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Abstract 

Cancer prediction from gene expression data is one of the challenging areas of research in the field of bioinformatics 

and machine learning. In gene expression data, labeled samples are very limited compared to unlabeled samples; 

and labeling of unlabeled data is expensive. Therefore, single classifier trained with limited training samples often 

fails to produce desired result. In this situation, combination of classifiers can be effective as its ensembles the 

results of individual classifiers which can improve the cancer prediction accuracy. In this article a novel method, 

combining statistical and fuzzy-rough classifiers (CSFRC) for cancer prediction is proposed which uses support 

vector machine, naive bayes as statistical classifiers and fuzzy-rough nearest neighbor classifier. The proposed 

method is able to deal the uncertainty, overlapping and indiscernibility usually present in cancer subtype classes of 

the gene expression data. The proposed method is validated on eight publicly available gene expression datasets. 

Experimental results suggest that the performance of the proposed method provides better results in comparison to 

other compared classifiers for cancer subtype prediction from gene expression data. The proposed method turns out 

to be very effective in cancer prediction from gene expression data particularly when the individual classifier result 

is not up to the mark with limited training samples. 
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Introduction 

Cancer is one of the dangerous health problems across 

the world. There were approximately 18.1 million new 

cancer cases and 9.9 million cancer-related deaths 

worldwide reported in the year 2020 according to the 

Global cancer statistics. Therefore, the early detection 

and diagnosis of cancer are vital as it usually increases 

the chances of successful treatment. Conventional 

clinical methods for cancer sample classification rely 

on the clinical findings and the morphological 

appearance of the tumor. These methods are costly 

and time consuming. The recent development of 

microarray technology (Stekel, 2003) has allowed 

biologists to specify thousands of genes in a single 

experiment in order to produce comparatively low-

cost diagnosis and prediction of cancer at early stage.  

 

Several computational methods have been applied for 

analysis of microarray gene expression data using 

supervised (i.e., classification) (Dettling et al., 2003), 

unsupervised (i.e., clustering) (Jiang et al., 2004), 

semi-supervised clustering (Priscilla et al., 2013), and 

semi-supervised classification (Halder et al., 2014). 

Usually, the number of samples present in microarray 

gene expression data is very less compared to the 

number of genes (Du et al., 2014); and the class 

subtypes present in dataset are often vague and 

overlapping in nature. Therefore, the single traditional 

classifiers often fail to achieve desired accuracy. In this 

situation, the combination of the classifiers 

(Kuncheva, 2004) is supposed to be valuable as it 

judiciously combines the predictions of the individual 

classifier to make the final decision which are expected 

to be better than any individual classifier.  

 

Ensemble technique (i.e., combination of classifiers) is 

the learning model that achieves better results by 

combining the judgments of multiple base classifiers 

(Kuncheva, 2004). It uses many base classifiers, and 

combines their judgments in such a way that the 

combination result will improve the performance in 

comparison to any individual classifier (Kuncheva, 

2004). The heterogeneity among the base classifiers 

and diversity in the training data set are the basic keys 

to success of ensemble technique. 

Various popular ensemble techniques are proposed in 

the literature, viz., Bagging, Boosting, AdaBoost, and 

Random Forest (Polikar, 2006). Ensemble techniques 

have the ability to handle small sample size and high 

dimensionality. Therefore, ensemble technique has 

been widely applied to microarray gene expression 

data. An outstanding review of ensemble techniques 

applied in bioinformatics may be found in (Yang et al., 

2010). Several pioneered work to classify cancer from 

the microarray gene expression data are proposed. 

Dettling and Buhlmann (Dettling et al., 2003) 

proposed boosting for tumor classification with gene 

expression data. Osareh and Shadgar (Osareh et al., 

2013) provided an efficient ensemble learning method 

using RotBoost ensemble methodology. Valentini et al. 

(Valentini et al., 2004) introduced bagged ensembles 

of support vector machines for cancer recognition.  

 

However, those ensemble techniques are not able to deal 

with the uncertainty, ambiguity, over lapping ness and 

vagueness often present in the gene expression data. 

Therefore, in this article method combining statistical 

and fuzzy-rough classifiers (CSFRC) is proposed which 

utilizes the advantages of the statistical learning (using 

support vector machine and naive bayes) and rough 

fuzzy system (using fuzzy-rough nearest neighbor for 

uncertainty, ambiguity, vagueness and indiscernibility 

handling) in order to predict cancer subtypes from gene 

expression data (to improve the prediction accuracy of 

any individual classifier).  

 

The remaining of the article is structured as follows. 

The preliminary study related to this article is briefly 

illustrated in Section 2. Section 3 presents a detailed 

description of the proposed CSFRC method. In 

Section 4, details of the experiments and analysis of 

the results are provided. Finally, conclusions are 

drawn in Section 5. 

 

Materials and methods 

Preliminary study 

The proposed CSFRC method uses the concept of 

fuzzy set, rough set, Support vector machine (SVM) 

and Naive Bayes (NB). Thus, brief outline of those is 

provided below. 
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Fuzzy set theory 

Fuzzy set theory developed by Zadeh (Zadeh, 1965) in 

the year 1965. Fuzzy set theory is an extension of crisp 

sets to handle vague and imprecise data. Fuzzy set A 

uses mapping from the universe X to the interval [0, 

1]. The value A(x) for Xx ∈  is called the 

membership degree of x in A.  

 
Rough set theory 

Pawlak introduced rough set theory in early 1980s 

(Pawlak, 1982). Rough set theory can handle 

uncertainty, indiscernibility and incompleteness in the 

datasets. It begins with the idea of an approximation 

space, which is an ordered pair < X, R >, where X is the 

non-empty universe of discourse and R is an equivalence 

relation defined on X. R satisfies the reflexive, symmetric 

and transitive property. For each subset A of X, the lower 

approximation is defined as the union of all the 

equivalence classes which are fully included inside the 

class A, and the upper approximation is defined as the 

union of equivalence classes which have non-empty 

intersection with the class A.  

 

Fuzzy-rough set theory 

Fuzzy set theory can handle vague information, while 

rough set theory can handle incomplete information. 

These two theories are complementary to each other. 

Hybridization of these two concepts yields the idea of 

the fuzzy-rough set which is the pair of lower and 

upper approximations of a fuzzy set A in a universe X 

on which a fuzzy relation R is defined. The fuzzy-rough 

lower and upper approximations of A are defined 

respectively as follows (Radzikowska et al., 2002): 

 

 ))(),,((inf))(( yAyxRIxAR
Xy∈

=↓             (1)  

 ))(),,((sup))(( yAyxRTxAR
Xy∈

=↑           (2)  

  
Where, I is the Lukasiewicz implicator, T is the 

Lukasiewicz t-norms and ),( yxR  is the valued 

similarity of patterns x  and ,y  inf is the infimum 

and sup  represents the supremum. 

 

Support Vector Machine  

Support vector machine (SVM) (Vanitha et al., 2015) is 

a supervised machine learning technique that can be 

used for classification as well as regression problems 

under statistical techniques. It handles non-linear 

decision boundaries of arbitrary complexity (Vanitha et 

al., 2015). The decision boundary (a straight line in the 

case of a two-dimensional separation) is positioned to 

leave the largest possible margin on either side. 

Classification is done by the finding the hyper-plane 

that differentiates the two classes very well. 

 

Naïve Bayes 

Naïve Bayes algorithm (Chandra et al., 2011) is also 

supervised learning algorithm. It is based on Bayes 

theorem and used for solving classification problems. 

Naïve Bayes classifier is one of the simple and most 

effective classification algorithms which helps in 

making the machine learning models that can make 

fast predictions (Chandra et al., 2011). 

 

Proposed method Combining Statistical and Fuzzy-

Rough Classifiers 

The proposed CSFRC method is combination of three 

diverse set of base classifiers, namely, Fuzzy-rough 

nearest neighbour (FRNN), Support vector machine 

(SVM) and Naive Bayes (NB). All three base classifiers 

are trained with the labeled training samples. Then after 

the test samples are classified by all the base classifiers to 

a certain class using the labeled training set. The 

ensemble decisions of the test samples are aggregated 

using majority voting technique applied on the 

predictions of different base classifiers. The block 

diagram of the proposed method is shown in Fig. 1 and 

details of the proposed method are described as follows. 

 

 

Fig. 1. Block diagram of the proposed method 

combining statistical and fuzzy-rough classifiers. 
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Fuzzy-Rough Nearest Neighbour Classifier 

The fuzzy-rough nearest neighbour (FRNN) (Jensen 

et al., 2008) classifier is used as one of the base 

classifiers in the proposed method. The detailed 

description of FRNN technique is given below:  

Let, � = {< jl , jd > | j = 1 
� |�| �� jd ∈�} 

be the training set for individual FRNN classifier.  

The details of the base classifier FRNN are described below. 

1. Compute the k-nearest neighbour (kNN) labeled 

patterns closest to each of the test pattern )(t  based 

on the Euclidean distance (compute the distance from 

the labeled pattern to test pattern).  

2. The values of lower and upper approximations of 

test pattern )(t for belonging to each class C is 

calculated respectively as follows: 

 ))(),,((inf))(( yCytRItCR
kNNy∈

=↓   (3) 

 ))(),,((sup))(( yCytRTtCR
kNNy∈

=↑   (4)  

Where, I is the Lukasiewicz implicator, T is the 

Lukasiewicz t-norms and �(
, �) is the valued 

similarity of test patterns x  and labeled sample 

kNNy ∈  is computed as: 
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where, yt −  is the distance of the test sample )(t  

from the labeled sample kNNy ∈  (k-nearest 

neighbour labeled sample of test sample ( )t and m (

∞<< m1 ) is the fuzzifier. )( yC  is computed as:  

 



 ∈

=
.,0

;,1
)(

Otherwise

Cyif
yC   (6) 

3. The test sample )(t is assigned to a particular class 

for which the average value of lower and upper 

approximations is highest. The assigned )(tClassLabel  

of test sample )(t  is determined as follows: 

t
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Support Vector Machine Classifier 

SVM classifier is also used as one of the base 

classifiers in the proposed CSFRC method. Thus, 

detailed description of SVM classifier is given below. 

 

The following sigmoid function (Vanitha et al., 2015) 

with two parameters A and B is used to calculate the 

confidence score to classify the test sample (t).  

 

 ���(
, ��) = �

����.�(�) !  ;  ∀
                (8) 

 

The modality of sigmoid function is controlled by 

parameter A and B, and f(t) is the standard output 

value of test sample (t) in SVM (Vanitha et al., 2015). 

Thus, the class of test samples can be determined by 

the Equation 8. 

 

Naïve Bayes Classifier 

Naïve bayes classifier is also involved in the proposed 

CSFRC method as a base classifier. Thus, detailed 

description of NB classifier is given below.  

 

It is a simple probabilistic based method, which can 

predict the class membership probabilities (Chandra 

et al., 2011). The classifier will predict that the test 

sample (t) belongs to the class with the highest 

posterior probability, conditioned on t. That is, the 

NB classifier predicts that the sample t belongs to the 

class Ci, if and only if $(��|
) > $%�&'
( for 1 ≤ j ≤ m, j 

≠ i. The class Ci for which $(��|
) is maximized is 

called the Maximum Posteriori Hypothesis (Chandra 

et al., 2011). Bayes theorem is given in Equation 9. 

 

 $(��|
) =
$(
|��)$(��)

$(
)
; ∀
 (9) 

 

Majority voting for final class assignment  

The majority voting method (Marak et al., 2021) is 

applied to assign the final class for each test sample, 

once all three base classifiers make a prediction (for 

each test sample). Here, each classifier cast a vote (or 

predict) in the form of class label for each test sample 

and the final decision / prediction is made for a test 

sample which gets the maximum vote (as class label). 
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Results and discussion 

In this section, we provide the details of microarray gene 

expression cancer datasets used for the experiments 

followed by the compared method and performance 

evaluation measures. Experimental results and analysis 

of the results are summarized at the end. 

 

Description of Datasets 

We have used eight real life microarray gene 

expression cancer datasets namely, Colon Cancer, 

Brain tumor, SRBCT, Lymphoma, Prostate Cancer, 

Ovarian Cancer, Leukemia, Lung Cancer datasets in 

this article. These datasets are publicly available at 

www.stat.ethz.ch/dettling/bagboost.html (Dettling, 

2004) and technology agency for science and 

research, kent ridge bio-medical dataset repository 

(http://datam.i2r.astar.edu.sg/datasets/krbd/ index. 

html). The dataset is a collection of the samples and 

each sample is described by gene expression values 

and their class label information. Detail descriptions 

of the used datasets are given below. 

 

Colon Cancer dataset contains 40 samples of 

cancerous patients and 22 samples of normal 

patients. Each sample comprises of 2000 gene 

expression values. 

 

Brain Tumor dataset contains 42 samples distributed 

in 5 classes of brain tumor viz., medulloblastomas, 

malignant gliomas, atypical teratoid/rhabdoid 

tumors, primitive neuroectodermal tumors, human 

cerabella. Numbers of samples for these classes are 

10, 10, 10, 8 and 4 respectively. There are 5597 genes 

in each sample. 

 

Small round blue cell tumors (SRBCT) dataset 

consists of 63 samples. Among them, 12 samples are 

of neuroblastoma (NB), 20 samples are of 

rhabdomyosarcoma (RS), 8 samples are of Burkitt’s 

lymphoma (BL) and 23 samples are of Ewing’s 

sarcoma (ES). Each sample comprises of 2308 genes 

expression values. 

 

Lymphoma dataset contains 62 samples and each 

sample is having 4026 genes. There are 3 classes of 

lymphoma viz., diffuse large B-cell lymphoma, follicular 

lymphoma and chronic lymphocytic leukemia. 

 

Prostate cancer dataset contains 102 samples in 

which 52 observations are from prostate cancer 

tissues and 50 are from normal patients. The 

expression profile contains 6033 genes. 

 

Ovarian cancer dataset consists of 203 samples in 

which 91 samples are normal and 162 samples are 

cancerous. There are 15154 genes in each sample. 

 

Leukemia dataset is having 72 samples distributed in two 

classes namely, lymphoblastic leukemia and myeloid 

leukemia. Each sample is described by 3571 genes. 

 

Lung Cancer dataset consists 203 samples in which 

139 samples of lung adenocarcinomas, 20 samples of 

pulmonary carcinoids, 21 samples of squamous cell 

lung carcinomas, 6 samples of small-cell lung 

carcinomas and 17 normal lung samples. Each sample 

contains expression values of 12600 genes. The 

summary of the datasets used for the experiments is 

provided in Table 1. 

 

Table 1. Summary of eight microarray gene 

expression datasets used for the experiments. 

Datasets Samples Genes Classes 
Colon Cancer 62 2000 2 
Brain Tumor 42 5597 5 
SRBCT 63 2308 4 
Lymphoma 62 4026 3 
Prostate cancer 102 6033 2 
Ovarian cancer 253 15154 2 
Leukemia 72 3571 2 
Lung Cancer 203 12600 5 

 

Comparison with others methods 

The performance of the proposed EnFRNN method is 

compared with three methods namely, Fuzzy k-

Nearest Neighbour (FKNN) (Keller et al., 1985), 

Fuzzy-Rough Nearest Neighbour (FRNN) (Jensen et 

al., 2008) and Ensemble based Fuzzy-Rough Nearest 

Neighbour (EnFRNN) (Kumar et al., 2020). 

 

Fuzzy k- Nearest Neighbour Classifier 

Fuzzy k-Nearest Neighbour (FKNN) (Keller et al., 

1985) is an extension of the k-Nearest Neighbour 

(KNN) classifier. 
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In KNN algorithm, equal weightage is given to all the 

k-nearest neighbours to calculate the predicted class of 

a test data. FKNN algorithm assigns fuzzy 

membership of a test pattern in each class. That class 

is taken to be the predicted class (of that test pattern) 

for which the fuzzy-membership is maximum.  

 

Fuzzy-Rough Nearest Neighbour Classifier 

Fuzzy-Rough Nearest Neighbour (FRNN) classifier 

(Jensen et al., 2008) is the combination of fuzzy and 

rough sets theories. It uses the concept of upper and 

lower approximations to assign the class label 

information to the test pattern. The values of lower and 

upper approximations of a decision class are computed 

based on the k-nearest neighbours of a test pattern.  

 

Ensemble based Fuzzy-Rough Nearest Neighbour 

Classifier 

Ensemble based Fuzzy-Rough Nearest Neighbour 

(EnFRNN) method (Kumar et al., 2020) combines the 

predictions of all three FRNN base classifier with the 

help of majority voting that improves the classification 

accuracy. Here fuzzy set deals the vagueness, 

ambiguity and rough set deals the uncertainty, 

incompleteness and indiscernibility present in the 

gene expression data.  

 

Table 2. Summary of the average experimental results (in terms of accuracy, precision, recall, macro F1, micro F1 

and kappa) of 10 simulations achieved by different methods viz., FKNN, FRNN, EnFRNN and the proposed 

method CSFRC performed on eight microarray gene expression datasets. 

Datasets Methods 
Accuracy  

(%) 
Overall 

Precision 
Overall 
 Recall 

Macro F1 Micro F1 Kappa 

Colon Cancer 

FKNN 80.69 ± 8.28 0.8467 0.8237 0.8029 0.8350 0.6255 

FRNN 90.86 ± 4.74 0.9078 0.9128 0.9006 0.9098 0.8040 

EnFRNN 96.85 ± 2.48 0.9667 0.9661 0.9642 0.9662 0.9288 

CSFRC 97.17 ± 1.41 0.9668 0.9769 0.9668 0.9688 0.9300 

Brain Tumor 

FKNN 67.81 ± 7.66 0.6692 0.7901 0.6433 0.7224 0.5812 

FRNN 82.77 ± 8.24 0.8227 0.8648 0.7914 0.8423 0.7772 

EnFRNN 87.04 ± 3.59 0.8691 0.8652 0.8323 0.8667 0.8296 

CSFRC 89.21 ± 4.97 0.8673 0.8902 0.8327 0.8780 0.8479 

SRBCT 

FKNN 71.45 ± 4.37 0.7918 0.7727 0.7140 0.7818 0.6239 

FRNN 83.09 ± 5.56 0.8586 0.8197 0.8129 0.8386 0.7678 

EnFRNN 89.15 ± 5.16 0.9155 0.8552 0.8648 0.8841 0.8479 

CSFRC 90.91 ± 5.96 0.9274 0.8864 0.8870 0.9064 0.8743 

Lymphoma 

FKNN 96.25 ± 1.01 0.9786 0.9218 0.9474 0.9493 0.9202 

FRNN 97.33 ± 1.26 0.9875 0.9431 0.9630 0.9647 0.9431 

EnFRNN 97.40 ± 0.96 0.9886 0.9323 0.9566 0.9596 0.9368 

CSFRC 96.43 ± 1.56 0.9833 0.9259 0.9498 0.9538 0.9239 

Prostate 
Cancer 

FKNN 67.55 ± 10.89 0.6736 0.7444 0.6425 0.7047 0.3471 

FRNN 86.12 ± 7.96 0.8613 0.8738 0.8594 0.8675 0.7224 

EnFRNN 90.64 ± 3.84 0.9069 0.9150 0.9058 0.9110 0.8130 

CSFRC 91.73 ± 4.47 0.9200 0.9173 0.9170 0.9187 0.8345 

Ovarian 
Cancer 

FKNN 87.07 ± 7.50 0.8563 0.8704 0.8525 0.8626 0.7100 

FRNN 90.76 ± 7.04 0.9149 0.9145 0.9027 0.9144 0.8101 

EnFRNN 95.26 ± 2.52 0.9555 0.9486 0.9489 0.9519 0.8983 

CSFRC 95.98 ± 1.79 0.9688 0.9495 0.9573 0.9590 0.9147 

Leukemia 

FKNN 75.59 ± 5.77 0.7879 0.7668 0.7482 0.7772 0.5162 

FRNN 81.76 ± 11.95 0.8408 0.8356 0.8106 0.8381 0.6425 

EnFRNN 88.28 ± 7.04 0.8933 0.8739 0.8741 0.8835 0.7533 

CSFRC 88.38 ± 5.56 0.8818 0.8735 0.8727 0.8775 0.7477 

Lung Cancer 

FKNN 61.81 ± 8.43 0.7895 0.6061 0.6070 0.6852 0.4414 

FRNN 68.94 ± 7.46 0.8300 0.6364 0.6613 0.7195 0.5147 

EnFRNN 73.66 ± 6.02 0.8646 0.6240 0.6572 0.7244 0.5556 

CSFRC 72.68 ± 7.32 0.8773 0.6749 0.7125 0.7629 0.5571 
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Performance Evaluation Measures 

In this article, we have used six different kinds of 

validity measures namely, (i) percentage accuracy, (ii) 

precision, (iii) recall, (iv) macro averaged F1 measure, 

(v) micro averaged F1 measure (Kumar et al., 2019) 

and (vi) kappa (Cohen, 1960) to assess the 

performance of the methods. 

 

Experimental Results and Analysis 

The average experimental results of 10 simulation 

runs (on random selection of labelled/training 

patterns) in terms of percentage accuracy, precision, 

recall, macro F1, micro F1 and kappa obtained by all 

the methods (viz., FKNN, FRNN, EnFRNN and the 

proposed CRFRC) performed on eight microarray 

gene expression datasets are reported in Table 2.  

 

Best results are shown in bold font in the Table 2. The 

standard deviations of accuracies of 10 simulations 

are also shown using ±  sign corresponding to each 

percentage accuracy in Table 2. It is seen from the 

Table 2, that the proposed CSFRC method performed 

better in terms all the validity measures (viz., 

accuracy, overall precision, overall recall, macro 

averaged F1 measure, micro averaged F1 measure and 

kappa) over other methods namely, FKNN, FRNN 

and EnFRNN for six datasets. EnFRNN method 

performed better compared to the proposed method 

only for lymphoma dataset.  

 

Conclusions  

This article presents combining statistical and fuzzy-

rough classifiers for cancer subtype prediction from 

microarray gene expression datasets. Cancer subtype 

classes are usually overlapping and indiscernible in 

nature which can be handled by the fuzzy-rough set 

theory. Therefore, in this article the proposed method 

CRFRC utilizes the advantages of the statistical 

learning (using support vector machine and naive 

bayes) and rough fuzzy system (using fuzzy-rough 

nearest neighbour for uncertainty, ambiguity, 

vagueness and indiscernibility handling) to predict 

cancer subtypes classes from gene expression data to 

further improve the prediction accuracy of any 

individual classifier. 

The effectiveness of the proposed method is tested 

using eight real life microarray gene expression 

cancer datasets in terms of different validity measures 

viz., accuracy, precision, recall, F1-measures and 

kappa. It is observed from the experimental results 

that the proposed CRFRC method performed better 

in terms all the validity measures (viz., accuracy, 

overall precision, overall recall, macro averaged F1 

measure, micro averaged F1 measure and kappa) for 

almost seven datasets out of eight datasets. In future, 

robustness of the proposed CRFRC method may 

further be tested on other kind of gene expression 

datasets such as microRNA.  
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