteria, natural bacterial 

transformation and twitching motility of the bacteria 

(Carbonnelle et al., 2006). These proteins are 

multimeric, where pilin E acts as pilus scaffold 

spanning both the inner membrane and the outer 

membrane extruding through pore, which PilQ forms 

(Pelicic, 2008). There is the requirement of more 

than 20 proteins so that a functional and correctly 

assembled Type IV pilus can be made (Brown et al., 

2010). Both PilV and PilE play their role in adhering 

to the host cells are have been recently observed to 

result in the activation of β2-adrenergic receptor (β2-

AR), that promotes signaling events of endothelial 

cells which in turn enables translocation of Neisseria 

through endothelium of the brain (Coureuil et al., 

2014; Lécuyer et al., 2012). 

 

Significant efforts for the determination of Tfp 

binding receptors on the eukaryotic cells have been 

made. Membrane co-factor protein or CD46 has been 

proposed as the Tfp receptor by the host cell 

(Källström et al., 1997), but there are controversies 

surrounding the role played by CD46 as being the 

host cell receptor. Moreover, PAFr or platelet 

activating factor has been defined as pilus receptor 

that is targeted on the epithelial cells of the airway 

(Jen et al., 2013). Bernard et al. (2014) demonstrated 

in their study that CD147 that is one of the members 

of immunoglobulin family is used by N. meningitidis 

for adhering to the endothelial cells in a Tfp 

dependent manner as well as showed the primary role 

played by CD147 for meningococcal vascular 

colonization. Facilitated adhesion by Tfp to the CD147 

have been depicted to be involving minor pilin PilV 

and PilE both. 

 

Curiously, both of these pilins reportedly lead towards 

the activation of G protein-coupled β2-adrenergic 

receptor (β2-AR) which plays the role of signaling 

receptor primarily (Coureuil et al., 2010). As a 

response to adhesion of the bacteria and 

microcolonies formation of meningococcus, 

recruitment of β2-AR is done to endothelial cell apical 

surface underneath microcolonies. Interaction 
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between extracellular N-terminal domain of β2-AR 

with PilV and PilE is highly likely to modify the 

receptor conformation which results in activation of 

signaling pathways facilitated by β-arrestin (Coureuil 

et al., 2010). Nevertheless, signal transduction 

mediated by G protein is not induced by β2-AR 

activation that is elicited by N. meningitidis. β-

arrestin pathway is given biasness when 

meningococci activate the receptor. Non-receptor 

kinase (RTK) c-Src that causes phosphorylation of 

cortactin and ezrin are recruited by the trapped β-

arrestin. Furthermore, β-arrestin-interacting proteins 

accumulation is carried out by β-arrestin like p120-

catenin as well as VE-cadherin allegedly called 

‘cortical plaques’ under the bacterial microcolonies. 

The accumulation of these proteins has been 

demonstrated to cause intercellular junctions to 

deplete. 

 

Proteins of the outer membrane makes up opacity 

associated proteins Opa and Opc. Though a 

polysaccharide capsule partially masks the proteins of 

the outer membrane, their role in adhesion as well as 

invasion into the eukaryotic cells is efficient (Bradley 

et al., 2005). Majority of the Opa proteins have been 

found to bind with carcinoembryonic antigen-related 

cell adhesion molecule (CEACAM) family members of 

humans located on epithelial cells (Sadarangani et al., 

2011). Other than that, binding of some Opa proteins 

with the heparan sulfate proteoglycans (HSPG) and to 

the integrins through proteins found in extracellular 

matrix fibronectin and vitronectin or through the 

saccharides has been demonstrated (Van Putten & 

Paul, 1995).  

 

The Opc protein of the outer membrane is specially 

implicated in the invasion of the host endothelial 

cells, as well as with endothelial cells of the brain 

(Virji, 2009). Opc, a beta barrel protein has five 

surface loops that has antigenic stability and a single 

gene called opcA encodes it (Sarkari et al., 1994). 

Numerous virulent lineages of N. meningitidis 

express Opc while specific epidemic clones such as 

ET-37/ST-11 clonal complex as well as some random 

endemic isolates have reported it to be absent  

(Sarkari et al., 1994). 

 

Binding of Opc proteins with the extracellular matrix 

components as well as with serum proteins like 

fibronectin and vitronectin is direct (Sa E Cunha et 

al., 2010; Unkmeir et al., 2002). Additionally, via 

heparin, there may be indirect binding of Opc with 

vitronectin and fibronectin. Bacterial adhesins after 

binding with vitronectin and fibronectin can target 

proteoglycans as well. Tight association of Opc with 

vitronectin or fibronectin or both facilitates 

meningococcal binding to the cognate receptor called 

endothelial αVβ3 integrin (Sa E Cunha et al., 2010) 

or/and α5β1-integrin (fibronectin receptor) (Unkmeir 

et al., 2002) on to the brain vessel cells. 

 

Furthermore, Opc protein of meningococci grants 

tight association of fibronectin and vitronectin with 

the bacteria facilitating binding with endothelial 

integrins. This interaction causes non- receptor 

tyrosine kinases such as focal adhesion kinase (FAK) 

and Proto-oncogene tyrosine-protein kinase c-Src as 

well as receptor tyrosine kinases (ErbB2) activation, 

which in turn causes phosphorylation and causes 

cytoskeletal rearrangement and cortactin to activate. 

Even though pili Opa and Opc represent most crucial 

and extensively studied meningococcus adhesins, 

there are descriptions of various other adhesins like 

NhhA (Neisseria homologue of hsf/hia) which is a 

trimeric autotransporter that shares homology with 

Hsf and Hia Haemophilus influenzae adhesins that 

binds with proteins of extracellular matrix laminin 

and heparan sulfate and aids in providing attachment 

to the cells of the host (Scarselli et al., 2006; Sjölinder 

et al., 2008) App protein (adhesion and penetration 

protein) that shares homology with the Haemophilus 

Hap (Hadi et al., 2001; Serruto et al., 2003) and as 

well as NadA (Neisseria adhesin A), a trimeric 

autotransporter that belongs to Oca family 

(oligomeric coiled-coil adhesins) (Comanducci et al., 

2002). Stable trimers are formed by NadA on the 

surface of the bacteria that facilitates in binding with 

epithelial cells by interacting with protein receptor 

molecule distinctively expressed by different 

epithelial cells lines (Capecchi et al., 2005). 
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The presence of multiple adhesins in meningococci 

with various receptor specificnesses indicates that 

they can possibly cooperatively interact with various 

receptors on the same cell under target or might act 

along the different stages of the infection, facilitating 

adhesion of Neisseria to the different types of the cell 

at their different sites. 

 

Tight interactions between invasins and adhesins of 

the bacteria to the receptors of endothelial cells of the 

brain as well as subsequent uptake of induction 

supports the transcellular pathway strategy for 

traversing meningococcus across tight B-CSFB. 

Opening of these tight junctions is a requirement for 

paracellular pathway. Recently published data have 

shed a light on mechanisms facilitating paracellular 

route for the translocation of N. meningitidis in the 

central nervous system (Coureuil et al., 2009; 

Schubert-Unkmeir et al., 2010). Local elongation of 

cells is induced by N. meningitidis when they adhere 

to the endothelial cells that resembles structures of 

epithelial microvilli (Eugène et al., 2002). Bacteria 

gets surrounded by these structures resembling 

microvilli and their internalization inside the vacuole 

is initiated (Eugène et al., 2002). They increase the 

surface area of the cell which facilitates adhesion of 

the bacteria while also contributing in resisting 

against the shear stresses imparted by bloodstream 

(Mairey et al., 2006). These protrusions have high 

amounts of moesin and ezrin which belong to ezrin–

radixin–moesin (ERM) family of proteins, as well as 

some transmembrane proteins such as CD44, ICAM-

1, and ICAM-2 (Eugène et al., 2002). Adapter 

proteins and recruited integral membrane proteins 

along with actin cytoskeleton give rise to particular 

molecular complexes called as cortical plaques. As a 

matter of interest, cortical plaque formation leads to 

the localized replacement of proteins at intercellular 

junctions. Particularly, recruitment of 

PAR3/PAR6/αPKC proteins polarity complex at site 

of adhesion for meningococci (Coureuil et al., 2009) 

with cell to cell interface depletion and intercellular 

junction opening of brain-endothelial interface. 

Mislocated adherence junction formation might lead 

towards a paracellular route to open up for the 

transversal of N. meningitidis into CNS (Coureuil et 

al., 2009). Further alteration of proteins for cellular 

junction in vitro has depicted for occludin, which is a 

protein of tight junction, by using HBMEC cell line as 

performed in in vitro model. Long time infection 

caused occludin to be proteolytically cleaved by 

matrix-metalloproteinase MMP-8. Disappearance of 

occludin from cell periphery consequently results and 

causes it to be cleaved into 50-kDA protein of smaller 

size in the infected cells causing detachment of the 

endothelial cells and elevated paracellular 

permeability (Schubert-Unkmeir et al., 2010). 

 

Studies conducted in the previous years 

demonstrated cell membrane lipids to have a non-

random but rather organized distribution. The most 

prevalent sphingolipid is sphingomyelin, which is 

localized predominantly in anti-cytoplasmatic leaflet 

of the cell membranes as well as intracellular vesicles. 

The structure comprises of extremely hydrophobic 

ceramide moiety as well as headgroup having 

hydrophilic phosphorylcholine. Sphingomyelin 

hydrolysis causes the ceramide release that leads 

towards biophysical properties of membrane to be 

altered. There is spontaneous interaction between 

ceramide molecules that leads to the formation of 

domains that are enriched in ceramide and because of 

biophysical properties they have, membranes 

enriched in these ceramide domains then fuse 

together and result in the formation extended 

platforms spanning from few hundred nanometers to 

many micrometers. Other than causing alteration in 

the rigidity and fluidity of the membrane, platforms 

enriched with ceramide play their role in sorting and 

eventually concentrating membrane receptors as well 

as components of membrane proximal signalling, 

thus causing signal transduction as well as cellular 

responses to be amplified. Platforms enriched in 

ceramide have been implied in internalization of 

various bacteria (Grassmé & Becker, 2013).  

 

The recent studies has revealed the capability of N. 

meningitidis in activating acid sphingomyelinase 

(ASM) in micro vessels of the brain therefore causing 

formation of ceramide as well as generation of 
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platforms enriched with ceramide (Simonis et al., 

2014). Mechanistically speaking, activation of ASM is 

dependent on N. meningitidis binding to HSPG, its 

attachment receptor, accompanied by 

phosphatidylcholine-specific phospholipase 

activation. The data acquired suggests ceramide 

system/ASM activation by N. meningitidis species 

concluding their invasiveness into the endothelial 

cells of the brain. 

 

Activation of immune system and inflammatory 

response generated by N. meningitidis in the brain 

Activation of cytokines is one of the crucial events 

meningococcal disease pathogenesis (Waage et al., 

1989). Compartmentalization of acute inflammatory 

response is inside subarachnoid space and release of 

IL-6, G-CSF, MIP-α, tumor necrosis factor α (TNF-α), 

IL-1β, MCP-1 and IL-8 is their characterizing feature 

(Waage et al., 1989). Intriguingly, on the basis of the 

experiments conducted on meningioma cells, 

induction of high levels of cytokine is carried out by 

the N. meningitidis compared to similar number of 

the E. coli K1, S. pneumoniae or influenzae 

(Humphries et al., 2005). The main inflammatory 

modulin created by N. meningitidis is LPS but 

numerous studies have demonstrated some non-LPS 

to be also a contributing factor for secretion of the 

cytokines (Humphries et al., 2005; Sprong et al., 

2004; Sprong et al., 2001; van der Ley & Steeghs, 

2003). Alteration in meninges vasculature is resulted 

due to the cytokines release, and upregulation of 

various adhesins on endothelial cells is also altered 

that includes intercellular adhesion molecules 

(ICAMs), vascular endothelial adhesion molecules 

(VECAMs) and selectins (Dixon, 2000; Drevets & 

Leenen, 2000). IL-8 attract leukocytes in circulation, 

mainly neutrophils, which pass between activated 

endothelial cells and enter subarachnoid space. At the 

same time, immunoglobulins, complement factors, 

and proteins (usually albumin) leak in the CSF. 

Production of IL-1β and TNF-α happens at a really 

earlier stage which in fifty percent of admitted 

patients can be detected in its bioactive form. IL-8, 

MIP-α, IL-6 and MCP-1 are continually released for 

longer periods of time or their upregulation takes 

place and their detection can be done in larger 

number of patients while they are admitted in the 

hospital (Dixon, 2000). 

 

Pathogenesis of Haemophilus influenzae 

Pfeiffer in 1892 first described Haemophilus 

influenzae bacteria, which stains negatively during 

gram staining (Pfeiffer, 1892). It is ubiquitous in 

nature and being distinct to humans, was first 

considered as being etiologic agent behind 

“influenza”. But isolation of H. influenzae was not 

consistent via the autopsy of patient’s lungs who died 

in 1918 during influenza pandemic. The confusion 

surrounding the relationship between H. influenzae  

prevalence and illness of humans was mitigated by 

Pittman who discovered that strains of the bacterium 

can be separated into two distinct groups i.e., strains 

that are nonencapsulated (nontypeable) and strains 

that are encapsulated (typeable) (Pittman, 1931). 

Pittman additionally determined six encapsulated 

types of H. influenzae  and named them from a to f by 

their capsular polysaccharide serological specificities 

(Pittman, 1931). 

 

Primarily type b (Hib) strains result in serious 

invasive illnesses such as septicemia and meningitis 

including pneumonia, cellulitis, empyema, 

epiglottitis, and septic arthritis (Alexander, 1965; 

Turk & May, 1967).  

 

In USA, Haemophilus influenzae type b (Hib) strain 

causes nearly 10, 000 cases annually of meningitis in 

the children aged younger than 5 years as well as 

infants. Even though the disease proves fatal in only 

around 5% cases, permanent neurological sequelae is 

reported in nearly half or more than half of the 

survivors, these include severe deficiencies in 

behavior and learning, cerebral palsy or deafness 

(Peltola, 2000). Investigation of H. influenzae 

pathogenesis has been done using animal models, by 

case studies and in vitro infection models. H. 

influenzae investigation has been paragoned to 

understand bacterial meningitis pathogenesis 

generally. A number of different stages during 

invasion of Haemophilus have been identified. 
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Colonization of nasopharynx by H. influenzae  

Upper respiratory tract is the place of H. influenzae 

acquisition. Practically every child carries H. 

influenzae  in their nasopharynx reaching 3 months 

in age but larger number of these bacteria do not have 

a capsule with only 5% of them being type b (Smith et 

al., 1985).  

 

For the nasopharyngeal colonization of Hib, 

adherence of the bacteria to the nasopharyngeal cells 

in mandatory. In animal model experimentations, 

observation of colonization has been made after Hib 

inoculation (Moxon et al., 1974). 

 

H. influenzae  strains expresses around 10 to 20 

OMPs (Murphy et al., 1983) that range from 16-kDa 

to 98-kDa in size. Different strains express different 

combinations of proteins (Loeb et al., 1981). P2 porin 

protein is the OMP of Hib that is found in the highest 

quantity (Coulton & Wan, 1983; Loeb et al., 1981). 

Cope along with his colleagues reported in their study 

the contribution of P2 in Hib virulence as virulent 

strain of Hib isogenic mutant, unable to produce P2, 

was reportedly avirulent in infant rat (Cope et al., 

1990). Interaction of this protein is with LPS (Gulig & 

Hansen, 1985). P5 protein is thought to play role in 

mucosal epithelium invasion (Chanyangam et al., 

1991). 

 

Pili apparently facilitate in the adherence of the 

bacteria to the mucosal surfaces thus facilitating 

colonization of the respiratory tract. Anderson along 

with co-workers noted piliated H. influenzae 

exhibiting solider adherence to the buccal epithelial 

cells as well as noted them to be more efficient in rat 

colonization after intranasal inoculation compared to 

the nonpiliated variants (Anderson et al., 1985). 

Moreover, stimulation of phagocytosis with 

neutrophils that is dependent on enhanced 

opsonization has been noted in piliated H. influenzae 

(Tosi et al., 1985). Apparently, pili expression is of 

importance in colonization stage during pathogenesis 

but during systemic stages, its rather detrimental. Pili 

expressions in H. influenzae variable by the phases, 

as in different other organisms (Krogfelt, 1991). 

Single pilin locus copy consisting of hifA to hifE has 

been identified in majority of the Haemophilus 

strains that have been studies so far (Fleischmann et 

al., 1995). 

 

IgAl proteases of Haemophilus are serine type 

enzymatic molecules which are made as 169-kDa 

proteins (Klauser et al., 1993; Pohlner et al., 1987). 

IgA1 protease activity in the inactivation and cleaving 

of human IgA1, a secretory antibody predominantly 

located in upper respiratory tract (Kilian et al., 1996) 

is thought to provide facilitation in the colonization 

(Plaut, 1983). Particularly one out of the four peptide 

bonds are cleaved by IgA1 protease which are found 

inside the limited α chain hinge region sequences of 

amino acids of the human IgA1 as well as its secretory 

form (S-IgAl). As a result, antibody molecules become 

intact fragments of Fab where Fc portion is missing, 

which is predominantly responsible for shielding 

properties presented by particularly this immune 

factor (Kilian et al., 1988). After cleaving, IgA1 

protease C-terminal domain with a molecular mass of 

50-kDa rests in outer membrane of the bacteria 

whereas N terminus that is proteolytically active, is 

secreted. Two IgA1 classes of H. influenzae on the 

basis of them cleaving at the prolyl-seryl (designated 

type 1) or on a site four amino acids away at a 

prolylthreoryl bond (type 2) have been described 

(Bricker et al., 1985; Bricker et al., 1983; Grundy et 

al., 1990). 

 

A virulence factor implied in H. influenzae 

pathogenesis and colonization are appendages made 

up of proteins called as fimbriae. Four different 

families of fimbriae have been identified, but long 

thick hemagglutination (HA)-positive (LKP) family of 

the fimbriae have been observed to provide 

facilitation adhering to the human mucosal cells 

(Brinton Jr et al., 1989). Furthermore, fimbriae of 

this type grants mucosal binding (Read et al., 1991) 

causing human erythrocytes agglutination through 

AnWj blood group antigen (van Alphen et al., 1986). 

Lactosylceramide eukaryotic receptor containing 

sialic acid is involved in adherence to the epithelial 

cells (van Alphen et al., 1991).  
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Type b polysaccharide capsule is the most significant 

H. influenzae virulence factor. Considering the 

description of Pittman of six capsular serotypes of H. 

influenzae given in 1931(Pittman, 1931), that are 

designated as types a, b, c, d, e, and f, recognition of 

strains belonging to type b was done as being the 

commonest causative agent behind invasive diseases, 

particularly in the children (Dajani et al., 1979; 

Fraser, 1982; Turk, 1982). A wide variety of 

epidemiological and experimental data validates the 

type b virulence strains. Capsule of type b strains 

comprises of ribitol phosphate and ribosyl repeating 

units is an antiphagocytic (Moxon, 1997; Ward & 

Zangwill, 1998).  

 

Translocation of H. influenzae into the CNS and 

associated pathology 

Akin to the other pathogens described before, it is 

crucial for the H. influenzae to cross upper 

respiratory tract epithelial barrier and after survival 

following its dissemination in the blood stream, it 

crosses the brain barriers and enter into the CNS 

(Doran et al., 2013). Traversing both BCSFB and BBB 

has been showed for H. influenzae(Al-Obaidi & Desa, 

2018; Häuser et al., 2018). 

 

Strategy of H. influenzae for entering in endothelial 

cells is similar to that of N. meningitidis and S. 

pneumoniae, involving binding to PAFR which is 

facilitated by phosphorylcholine (ChoP) (Cundell et 

al., 1995; Swords et al., 2001). Due to this interaction 

pathogens gain entry in the BBB by β-arrestin 

facilitated uptake activation (Radin et al., 2005). 

PAFR binding by lipooligosaccharide (LOS) 

glycoforms that contains phosphorylcholine has also 

been shown during the invasion. Host cell signaling 

activation is resulted due to this binding as coupling 

of protein complexes, pertussis toxin sensitive (PTX) 

heterotrimeric G happens, and pathogen invades. 

Additionally, this mechanism was indicated to be 

more effective compared to micropinocytosis (Swords 

et al., 2001). Binding to the receptor of laminin, is 

another mechanism shared by these pathogens, is 

started by OmpP2, that facilitates brain endothelium 

interaction by H. influenzae (Orihuela et al., 2009). 

In BCSFB in vitro model, adherence, and invasion of 

HIBCPP cells was shown by Hib along with Hib 

clinical isolates as well as H. influenzae serotype f 

(Hif) acting as intracellular bacterial pathogens. 

Attenuated invasion were due to capsule and fimbriae 

(Häuser et al., 2018). Also, in a study that used a co-

culture of pericytes and HBMECs and H. influenzae 

serotype a (Hia) noted stimulated A2B and A2A 

adenosine receptors activation following an infection. 

That resulted in Vascular Endothelial Growth Factor 

(VEGF) released by pericytes causing detachment of 

pericytes as well as proliferation of endothelial cell 

leading to overall impairment of BBB (Caporarello et 

al., 2018).  

Using rat meningitis models, increase in the 

permeability of BBB dependent on dose was noted 

following Hib LPS inoculation (Wispelwey et al., 

1988). Studies conducted later on demonstrated 

increase in the BBB permeability in the rats following 

outer membrane vesicles (OMV) inoculation of H. 

influenzae, proposing the role of these vesicles during 

meningitis in Hib LPS transportation to CSF 

(Wispelwey et al., 1989). Moreover, a cytoskeletal 

protein called zyxin was noted to be implied in TJs 

protection in BBB, is crucial for BBB integrity and 

consequently for providing protection against a 

pathogenic invasion by different pathogens like H. 

influenzae (Parisi & Martinez, 2014). Generally, 

determination of  inflammatory response exhibited by 

patients while being infected with H. influenzae is by 

numerous virulence factors such as adhesion 

proteins, outer membrane proteins, capsule and pili 

along with IgA1 protease and LPS (Kostyanev & 

Sechanova, 2012). 

 

Pathogenesis of E. coli 

Most commonly found gram-negative bacteria is 

Escherichia coli which causes meningitis, especially 

in neonatal period. Majority of cases of meningitis 

caused by Escherichia coli happen due to 

hematogenous spread (Dietzman et al., 1974; Kim et 

al., 1992) but there is lack of understanding as to how 

Escherichia coli circulation transverses BBB. 

Considering Escherichia coli has a plethora of 

serotypes, it is a surprising finding that stains of E. 
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coli having K1 capsular polysaccharide are found 

predominantly (nearly 80%) than the other strains 

isolated from the E. coli meningitis in neonates 

(Gross et al., 1983; Korhonen et al., 1985; Ropes, 

1958), and majority of the K1 isolated are linked to a 

limited to O serotypes such as O16, O45, O7, O1, O18 

(Bonacorsi et al., 2003; Kim et al., 1992; Kim et al., 

1988; Sarff et al., 1975). Even though rate of the 

mortality has seen a 30% drop from 1970 to 20% 

nowadays, the rate of morbidity remains unchanged 

even following the introduction of efficient antibiotics 

as well as supportive care (Furyk et al., 2011). The 

number of E. coli strains resistant to the antibiotics is 

at a constant rise which has made the situation 

alarming. A staggering 30% to 58% of the survivors 

encumber significant neurological complications like 

loss of hearing, cortical blindness, and mental 

retardation (Furyk et al., 2011).  

 

Even though the bacteria are removed from 

circulation by the use of antibiotics, endotoxins 

released in larger quantities from the lysed bacteria 

sets in motion huge inflammatory responses that 

cause septic shock. Using corticosteroids for the 

reduction of these inflammatory responses proves 

inefficient in relieving neurological deficits linked 

with the disease. Thus, there is a dire need of 

understating the pathogenesis behind E. 

coli meningitis comprehensively so that advanced 

therapeutic strategies can be developed. 

 

Among E. coli strains decorated with K1-CPS, sialic 

acid residue polymer is predominantly responsible for 

neonatal meningitis (Kim et al., 1992). Other than K1 

CPS, there are several other surface structures 

exhibited by E. coli like lipopolysaccharide, pili as 

well as proteins of the outer membrane which has 

potential interactions with the tissues of the host 

while meningitis is being established. OmpA or outer 

membrane protein A is a structurally conserved and 

the primary E. coli protein (Pautsch & Schulz, 2000). 

But, studies conducted recently demonstrated 

pathogenic E. coli exhibiting minor distinctions in 

extracellular OmpA loops in comparison to the strains 

that are non-pathogenic (Smith et al., 2007). 

Numerous studies demonstrate OmpA to be playing a 

crucial role in pathogenesis of different diseases 

(Krishnan & Prasadarao, 2012). 

 

For the purpose of gaining as insight into 

pathophysiology of diseases caused by bacteria, it is 

required that animal models be carefully selected and 

used. Use of newborn mouse and rat models is done 

routinely for studying E. coli pathogenesis. These 

models share similarities with human disease as in 

both of them infection is dependent on the age and 

the disease is resulted due to hematogenous spread. 

Mouse and rat brain pathology is the same as infected 

humans exhibiting neutrophil infiltration, meningeal 

damage, edema and neuronal apoptosis (Mittal et al., 

2010). Thus, studies noted here are based on in vitro 

experimentations or are relevant in terms of being 

based on newborn mouse and rat models. 

 

Pathogens that cause meningitis cross the BBB 

paracellularly, transcellularly or by infected 

phagocytic cells also known as Trojan horse” 

mechanism or by all of these means (Kim, 2001; Kim, 

2002; Kim, 2003; Kim, 2008; Kim, 2014). 

 

Invasion of E. coli and its dissemination 

Mucosal colonization by E. coli takes place that is 

followed up by invasion of the epithelial surfaces as 

well as crossing which is a crucial step following 

which it eventually spreads to the intravascular space. 

E. coli express Hek protein that facilitates adherence 

to the epithelial cells as well as their invasion by 

heparin sulfate glycosaminoglycans binding (Fagan et 

al., 2008). Successfully invading the mucosal surfaces 

permits the E. coli to propagate through 

hematogenous spread. During this stage the bacteria 

has to avoid initial bactericidal activity of the serum. 

Bacterial opsonization takes place as a result of 

complete activation that leads to the membrane 

attack complex formation or surface of the pathogen 

that facilitates bacteriolysis. Opsonization of bacteria 

with the complement proteins makes presentation of 

bacteria to the immune cells of the host for the 

purpose of phagocytosis. E. coli K1 CPS has been 

demonstrated crucial for the bacterial survival in 
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blood (Kim et al., 1992). Similar studies based on E. 

coli OmpA further revealed OmpA absence of OmpA 

leaves the bacteria to be sensitive to serum 

(Prasadarao et al., 2002). The classical complement 

pathway facilitates the bactericidal serum activity 

against E. coli OmpA. Studies following up 

demonstrated E. coli OmpA to be binding to the C4-

binding protein (C4 bp) that is a regulator for 

classical complement pathway for blockage of 

complement cascade reaction hence bacteriolysis is 

avoided as well as immune cell recognition 

(Prasadarao et al., 2002). C4 bp bound with OmpA 

allows it to act as Factor I co-factor that cleaves both 

C4b and C3b, that are crucial to the presentation of 

bacteria to the phagocytes (Wooster et al., 2006). 

 

E. coli survival in the PMNs is apparently the primary 

step in the pathogenic procedure as depletion of PMN 

inhibits meningitis onset in the newly born mice 

(Mittal & Prasadarao, 2011). OmpA expression is 

crucial for the survival of the bacteria inside the 

PMNs following their phagocytosis as E. coli having 

no OmpA did not survive. E. coli OmpA phagocytosis 

by the PMNs creates a huge amount of reactive 

oxygen species also called ROS (Shanmuganathan et 

al., 2014). Compared to that E. coli having OmpA 

suppress the ROS release even while external stimuli 

like LPS are present suggesting that PMN machinery 

is overridden by E. coli so that antimicrobial activity 

can be prevented. Absence of several other factors 

responsible for virulence like type-1 fimbriae, S-

fimbriae, CNF-1 and, IbeA bear no effect in 

suppressing production of ROS. Gp91Phox, rac1 and 

rac2 are NADPH oxidase components which is a 

complex of enzyme needed for ROS production, K1 E. 

coli suppresses these at the level of transcription in 

PMNs (Mittal et al., 2011). 

 

Analysis of different receptors present on the surface 

like TLRs, complement receptors and Fc-gamma 

receptors on PMNs following the E. coli infection 

showed increased expression of gp96 by the bacteria, 

which is a β-form of Hsp90 but other structures on 

the surface showed no effect (Mittal et al., 2011). 

Again, interaction of gp96 with the E. coli OmpA 

happens that bacteria can enter as well as survive in 

the PMNs, while on the other hand, gp96 expression 

being absent, bacteria that were phagocytosed where 

effectively killed. Furthermore, E. coli entry facilitated 

by the interaction of gp96 with OmpA which is 

needed for causing ROS levels to reduce. 

Corroborating the role played by gp96 in meningitis 

induced by E. coli, suppressing gp96 by in vivo single 

stranded RNA in mice that were three days old, made 

them resistant to the infection as well as preventing 

damage to the brain. Mice having gp96 knocked out 

failed to develop level of bacteremia needed for 

crossing the BBB, indicating survival of E. coli in the 

PMNs to be a crucial stage amidst the primary phases 

of the infection. 

 

PMNs have a short life which die by apoptosis 

predominantly, there must be alternative routes used 

by E. coli for their survival followed by their 

multiplication in the neonates so that a high-grade 

bacteremia can be reached. Phagocytosis assay by 

primary macrophages and RAW 264.7 demonstrated 

entry, survival and multiplication of the E. coli 

happening in the cells, while E. coli lacking OmpA 

were immediately killed by the cells (Sukumaran et 

al., 2003). Notably, newborn mice having depleted 

levels of macrophage turned resistant to infection of 

the E. coli even after PMNs being present, indicating 

macrophages to be also providing a niche for the 

multiplication of the bacteria. E. coli OmpA binds 

with Fc-gamma receptor I (CD64) alpha chain in the 

macrophages, that is a  IgG binding receptor having 

high affinity through N-glycosylation sites (Krishnan 

et al., 2014). 

 

Immune cells having an infection are killed by the 

apoptosis serves as a limiting factor for the 

intracellular pathogen dissemination hence 

preventing bacterial spread in host. Nonetheless, 

numerous strategies are developed by the pathogens 

for the manipulation of apoptotic mechanism inside 

the macrophages. A strategy used by the E. coli 

against apoptotic mechanism in the macrophages was 

increasing Bcl-XL expression which is an anti-

apoptotic protein (Sukumaran et al., 2004). Whereas 
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E. coli absent with OmpA, caused enhancement of  

Caspase 6 and Bax expression in macrophages with 

infection, that eventually have to go through 

apoptosis. Infection of monocytes by  E. coli does not 

only allow the survival of bacteria but also prevents 

various chemokines as well as cytokines by the cells 

from being produced (Selvaraj & Prasadarao, 2005). 

IκB degradation following NF-κB activity inhibition 

causes the pro-inflammatory cytokines blocking effect 

by the E. coli. Moreover, p38 MAP kinases and 

ERK1/2 are controlled by E. coli by the modulation of 

their phosphorylation status hence IκB degradation is 

regulated. Keeping that in mind, three-day-old mice 

infection resulted in triggering Il-10 production at the 

early infection stage, pointing that pro-inflammatory 

response suppression in the stage of replication 

serves an advantage to the E. coli in establishing 

meningitis (Mittal et al., 2010). 

 

Bacterial translocation into the CNS 

BBB is formed by BMEC which prevents harmful 

substances from being transported as well as stops 

transport of pathogenic microbes from blood to brain. 

High grade bacteremia is prerequisite for the 

interaction between E. coli and the BBB. All surface 

structures of K1 E. coli have the potential for 

interaction with the BMEC for the invasion as well as 

entry to CNS. Among the surface appendages of E. 

coli, one is S-fimbriae (Sfa) which particularly have 

interactions with epitopes of 3GlcNAc, NeuAcα2, and 

3Gal1 located on glycoproteins is demonstrated as 

being responsible for BMEC binding through SfaS 

adhesin located at Sfa tip (Stins et al., 1994). 

Nevertheless, there is no significant role played by Sfa 

in HBMEC invasion. Subsequently conducted studies 

demonstrate type-1 fimbriae that binds with 

glycoproteins mannose residues to be a contributing 

factor in the invasion of HBMEC by the E. coli (Teng 

et al., 2005). But invasion by the bacterium could not 

take place by the OmpA− E. coli where the expression 

of type-1 fimbriae was found to be similar to the wild 

type E. coli in which fimH operon was kept, that 

encodes type-1 fimbriae tip. Moreover, pretreating E. 

coli by α-methyl mannoside (an inhibitor that inhibits 

type-1 fimbriae) yielded no differences in invasion, 

suggesting OmpA to be the primary determinant in 

the invasion of HBMEC by E. coli (Krishnan & 

Prasadarao, 2014). Binding of OmpA has been shown 

with HBMEC for the invasion through activity similar 

to lectin particular to epitopes of 4GlcNAc 

(chitobiose) and GlcNAc1that are attached to the 

glycoproteins linked with asparagine (Prasadarao et 

al., 1996).  

 

Ratifying the need of chitobiose moieties for 

pathogenesis, treating E. coli with chitooligomers 

before infecting newborn rats resulted in prevention 

of meningitis. In subsequently conducted studies a 

heat-shock protein called as β-form of gp96 have been 

identified and be found in HBMEC (designated as 

Ecgp96), that serves as an OmpA receptor for cellular 

binding and invasion. Ecgp96 comprises of 803 

amino acid having a poor transmembrane domain 

(Prasadarao et al., 2003). The interaction between E. 

coli OmpA and two sites of N-glycosylation of Ecgp96  

leads towards further enhancement of receptor 

expression which subsequently leads towards more 

bacterial bindings and furthers the invasion of 

HBMEC (Krishnan et al., 2014). Moreover, Ecgp96 C-

terminal domains are needed to induce signaling 

network for entering the HBMEC (Maruvada et al., 

2008). Expression of TLR2 is also triggered by 

interaction of E. coli  with HBMEC at the surface, that 

leads to formation of a complex with Ecgp96 

whereas E. coli having no OmpA− enhance TLR4 

expression, does not link up with receptor (Krishnan 

et al., 2013). 

 

Actin cytoskeletal rearrangements are induced by the 

E. coli for the internalization that triggers mechanism 

similar to the zipper, in HBMEC that causes 

engulfment of the bacteria in the cell. Other than 

actin microfilaments, K1 E. coli also need 

microtubules to invade, which in HBMEC, provide 

pulling force presumably, for the internalization of 

the bacteria. Entrance of E. coli causes induction of 

tyrosine residues of the focal adhesion kinase (FAK) 

to phosphorylate, that is not dependent on the activity 

of Src kinase (Reddy et al., 2000). Activity of PI3-

kinase is also crucial for the invasion of HBMEC by E. 
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coli that consequently causes PLCγ activation for 

extracellular calcium influx as well as for intracellular 

calcium mobilization (Reddy et al., 2000; Sukumaran 

et al., 2003). PKC-α is activated by calcium 

mobilization, that has interaction with the caveolin-1, 

which is 22 kDa protein found in the plasma 

membrane caveolae and induces E. coli ingestion by 

the HBMEC (Sukumaran et al., 2002). Activated 

PKC-α links with VE-cadherin that is a molecule for 

adherens junction and β-catenin is released from 

junction, as a result HBMEC monolayer permeability 

is increased (Sukumaran & Prasadarao, 2003). Pre-

incubating E. coli by anti-OmpA antibodies or doing 

same with HBMEC by anti-Ecgp96 antibodies 

resulted in reduction of permeability induced by E. 

coli validating that interaction of OmpA-Ecgp96 is 

crucial for the disruption of tight junctions.There is 

enough evidence suggesting role of nitric oxide (NO) 

as antimicrobial molecule as well as facilitator of the 

cerebral vascular permeability. Upon the invasion of 

HBMEC, NO is produced in high amounts by the E. 

coli by activation of inducible nitric oxide synthase 

(iNOS) and cyclic GMP (cGMP) is also generated 

which is a critical NO downstream target (Mittal et 

al., 2010).  

 

Furthermore, increased cGMP production causes 

PKC-α activation, suggesting two pools of PKC-α, 

whereas one of them under regulation of Ecgp96 and 

other one under modulation of NO that causes 

HBMEC monolayers permeability to enhance. It has 

been demonstrated by further studies that GTP 

cyclohydrolase (GCH1) which is a enzyme that limits 

the rate and causes production of co-factor 

tetrahydrobiopterin needed for the activation of 

iNOS, is related to intracellular Ecgp96 

(Shanmuganathan et al., 2013). Other than that, 

small molecule library screening by HBMEC invasion 

assays lead to the recognition of Telmisartan which is 

a blocker for angiotensin II receptor 1 (AT1R), as 

having potential for inhibiting the invasion (Krishnan 

et al., 2014). Follow-up experimentation revealed 

AT1R to be forming a complex with the Ecgp96 while 

HBMEC is being invaded by E. coli. Pre-treatment of 

the mice with the TS made them resistant to 

bacteremia development as well as entrance of the 

bacteria in the brain. These experimentations 

evidently demonstrated that for the aversion of 

meningitis induced by E. coli Ecgp96 can be targeted 

and would prove beneficial.  

 

Immune activation by E. coli and the inflammatory 

response generated by it in the brain 

Multiplication as well as survival of E. coli inside the 

PMNs along with macrophages causes pro-

inflammatory cytokines production in blood that 

results in upregulation of intracellular adhesion 

molecule 1 (ICAM-1) expression on BBB. Additionally, 

interaction between E. coli OmpA and Ecgp96 located 

on HBMEC leads towards induction of ICAM-1 

expression which as a result cause THP-1 cells 

binding in the culture to be enhanced (Selvaraj et al., 

2007). ICAM-1 expression upregulation helps PMNs 

to be infiltrated in the duration of meningitis onset. 

Moreover, neuronal apoptosis as well as gliosis in 

hippocampus and cortex both and IL1β and TNF-α 

production in great amounts have been noted in 

newborn mice brain upon E. coli infection (Mittal et 

al., 2010). However, E. coli interaction with the glial 

cells as well as with neuronal cells is not studied 

properly. There is a need for further studies so a 

better understanding about if the bacteria directly 

inflict damage to the brain or that the damage is 

resulted due to the causal effects of pro-inflammatory 

responses. 

 

Pathogenesis of Klebsiella pneumoniae 

Klebsiella pneumoniae, is a pathogenic gram-negative 

bacillus bacteria bearing a capsule, which over the last 

30 years has acquired a progressively crucial role in 

causing adult meningitis in community-acquired 

settings as well as in hospital-acquired settings 

(Cherubin et al., 1981; Durand et al., 1993; Mangi et 

al., 1975). A number of patients show susceptibility to 

K. pneumoniae meningitis, such as patients present 

with extrameningeal K. pneumoniae infections, 

debilitating diseases, K. pneumoniae bacteraemia, 

patients who underwent some neurosurgical 

procedures where leakage of CSF was involved or not 

or diabetic patients (Liu et al., 1991; Mombelli et al., 
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1983; Spivack et al., 1957; Thompson et al., 1952). K. 

pneumoniae in Taiwan serves as being the 

commonest pathogens causing bacterial meningitis  

acquired from the community (Fang et al., 2000). 

 

Among other gram-negative bacterial pathogens, 

Klebsiella pneumoniae remains commonest in 

Taiwan as well in numerous other countries in the 

South Asian region (Chang et al., 2012; Chang et al., 

2008; Moon et al., 2010). Meningitis caused by K. 

pneumoniae in these regions was linked to a novel 

variant called as hypervirulent K. 

pneumoniae (hvKP) in the last decades, and the 

mortality reported ranged from 33.3% to 48.5% (Fang 

et al., 2007; Lu et al., 2000).  

 

Designated as hvKP, hypermucoviscosity (HM) 

phenotype was shown by the newly associated variant 

which shows frequent associations with particular 

sequence types (STs) primarily including ST86, ST23 

and ST65 (Bialek-Davenet et al., 2014). Upon their 

description in 1986, pyogenic liver abscesses (PLA) 

were resulted increasingly by hvKP that was 

complicated due to catastrophic metastatic infections 

like necrotizing fasciitis, meningitis in healthy young 

individuals and endophthalmitis (Fang et al., 2007; 

Fazili et al., 2016; Shon et al., 2013). Nonetheless, 

hvKP pathogenesis resulting in metastatic infections 

is yet not properly understood so far, and no 

particular advancements have yet been made for 

describing the pathogenesis resulting in meningitis. 

As of now, some of the details of hvKP pathogenesis 

are described. Hypervirulence of the strains of hvKp 

has its foundation on virulence factors owned by the 

cKp strains. Reports and review of these factors are 

done elsewhere (Bachman et al., 2015; Hsieh et al., 

2010; Martin & Bachman, 2018; Martin et al., 2018; 

Mills et al., 2017; Paczosa & Mecsas, 2016; Pan et al., 

2011; Podschun & Ullmann, 1998). In the current 

section, our primary focus is on the factors which are 

particular to hvKp. 

 

Colonization by hvKP 

Probably the initial step required for the subsequent 

endogenous infection of hvKP is acquisition that 

causes colonization (Montgomerie, 1979). Human 

mucosal surfaces are readily colonized by the K. 

pneumoniae such as oropharynx as well as 

gastrointestinal (GI) tract, in there, colonization 

effects appear benign (Bagley, 1985; Dao et al., 2014; 

Rock et al., 2014). Strains of, K. pneumoniae acquire 

entrance into the other tissues from those sites and 

results in severe human infections. It is noteworthy 

that factors should be delineated, and mechanisms 

should be defined which enables successful 

colonization of hvKP to various mucosal and 

epidermal surfaces since those represent potential 

intervention points for decreasing infection incidence. 

Up until now, majority of the studies had their focus 

on colonization of the gastrointestinal tract. 

 

Colibactin, a peptide-polyketide which is produced 

through nonribosomal synthesis. Genes responsible 

for its biosynthesis (PKSs) are found inside ICEKp10, 

that is a mobile genetic element in strains of hvKp 

that usually also has genes for synthesis of microcin 

E492 and yersiniabactin (Lam et al., 2018; Struve et 

al., 2015). CG23 strains of hvKP mostly have this 

element but its less common in other strains of hvKP, 

it is absent (Chen et al., 2017; Lai et al., 2014; Lam et 

al., 2018). 

 

Colonization of E.coli (Raisch et al., 2014) as well as 

of 1084 strain of hvKP (Lu et al., 2017) has been 

demonstrated to be promoted by the colibactin. 

Microcin E492 is 8-kDa which activates against 

Enterobacteriaceae (de Lorenzo, 1984). Salmochelin 

attachment is required for the activity, that enables 

microcin uptake by bacteria (Lagos et al., 2001). 

Thus, strains of hvKP which produce microcin E492, 

salmochelin and colibactin in combination would 

presumably have significant advantage in the 

colonization in the colonic environment where there 

is a tough competition. 

 

There have been identification of numerous genes 

through mutagenesis tagged with a signature which 

apparently play some role in intestinal colonization 

or/and mucosal barrier invasion following an 

intragastric (i.g.) challenge in the mice (Tu et al., 
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2009). Transcriptional regulator of LuxR family 

(kva15), monamine regulon positive regulator 

(moaR), a putative type III fimbrial usher protein 

(mrkC), a regulator system based on two components 

(kvgA-kvgS that are demonstrated to be playing role 

in the production of the capsule) (Lin et al., 2006), 2 

hypothetical proteins (kva7 and kva21) or uracil 

permease (kva28),  play a  significant role for those 

factors in colonization of intestine and/or mucosal 

invasion. Kfu, a facilitator involved in the uptake of 

iron, is found to be more prevalent in the strains of 

hvKP. Kfu has been demonstrated to play a 

contributing role in the viriulence following i.g., but 

intraperitoneal challenges in mice (Hsieh et al., 2008; 

Ma et al., 2005).  

 

Role related to intestinal invasion or/and colonization 

is supported by this data. Nonetheless, considering its 

role in the acquisition of free iron that is found in 

gastrointestinal tract, it seemingly become more likely 

that it contributes to the colonization. Colonic 

colonization has seen an increase by the undefined 

strain of K. pneumoniae Ca0437 due to the 

antimicrobial peptides (SAP) sensitivity in mice 

model with i.g. challenge (Hsu et al., 2019). 

Adherence was also enhanced by the SAP transporter 

in vitro to the epithelial cells of intestine. 

 

Both of the adhesins i.e., hvKP and cKP have type 1 

(sensitive to mannose) and a type 3 (resistant to 

mannose) fimbriae. In the cKP strains, adherence of 

these fimbriae has been demonstrated to occur with 

the epithelial cells of the host from the urinary or the 

respiratory tract which adds to the infection (Hornick 

et al., 1992; Rosen et al., 2008). Even though there is 

a lack of work on hvKP, a study conducted recently 

examined type 3 fimbriae regulation in the CG43 

hvKP strain (Wu et al., 2012). This study validated 

observations of the contribution of type 3 fimbriae in 

the formation of the biofilm and exhibited that 

concentration of iron and expression have a positive 

correlation. Even though there was no reference to 

the in vivo virulence, it was suggested by the data that 

role of type 3 fimbriae in humans where there is a 

limit of free iron, is may of no importance. Finally, 

NTUH-K2044 strain of hvKp, treC disruption, the 

product of which enables utilization of trehalose, 

causes decrease in the colonization of intestine in the 

mice where the strain competed against the wild type 

of parental organism. Some of the additional effects 

were also observed including decrease in the 

production of capsule and formation of biofilm, 

indicating potential mechanisms (Wu et al., 2011). In 

a similar way, celB loss, the product of which is 

required for transporting cellobiose in the cytoplasm, 

led towards decrease in the formation of the biofilm, 

lethality in i.g. challenged mice and intestinal 

colonization (Wu et al., 2012). Even though there is 

no discrimination regarding which step or steps 

during the pathogenesis were affected, this data 

consistently points towards role of capsule or/and 

formation of the biofilm to serve as facilitators for the 

colonization of the intestine, a primary and necessary 

step in the pathogenesis of Klebsiella (Wu et al., 2012; 

Wu et al., 2011). 

 

Entry in the host 

In settings of healthcare, epithelial or mucosal barrier 

disruptions e.g., surgical incisions, catheters and 

endotracheal tubes might make entry possible (Gu et 

al., 2018). But, for majority of the patients in whom 

hvKP infection develop, the primary entry site is not 

clear. Up till now, majority of the hvKP infections are 

acquired through the community which are often 

found occurring in the healthy hosts in whom no 

epithelial or mucosal barrier disruption is present.  

 

It is uncertain that hvKP uses what kind of 

mechanism that enables it to cross epithelial or/and 

mucosal barriers in humans. Occult disruptions of 

skin might provide the bacteria with an entry point 

resulting in the subsequent bacteremia as well spread 

to other distant sites, similar to the mechanism used 

by the Staphylococcus aureus.  

 

Studies based on 52145 strain of hvKP showed entry 

impeded by the capsule into the A549 epithelial cells 

(de Astorza et al., 2004), as well as where undefined 

strains of K. pneumoniae were used, it was shown 

that invasion impeded by the capsule of cell line of 
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ileocecal epithelial cells, has at least in some way 

decreased adherence (Sahly et al., 2000), is 

paradoxical. More studies conducted on effects of 

capsule production being increased which occur in 

hvKP strains on the cellular adhesion and invasion 

would be interesting. 

 

Growth and Survival of hvKp in the host  

It has been demonstrated that hvKP strains have 

higher resistance against neutrophil extracellular 

traps (NETs), activity mediated by complement and 

neutrophils and phagocytosis compared to cKP 

strains (Fang et al., 2004; Fang et al., 2007; 

Pomakova et al., 2012; Wang et al., 2017). hvKP 

strains enhance production of the fluids in humans ex 

vivo as well increase in the virulence in a number of 

different infection models than the cKP strains 

(Pomakova et al., 2012; Yu et al., 2007). Discussion of 

factors specific to the hvKP recognized up till now 

which facilitates these phenotypes as well as the 

clinical manifestations is done in following section. 

 

RmpA, RmpA2, and capsule production 

A critical factor contributing to phenotype of hvKp is 

its ability that enables the production of capsular 

polysaccharides in high amounts. RmpA2 or/and 

RmpA maybe in part, at least facilitate this, and are 

factors specific to the hvKP found on virulence 

plasmid of hvKP (Chen et al., 2004; Lai et al., 2003; 

Russo et al., 2018). An environmental signal showing 

increased production of capsule is presence of glucose 

(Lai et al., 2003; Lin et al., 2013). Ferric regulator for 

its uptake (Fur) has been demonstrated to suppress 

the production of the capsule in CG43 strain of hvKP 

through suppressing rmpA2 and rmpA expression 

(Cheng et al., 2010; Lin et al., 2011). Thus, production 

of capsule in the hvKP strains is presumed to be 

elevated in environments where iron is limited, as 

inside human hosts.  

 

Studies conducted on hvKP strains showed their 

capsular polysaccharide to provide protection against 

phagocytosis (Cortés et al., 2002; March et al., 2013; 

Pan et al., 2011) as well as bactericidal activity 

mediated by human defensins (Moranta et al., 2010), 

and human defensins production was attenuated in 

vitro (Moranta et al., 2010). 

 

Capsule type 

There have been numerous investigations examining 

that whether K2 or/and K1 types of the capsule cause 

enhancement of the virulence than the nonK2/K1 

types (Fang et al., 2007; Yu et al., 2007). It was 

reported by these studies that K2/K1 groups show 

metastatic spread more commonly. 

 

Colibactin 

Besides playing a potential role in colonizing, is it also 

shown that colibactin plays a contributing role in the 

survival of the bacteria in bloodstream of the infected 

mice intravenously or intranasally (Lu et al., 2017). 

The mechanism involved is not clear.  

 

LPS 

LPS has been demonstrated to provide protection 

against phagocytosis, bactericidal activity mediated 

by the complement, antimicrobial peptides and 

causes enhancement of virulence in the systemic 

infection. (Hsieh et al., 2012; Kidd et al., 2017; Llobet 

et al., 2015; March et al., 2013; Mills et al., 2017; Pan 

et al., 2011). 

 

Metastatic Spread 

Multiple infection sites as well as metastatic spread 

are commonly observed more with hvKp strains 

compared to the cKp strains in the humans (Russo et 

al., 2018; Yu et al., 2007). cKp along with other 

Enterobacteriaceae family members hardly ever cause 

infection in the secondary sites due to bacteremia, 

with the exception of settings where the host is 

immunocompromised e.g., neutropenia. hvKp strains 

cause infection of multiple sites through bloodstream. 

This occur either at the time of the bacterial entry or 

after infecting a primary infection site such as 

meningitis that in turn provides subsequent source of 

bacteremia and further spread is not clear. It seems 

that both of these mechanisms are operational. 

Regardless of the ability to enter bloodstream and 

surviving the resident factors of host defenses is the 

initial necessary step. Resistance to complement’s 
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bactericidal activity of the hvKp strains that is 

facilitated partially by the capsule is required to 

achieve that as well as it contributes to the step in this  

process (Fang et al., 2007). 

 

This indicate hvKP to be more efficient in invading 

the host tissue via bloodstream. There is lack of 

knowledge regarding the mechanism involved. Even 

though measurement of bacteremia as well as its 

consequent spread to the various sites and organs can 

be done using the animal models that are used for 

studying hvKP, model which provide direct 

measurement of tissue invasion by hvKP via 

bloodstream at the level of cells can potentially 

provide assistance in identification of potential 

factors which enables systemic invasion of the tissues. 

It is postulated that it uses “Trojan horse” mechanism 

with the neutrophils suggesting them being used as 

potential vehicles (Lin et al., 2010). hvKp strains have 

been demonstrated to have the ability enabling them 

to survive inside the neutrophils (Lee et al., 2017; Lin 

et al., 2010) as well as delaying apoptosis process for 

nearly 24 hours (Lee et al., 2017), whereas 

intraperitoneal injection containing infected 

neutrophils caused dissemination of the infection: but 

it was not clear if infected neutrophil integrity was 

conserved post injection (Lin et al., 2010). 

 

In majority of the infections that are complicated 

because of bacteremia, 1 CFU/ml to 102 CFU/ml 

titers are seem commonly (Yagupsky & Nolte, 1990). 

A titer of hvKP that is quantitatively higher during 

bacteremia maybe responsible or maybe contributory. 

There is little evidence supporting this hypothesis (Lu 

et al., 2017; Russo et al., 2011).  

 

One other possibility is that the increased production 

of capsule by hvKP drives the spread. Even though its 

speculative, this phenotype perhaps causes increased 

bacterial in vivo clumping that as a result cause 

enhancement of survival with the hematogenous 

dissemination. 

 

It has been indicated that colibactin plays a role on 

meningeal spread (Lu et al., 2017). It is not clear as if 

this is a directly facilitated by the colibactin or by 

increased bacteremia magnitude. Isolation of NTUH-

K2044 strain of hvKP was done from the patient 

present with meningitis, with the isolate being unable 

to produce colibactin, should be noted (Lin et al., 

2008). 

 

Tissue damage 

Until now, there is lack of insight regarding the host 

or bacterial factors that are responsible. Colibactin 

among the others is the best one defined yet, that is 

genotoxic, resulting in damage to the DNA as well as 

cell death (Lai et al., 2014; Lu et al., 2017). 

Nonetheless, strains of hvKP not producing colibactin 

such as non-CG23-K1 capsule type, also resulted in 

causing abscesses on multiple sites. This indicates 

towards the possibility that there are some hvKp 

factors that are yet unrecognized which may play a 

contributory role. Without a doubt, a response from 

the host that is unregulated also play some 

contributory role in damage to some extent. 

 

Pathogenesis of Staphylococcus aureus 

Staphylococcus aureus is a pathogenic microbes that 

stains positive during gram staining and causes a 

diversified disease pathologies range starting from 

the dermal lesions that are relatively minor to the 

sepsis disorders with severe invasiveness, abscesses of 

the deep tissues and pneumonia (Decker, 2008; 

Gordon & Lowy, 2008; Lowy, 1998). Majority of the 

bacterial infections acquired in the hospitals are 

caused by S. aureus in the developed regions (Diep & 

Otto, 2008; Jacobsson et al., 2008), whereas in USA, 

the leading causative bacterial agent causing deaths is 

now community-acquired methicillin-resistant S. 

aureus (CA-MRSA) (Otto, 2010).  

 

S. aureus is a very persistent commensal microbe in 

nearly 20% of population and in about further 60% 

intermittently; mainly in anterior nares and also the 

groin, GI tract and axillae, that contributes to its 

widespread pathogenesis (Lindsay & Holden, 2004). 

Due to it being ubiquitously present, breaching the 

defenses of the host could lead towards an invasive 

and may be a fatal infection of S. aureus (Lowy, 
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1998). Majority of the S. aureus clinical isolates 

exhibit an array of factors responsible for its virulence 

that enables it to invade and disseminate in the 

bloodstream even when tissue trauma is significantly 

absent (Naber, 2009). S. aureus bacteremia incidence 

has seen a considerable rise since CA-MRSA has 

emerged as well as S. aureus infection prevalence in 

the environment of the hospitals (Saginur & Suh, 

2008). Abscesses of deep tissue, endocarditis and 

vertebral osteomyelitis makes up for more than half 

of the secondary infections caused by S. aureus 

(Rubinstein, 2008).  

 

S. aureus is most commonly related to the brain 

abscesses caused by the bacteria (Bloch et al., 2005). 

Head injury, inadequate treatment of meningitis or 

sepsis caused by S. aureus and surgery may give rise 

to the complication known as brain abscesses (Bloch 

et al., 2005). Even though it is considered that 

meningitis is rarely occurring complication of an 

infection of S. aureus, there are numerous clinical 

reports describing meningitis caused due to infection 

of S. aureus from a source that is not known 

(Pedersen et al., 2006; Vartzelis et al., 2005).  

 

In such cases, spread of bacteria via bloodstream 

from the initial infection site implicates the ability of 

S. aureus to the cross BBB and penetrate into the 

CNS. While numerous pathogens that stain positive 

during gram-staining such as group B Streptococcus 

(GBS), S pneumoniae (SPN) and Streptococcus 

agalactiae are all well known for having the ability to 

acquire access to CNS, penetration of BBB by 

Staphylococcus was not well studied until this point. 

 

Mechanisms of Pathogenicity of Staphylococcus 

aureus 

Up-regulation of the virulence factors in the presence 

of stressful stimuli such as circulating antibiotics or 

immune response of the host, serves as an important 

factor which enables S. aureus to survive in 

bloodstream, seed into deep tissues and formation of 

a secondary hub for infection. Strains of S. aureus 

have been able to efficiently adhere to the skin 

followed by its colonization as well as of the nares 

mucosa, for bloodstream invasion and evasion of the 

immunological responses of the host, formation of the 

protective biofilms as well as development of 

resistance to different antibiotics. As a result, even 

after having a plethora of antibiotics showing activity 

towards wild-type strains, S. aureus remain a very 

successful as well as gram-positive bacteria with 

increasing clinical importance 

 

Adhesion and colonization 

Various virulence factors can be upregulated by the S. 

aureus, enables its adherence and colonization of 

nares as well as damaged surfaces or skin where 

devices had been implanted or prostheses and cause 

severe bloodstream infections. Teichoic acid is a 

polymer located on the S. aureus surface is crucial for 

that purpose (Weidenmaier et al., 2004). 

 

The cell wall pf gram-positive bacteria comprise of 

thick peptidoglycan along with teichoic acids that are 

linked by the lipids, called as lipoteichoic acids (LTA). 

LTA is polymer of glycerol phosphate extending 

through cell wall peptidoglycan and is considered to 

play a role in attachment to the host cell by different 

pathogens (Courtney et al., 1992; Jonquieres et al., 

1999).  

 

Staphylococci have LTA that is attached to 

cytoplasmic membrane through an anchor of 

glycolipid; particularly β-gentiobiosyldiacylglycerol 

(diglucosyl-diacylglycerol [DGlcDAG]) (Fedtke et al., 

2007; Gründling & Schneewind, 2007). For the 

synthesis of DGlcDAG, S. aureus requires YpfP which 

is a glycosyltransferase (Gründling et al., 2007). 

 

Invasion 

Can causes disruption of skin barrier due to the 

secretion of exfoliative toxins (Amagai et al., 2000), 

hemolysins such as  α-hemolysin α-toxin, that causes 

pore formation in cell membranes of skin, along with 

different enzymes which causes tissue destruction 

(Lowy, 1998). Immune system getting compromised 

triggers invasion as well as physical integument 

getting broken or the presence of localized 

inflammation (Otto, 2004). 
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Evasion 

Evasion of immune responses of the host by the S. 

aureus is achieved by secretion of anti-opsonizing 

proteins such as proteins inhibiting chemotaxis that 

prevents phagocytosis by the neutrophils (Haas et al., 

2004). Protein located on the S. aureus surface called 

protein A also exhibits antiphagocytic properties. 

Moreover, leukotoxins such as Panton-Valentine 

leukocidin is secreted by the S. aureus that causes 

leukocytes to lyse (Lowy, 1998), and superantigens 

are expressed such as toxin 1 which is responsible for 

toxic shock syndrome as well as some enterotoxins 

(McCormick et al., 2001), that deposes normal 

immune response and induce intense, polyclonal 

stimulation as well as T cell receptor, Vβ-specific T 

cells  expansion that is followed by suppression or 

deletion of the said T cells to anergic state (Wang et 

al., 1998). 

 

Biofilms 

Quorum sensing of S. aureus might regulate 

expression of genes for the formation of slimy 

biofilms on top of fitted medical devices, damaged or 

healthy heart valves and on top of damaged skin. 

Depletion of oxygen and nutrients enable the bacteria 

to acquire a nongrowing state where they show less 

susceptibility to some of the antibiotics. Specially, S. 

aureus variants from small colony, when adhered to 

and are in stationary phase show nearly a complete 

resistance to the antimicrobial agents (Proctor et al., 

1998). The matrix of the biofilm provides protective 

covering against immune cells and might restrict 

some antibiotics from penetrating (Patel, 2005). 

 

Mechanisms of disruption of blood brain barrier by 

s. aureus 

It is thought to be an opportunistic pathogenic 

bacterium having the highest prevalence and is 

considered responsible for hospital as well as 

community acquired infections around the whole 

world. Rate of mortality of mmeningitis and sepsis 

facilitated by the S. aureus is 36% (Aguilar et al., 

2010). The variable protein range on the surface of S. 

aureus, serve as factors for virulence which provide 

assistance to the bacterium in adhesion as well 

invasion of the host cells, such as vascular endothelial 

cells. (Foster et al., 2014). McLoughlin et al. (2017), 

in their study showed permeability of BMEC to be 

induced by infection of S. aureus by reducing VEC, 

ZO-1 and claudin-5 in manner dependent on dose. 

The primary mechanism behind the disruption of 

BBB because of the disruption of junctional protein is 

associated with signalling of pro-inflammatory 

cytokines, that is related to production of ROS 

(Rochfort et al., 2016; Rochfort & Cummins, 2015). 

There is noticeable correlation between ROS 

signalling and levels of ZO-1. It is noted that 

disruption of ZO-1 happens in the murine cells upon 

their exposure to the hypoxia by reoxygenation 

(MHR) because of the activation of Nicotinamide 

adenine dinucleotide phosphate (NADPH). It is 

documented that expression of mRNA levels of 

different cytokines such as MCP-1, macrophage 

inflammatory proteins-1 alpha (MIP1α), IL-1α, TNF-

α, IL-6 and IL-1β in higher levels in the rat brain 

abscess model infected by S. aureus causes disruption 

of the BBB (Kielian & Hickey, 2000). Furthermore, 

production of IL-6 induced by the infection of  S. 

aureus in HUVEC (Park et al., 2007). Observation of 

ROS generation has also been made in infection by S. 

aureus particularly in the resident stems cells in the 

bone marrow, monocytes, neutrophils and 

macrophages (Nandi et al., 2015), causing 

enhancement of inflammatory response. Moreover, 

adhesin protein (SpA) expression has been noted to 

increase permeability of BMEC, accompanying 

reduction of VEC protein as well as activation of  NF-

κB/p65 by this bacteria (McLoughlin et al., 2017). 

Consequently, disruption in the integrity of the 

barrier might be because of BMECs infection via pro-

inflammatory cytokines induction, activation of NF-

κB, reduction in the expression of TJ protein and 

oxidative stress. From a therapeutic point of view, a 

study conducted previously showed role of 

lipoteichoic acid (LTA) anchored to the membrane 

facilitating in the adhesion as well as with the cellular 

invasion in the immortalized BMECs of the humans, 

causing penetration of the BBB (Sheen et al., 2010).It 

has also been reported by a previous study that host 

defence circuit enchantment by IL-17 might provide 
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basis for novel therapeutic approaches for the 

treatment of infectious diseases caused by S. aureus 

(Cho et al., 2010). 

 

Conclusion 

Noteworthy advances have been made recently to 

identify pathophysiological mechanisms contributing 

to host–bacterial interactions amid bacterial 

meningitis. Those incorporate the characterisation of 

pathways utilized by these pathogens to cross 

mucosa, survive in the blood and encourage innate 

immune response, and/or immune escape, together 

with the recognition of ligand or receptor interactions 

used by these bacterial species to interweave the brain 

barriers. These findings have already made a 

difference in the advancement of viable treatments. 

Taking into consideration the low efficacy of present 

vaccines and antibiotic resistance aiming bacterial 

adhesions or their host receptors and corresponding 

signaling events demonstrate curative strategies to 

lessen the effect of bacterial meningitis. Although 

considerable development has been made in figuring 

out mechanisms of host–pathogen interactions at 

some stage in bacterial meningitis, extra efforts are 

required to evaluate bacterial and host cell targets. 
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