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Abstract 

   
The greater wax moth Galleria mellonella is a worldwide insect pest damaging wax combs and feeding on 

bee‐hive products. The objective of the current study was to evaluate the impacts of the plant growth regulators 

(PGRs), viz., indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), 2,4-Dichlorophenoxy acetic acid (2,4-D) 

and 6-benzyladenine (6-BA), on the activities of acid phosphatase (ACP) and alkaline phosphatase (ALP) in 

larvae and pupae of this pest. The 3rd instar larvae were force-fed on diet supplemented with LC50 values of these 

PGRs (0.24, 0.022, 0.16 and 0.085ppm, of IAA, IBA, 2,4-D and 6-BA, respectively). These larvae were 

continuously fed on the treated diet throughout the larval stage. Activities of acid phosphatase (ACP) and 

alkaline phosphatase (ALP) were determined in 5th and 7th instar larvae, as well as in pupae of three ages. The 

most important results could be summarized as follows. All PGRs predominantly induced the treated larvae to 

gain remarkably increasing activity of ACP, regardless the PGR or the larval instar. In contrast, the ACP activity 

in pupae of different ages was prevalently reduced by all PGRs. With regard to the disturbed ALP activity, IAA, 

IBA and 2,4-D exhibited considerably inducing effects on the enzyme activity in 5th and 7th instar larvae. On the 

contrary, 6-BA had remarkably reducing potency against ALP activity in the larvae. In addition, all PGRs 

exhibited predominant reducing effects on the enzyme activity throughout the pupal stage.  
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Introduction 

The greater wax moth or honeycomb moth, Galleria 

mellonella L. (Lepidoptera: Pyralidae) is widely 

distributed throughout the world, causing serious 

problems in temperate, tropical and subtropical 

beekeeping regions, where the warm temperature is 

favour for the rapid development of this insect 

(Spangler, 1989). It is the major destructive pest of 

wax combs because of their feeding and tunneling 

habits through the combs (Chandel et al., 2003; 

Hanumanthaswamy et al., 2013). Although the adults 

do not feed because they have atrophied mouth parts, 

the damage is cause by the larvae due to their 

voracious feeding leading to the destruction of 

honeycombs (Awasthi and Sharma, 2013; Ellis et al., 

2013; Kwadha et al., 2017). On the other hand, G. 

mellonella larvae are used as a powerful  model  

organism  to  test  the  ecotoxicological,  immune  and  

physiological  effects  of  environmental pollutants  

(Altuntaş  et  al.,  2021) as well as to screen the 

immunotoxic effects of food preservative agents 

(Erbaş et al., 2022). Also, G. mellonella is used as a 

good model for assessing the activity and toxicity of 

antimicrobial agents and for studying the immune 

response to pathogens (Piatek et al., 2021). 

 

The apiculture industry has traditionally relied on 

synthetic insecticides for the control of insect pests. 

Several fumigant insecticides, such as sulphur 

dioxide, acetic acid, formic acid, para dichloro 

benzene and phosphine have been used to control the 

infestation of G. mellonella on beeswax combs during 

storage. However, use of these chemicals is harmful 

to bee population and the bee products (Rajendran 

and Hajira Parveen, 2005; Kwadha et al., 2017). In 

addition, the chemical pesticides are responsible for 

many problems of the environment and human 

health (Czeher et al., 2008, Yadouleton et al., 2010; 

Henry et al., 2012; Hallmann et al., 2014). Besides 

these deleterious effects, the developmental of 

resistance in insect pests to synthetic pesticides leads 

to annually economic losses of several billion dollars 

worldwide (Elzen and Hardee, 2003; Pereira et al., 

2006). In plants, pesticides lead to oxidative stress, 

inhibition of physiological and biochemical pathways, 

induce toxicity, impede photosynthesis and negatively 

affect yield of crops (Jan et al., 2020).  

 

For these reasons, new environmentally safer 

alternative natural compounds are being encouraged 

(Hussein, 2005; Rehman et al., 2009; Ilyas et al., 

2017). One alternative may be the use of plant growth 

regulators (PGRs) against pest species. PGRs are 

naturally occurring or synthetic compounds that have 

the potential to control pest insects through their 

chemosterilant activity (Becerikli Aksan et al., 2022). 

Many researchers have focused on the effects of 

various PGRs on herbivores (Abdellaoui et al., 2013, 

2015). They showed that PGRs may have a significant 

impact on the development, survival and 

reproduction of herbivores (Kaur and Rup, 2002; 

Paulson et al., 2005; Tsagkarakis et al., 2012; Prado 

and Frank, 2013; Abo Elsoud et al., 2021a,b; 

Nagaratna et al., 2022). Exogenous applications of 

PGRs provide resistance to plants against pesticides 

by controlling production of reactive oxygen species, 

nutrient homeostasis, increase secondary metabolite 

production, and trigger antioxidant mechanisms (Jan 

et al., 2020).  

 

PGRs have been classified into different categories. 

Hopkins and Hüner (2004) classified the PGRs into 

six classes: Gibberellins (GAs), Auxins (Auxs), 

Ethylene (ET), Cytokinins (CTKs), Abscisic acid 

(ABA) and Brassinosteroids (BRs). Stamm et al. 

(2011) classified the PGRs into main nine classes: 

Auxs, GAs, CTKs, ET, ABA, Brassinosteroids (BRs), 

salicylic acid (SA), Jasmonates (JAs) and 

Strigolactones (SLs). Auxins (Auxs) were discovered 

as the first class of PGRs (Zhao, 2010). Aux is 

produced at the shoot apex in young leaves and 

actively moves down but not upwards into buds 

(Ljung et al., 2001). Because of the wide usage of the 

indolic compounds as PGRs in the environment, non-

target organisms, such as biological control agents 

could be negatively affected, many authors (Rup et 

al., 2002; Uçkan et al., 2011, 2014, 2015; Çelik et al., 

2017) reported that indolic compounds caused 

adverse effects on survival, developmental duration, 

adult longevity, reproductive potential, hemocytes 
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responses and haemolymph metabolites of various 

lepidopterous pest species. It is well known hitherto 

that CTKs have been produced in almost all higher 

plants as well as many mosses and prokaryotes 

(Salisbury and Ross, 1992). In addition, insects may 

produce CTKs, either directly or indirectly owing to 

their association with endosymbiotic bacteria (Giron 

and Glevarec, 2014; Zhang et al., 2016). However, 

CTK has been reported to affect the morphology, 

development and behavior of some insects (Rup et al., 

1998). 

 

In G. mellonella, activities of various detoxification 

enzymes, such as glutathione S-transferases, 

phosphatases, glutathione peroxidases, catalase, 

esterases, NADH dehydrogenase and superoxide 

dismutase, were disturbed after treatment with 

different PGRs, such as Gibberrilic acid (GA3) 

(Altuntaş, 2015), Ethephon (ETF) (Altuntaş et al., 

2016) and indole-3-acetic acid (IAA) (Özyılmaz et al., 

2019). Also, some detoxification enzymes in other 

insects were disturbed after treatment with various 

PGRs, such as the mustard aphid Lipaphis erysimi 

(Rup et al., 2002, 2006), the fruit fly Zaprionus 

paravittiger (Sharma et al., 1997) and the melon fly 

Bactrocera cucurbitae (Kaur and Rup, 2003) after 

treatment with kinetin. Acid phosphatase (ACP, 

E.C.3.1.3.2) and Alkaline phosphatase (ALP, 

E.C.3.1.3.1) are hydrolyzing enzymes, which are 

responsible for the removal of phosphate groups from 

many types of molecules, including nucleotides, 

proteins, and alkaloids, in alkaline and acidic 

conditions, respectively (Janda and Benesova, 1991; 

Zibaee et al., 2011). In insects, ACP and ALP are 

responsible for cytolysis of tissues during the 

development and may act as hydrolases during the 

final stages of digestion, gonad maturation and the 

final stages of metamorphic molts (Cheug and Low, 

1975; Tsumuki and kanehisa, 1984). In insects, also, 

ACP is responsible for synthesizing higher energy 

compounds (Hollander, 1971). ALP has the primary 

function to provide phosphate ions from 

mononucleotide and ribonucleo-proteins for a variety 

of metabolic processes (Etebari et al., 2005). It is an 

important synthesizing enzyme of tyrosine, the 

precursor of dopamine and octopamine, which are 

known to take part in the control of levels of juvenile 

hormone and 20-hydroxyecdysone (Rauschenbach et 

al., 2007). The objective of the present study was to 

evaluate the disturbing impacts of four PGRs, indole-

3-acetic acid, indole-3-butyric acid, 2,4-

Dichlorophenoxy acetic acid (Auxin compounds) and 

6-benzyladenine (a cytokinin compound), on 

activities of acid and alkaline phosphatases in larvae 

and pupae of G. mellonella. 

 

Materials and methods 

The culturing of Galleria mellonella 

A culture of susceptible strain of the greater wax 

worm Galleria mellonella L. (Lepidoptera: Pyralidae) 

was established in the Department of Zoology, 

Faculty of Science, Al-Azhar University, Cairo, Egypt, 

and maintained for several successive generations 

under controlled conditions (27±2oC, 65±5% R.H., 

photoperiod 14 h L and 10 h D). This culture was 

originally initiated by a sample of larvae obtained 

from Desert Research Center, Cairo, Egypt. Larvae 

were transferred into glass containers, tightly covered 

with muslin cloth. Different techniques for preparing 

the artificial diet had been described by some authors 

(Metwally et al., 2012; Nitin et al., 2012). In the 

present culture of G. mellonella, an artificial diet was 

formulated depending on the method of Bhatnagar 

and Bareth, (2004). The diet contained maize flour 

(400 g), wheat flour, wheat bran and milk powder, 

200 g of each. Also, it was provided with glycerol 

(400g), bee honey (400g), yeast (100g). Larvae were 

allowed to continuously feed on this diet throughout 

the larval stage. However, improved manipulation of 

different developmental stages had been done 

according to Ghoneim et al. (2019).  

 

The plant growth regulators and concentration 

preparation 

Four plant growth regulators (PGRs) were tested 

against G. mellonella: Indole-3-Acetic Acid (IAA) is a 

synthetic auxin compound with chemical name: 2-

(1H-indol-3-yl)ethanoic acid and molecular formula: 

C10H9NO2. Indole-3-butyric acid (IBA) is a synthetic 

auxin compound with chemical name: 4-(1H-Indol-3-
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yl) butanoic acid and molecular formula: C12H13NO2. 

2,4-Dichlorophenoxy acetic acid (2,4-D) is a synthetic 

auxin compound with  molecular formula: C8H6Cl2O3. 

6-Benzyladenine (6-BA) is a synthetic cytokinin with 

chemical name: 4-hydroxyphenethyl alcohol and 

molecular formula: C12H11N5. These PGRs were 

purchased from Milipore Sigma, Burlington, MA 

01803, USA Merk Ltd., Cairo, Egypt.   

 

A series of six concentrations of each PGR was 

prepared by diluting the compound with distilled 

water in volumetric flasks, but IBA was exceptionally 

dissolved in acetone before diluting with distilled 

water, as follows: 100.0, 10.0, 1.0, 0.1, 0.01 and 0.001 

ppm. On the basis of a toxicity bioassay, LC50 

concentrations were determined as 0.24, 0.022, 0.16 

& 0.085 ppm, for IAA, IBA, 2,4-D and 6-BA, 

respectively.  

 

The larval treatment 

For investigating the disturbed phosphatase activities, 

the 3rd instar larvae were force-fed on diets 

supplemented with LC50 value of each PGR, as 

follows. Ten grams of the previously described 

artificial diet were mixed with 2 ml of LC50 of each 

PGR before introduction to the newly moulted 3rd 

instar larvae, as a food. These larvae were 

continuously fed on the treated diet throughout the 

larval stage.  Control larvae were provided with 

distilled water-treated diet. Ten replicates of treated 

and control larvae (one larva/replicate) were kept 

separately in suitable glass vials under controlled 

laboratory conditions (27±2oC, 65±5% R.H., 

photoperiod 14 h L and 10 h D). 

 

The preparation of tissue samples 

Some healthy treated and control larvae of the two 

later instars (5th and 7th instars) were weighed and 

then homogenized in a saline solution (one larva/1 ml 

saline solution 0.7 %) using a fine electric 

homogenizer for 2 min. With regard to pupae, the 

phosphatase activities had been determined in 

successfully developed pupae, of the treated and 

control groups, at the ages: 3-day old pupae (early-

aged pupae), 6-day old pupae (mid-aged pupae) and 

9-day old pupae (late-aged pupae). The pupal 

homogenates were prepared using the same 

procedure used for larvae. All larval and pupal 

homogenates were centrifuged at 4000 r.p.m. for 15 

min. The supernatant was used directly or frozen 

until use. Ten replicates were used and homogenates 

of two individuals were never mixed. 

 

The determination of phosphatase activities 

The activities of phosphatases were determined in 

homogenates of the whole body of larvae and pupae, 

using the following procedure. Acid phosphatase 

activity (IU/L) was determined according to the 

method of Tietz (1986) using the research kits 

purchased from Biodiagnostics Company (Dokki, 

Giza, Egypt). The enzyme activity was measured at 

wave length 405 nm by spectrophotometer. Alkaline 

phosphatase activity (IU/L) was determined 

according to the method of Klein et al. (1960) using 

the research kits purchased from Biodiagnostics 

Company (Dokki, Giza, Egypt).  The enzyme activity 

was measured at wave length 550 nm by 

spectrophotometer. 

 

Statistical analysis of data 

Data obtained were analyzed by the Student's t-

distribution, and refined by Bessel correction 

(Moroney, 1956) for the test significance of difference 

between means using GraphPadInStat© v. 3.01 

(1998). 

 

Results 

Effects of PGRs on the acid phosphatase activity 

After force-feeding of 3rd instar larvae of G. mellonella 

on diets supplemented with LC50 concentrations of 

Indole-3-Acetic Acid (IAA), Indole-3-butyric acid 

(IBA), 2,4-Dichlorophenoxy acetic acid (2,4-D) and 6-

Benzyladenine (6-BA), data of disturbed activity of 

acid phosphatase (ACP) in homogenates of 5th instar 

larvae and 7th instar larvae were arranged in Table (1). 

Depending on these data, ACP level slightly elevated 

in control larvae with the instar (1.3±0.2 & 1.8±0.1 

IU/L in 5th instar and 7th instar larvae, respectively). 

As obviously shown in the same table, all PGRs 

predominantly enhanced the treated larvae to gain 
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remarkably elevated activity of ACP, regardless the 

compound or the larval instar. Moreover, the 

strongest inducing potency was displayed by IBA, as 

determined in 5th instar larvae (1161.5% increasing 

ACP activity) while the least inducing potency was 

exhibited by IAA, as determined in 7th instar larvae 

(594.3% increasing ACP activity). 

 

In the pupal stage, data of Table (2) revealed that the 

ACP activity gradually elevated with the age of control 

pupae (59.8±4.11, 70.9±1.33 &74.8±0.6 IU/L in 5th 

instar and 7th instar larvae, respectively).  In contrast 

to the treated larvae, ACP activity in pupae was 

prevalently suppressed by all tested PGRs, regardless 

the pupal age.  IBA exerted the most potent reducing 

action on ACP activity throughout the pupal stage 

(75.0, 72.4 & 68.5% reduction of ACP activity, in 

early-, mid- and late-aged pupae, respectively). On 

the other hand, 2,4-D exerted the least reducing 

action on the enzyme activity throughout the pupal 

stage (8.3, 1.6 & 1.4% reduction of the enzyme 

activity, in early-, mid- and late-aged pupae, 

respectively). In general, the strongest suppressing 

effect on the enzyme activity was exhibited by IBA, as 

determined in the early-aged pupae (75.0% ACP 

declination) while the least suppressing effect on the 

enzyme activity was exhibited by 2,4-D, as estimated 

in the late-aged pupae (1.4% ACP declination).  

 

Table 1. Acid phosphatase activity (IU/L) in the homogenized whole body of G. mellonella larvae after force-

feeding of 3rd instar larvae on diet mixed with LC50 concentrations of plant growth regulator (PGR). 

PGR 

 

Larval instar 

5th instar 7th instar 

Indole-3-Acetic Acid Mean±SD 10.1±0.3 d 12.5±0.3 d 

Change (%) +676.9 +594 

Indole-3-butyric acid Mean±SD 16.4±1.17 d 18.3±0.9 d 

Change (%) +1161.5 +916.6 

2,4-Dichlorophenoxy 

acetic acid 

Mean±SD 11.2±0.6 d 17.3±0.7 d 

Change (%) +761.2 +861.1 

6-Benzyladenine Mean±SD 10.8±0.5 d 15.3±1.2 d 

Change (%) +730.7 +750.2 

Control Mean±SD 1.3±0.2 1.8±0.1 

(d): very highly significantly different (p<0.001). 

Effects of PGRs on the alkaline phosphatase activity 

After force-feeding of 3rd instar larvae of G. mellonella 

on diets supplemented with LC50 concentrations of 

IAA, IBA, 2,4-D and 6-BA, data of disturbed activity 

of alkaline phosphatase (ALP) in homogenates of 5th 

instar larvae and 7th instar larvae were arranged in 

Table (3). Depending on these data, ALP activity 

slightly elevated in control larvae with the instar 

(50.6±1.2 & 55.2±1.5 IU/L in 5th instar and 7th instar 

larvae, respectively). With regard to the disturbing 

effects of the tested PGRs on ALP activity, data of the 

same table clearly revealed considerably inducing 

effects of IAA, IBA and 2,4-D on ALP activity in both 

larval instars. The strongest enhancing effect was 

exhibited by 2,4-D, as estimated in 5th instar larvae 

(99.2% increasing ALP activity) while the least 

enhancing effect was exhibited by IAA, as estimated 

in 5th instar larvae (10.6%  increasing ALP activity).  

 

On the contrary, 6-BA had remarkably reducing 

potency against ALP activity in both larval instars 

(61.0 & 57.2% reduction of the enzyme activity in 5th 

instar and 7th instar larvae, respectively).  

 

Data of ALP activity in the successfully developed 

pupae of three ages were distributed in Table (4). On 

the basis of these data, ALP activity gradually 

increased in the control pupal stage (196.0±6.5, 

225.0±5.0 &  272.3±22.5 IU.L, in early-, mod- and 

late-aged pupae, respectively). Data of this table 
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revealed, also, predominant suppressing effects of all 

compounds on the enzyme activity. Moreover, IAA 

exerted the strongest suppressing action on ALP 

activity throughout the pupal stage (98.7, 97.9 & 

96.7% reduction of ALP activity in early-, mid- and 

late-aged pupae, respectively) while IBA exerted the 

least suppressing action on the enzyme activity 

throughout the pupal stage (63.3, 65.2 & 69.6% 

reduction of ALP activity in early-, mid- and late-aged 

pupae, respectively). In general, the most potent 

reducing effect on the enzyme activity in the pupal 

stage was exhibited by IBA (98.7% reduction of ALP 

activity, as determined in the early-aged pupae) while 

the least reducing effect was exhibited by IAA (63.3% 

reduction of ALP activity, as determined in the early-

aged pupae). 

 

Table 2. Acid phosphatase activity (IU/L) in the homogenized whole body of G. mellonella pupae after force-

feeding of 3rd instar larvae on diet mixed with LC50 concentrations of plant growth regulator (PGRs). 

PGR 

 

Pupal age 

Early-aged pupae Mid-aged pupae Late-aged pupae 

Indole-3-Acetic Acid Mean±SD 29.4±0.8 d 31.7±0.7 d 35.0±1.1 d 

Change (%) -50.8 -55.2 -53.2 

Indole-3-butyric acid Mean±SD 14.9±1.3 d 19.5±1.2 d 23.5±0.9d 

Change (%) -75.0 -72.4 -68.5 

2,4-Dichlorophenoxy 

acetic acid 

Mean±SD 54.8±3.66 a 69.7±0.5 a 73.7±0.6 a 

Change (%) -8.3 -1.6 -1.4 

6-Benzyladenine Mean±SD 41.1±2.5 c 44.8±1.8 d 51.0±1.8 a 

Change (%) -31.2 -36.8 -31.8 

Control Mean±SD 59.8±4.11 70.9±1.33 74.8±0.6 

Mean±SD followed with (a): insignificantly different (p>0.05). (c): highly significantly different (p<0.01), (d): see 

footnote of table (1). 

Discussion 

The detoxifying enzymes are generally involved in the 

enzymatic defense against foreign compounds and 

play a crucial role for decreasing  toxicity  of  toxic 

material and maintaining the normal physiological 

functions in the body (Visetson  and  Milne,  2001; 

Mukanganyama et al., 2003; Li and Liu, 2007). In 

insects, some authors (Weirich et al., 2002; Srinivas 

et al., 2004; Altuntaş et al., 2016) reported that the 

detoxification can be achieved by different enzymes, 

such as esterases, phosphatases, glutathione S-

transferase, glutathione peroxidase, glutathione 

reductase, superoxide dismutase, catalase, etc., and 

they have been reported as protectants against the 

oxidative stresses. In other words, some of the 

detoxifying enzymes are involved in the metabolism 

of xenobiotics or can detoxify the xenobiotics into 

non-toxic compounds and/or into a form more 

suitable for rapid elimination from the body (Kaur 

and Rup, 2003; Rup et al., 2006 Panini et al., 2016; 

Özyılmaz et al., 2019). The activities of acid 

phosphatase (ACP) and alkaline phosphatase (ALP) 

have been disturbed by different botanicals 

(Diamantino et al., 2001; de Almeida et al., 2014; 

Ottaviani, 2014; Waheeb, 2020). The activity of some 

detoxification enzymes involved in the metabolism of 

xenobiotics can be increased (catalase, esterase, 

NADH dehydrogenase, glutathione peroxidase, 

superoxide dismutase and acid phosphatase) or 

decreased (alkaline phosphatase, esterase, ATPase 

and O-demethylase) with the influence of the plant 

growth regulator, kinetin, in the aphid Lipaphis 

erysimi (Rup et al., 2002, 2006) and B. cucurbitae 

(Kaur and Rup, 2003b). However, changes of ACP 

and ALP activities, after treatment with some 

botanicals, indicate changes of the physiological 

balance in the insect (For review, see Senthil-Nathan, 

2013).
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Table 3.  Alkaline phosphatase activity (IU/L) in the homogenized whole body of G. mellonella larvae after 

force-feeding of 3rd instar larvae on diet mixed with LC50 concentrations of plant growth regulator (PGRs). 

PGR 

 

Larval instar 

5th instar 7th instar 

Indole-3-Acetic Acid Mean±SD 56.0±2.0 b 69.2±1.8 d 

Change (%) +10.6 +25.3 

Indole-3-butyric acid Mean±SD 60.9±1.6 d 64.7±1.3 c 

Change (%) +20.3 +17.0 

2,4-Dichlorophenoxy acetic 

acid 

Mean±SD 100.8±1.8 d 108.5±2.5 d 

Change (%) +99.2 +96.5 

6-Benzyladenine Mean±SD 19.7±2.0 d 23.6±1.1 d 

Change (%) -61.0 -57.2 

Control Mean±SD 50.6±1.2 55.2±1.5 

(d): see footnotes of table (1). (c): see footnotes of table (2). 

Disturbed ACP activity in G. mellonella by plant 

growth regulators (PGRs) 

In insects, the detoxification enzyme, ACP, is 

generally demonstrated as the enzymatic defense 

against foreign compounds and play a significant role 

in maintaining their normal physiological functions 

(Li and Liu, 2007). It plays an important role in the 

detoxification process of toxic compounds entering 

the body (Zheng, et al., 2007). 

 

After continuously force-feeding of 3rd instar larvae of 

G. mellonella on diets supplemented with the PGRs, 

viz., Indole-3-Acetic Acid (IAA), Indole-3-butyric acid 

(IBA), 2,4-Dichlorophenoxy acetic acid (2,4-D) and 6-

Benzyladenine (6-BA), in the present study, activity of 

ACP in 5th and 7th instar larvae was disturbed, since 

all PGRs exhibited predominantly inductive effects on 

the treated larvae to gain remarkably increasing 

enzyme activity. These results were in agreement with 

some reported results of increasing ACP activity in 

different insects after treatment with some PGRs or 

certain plant-derived compounds. For example, 

coumarin (Cn) and Neemix (an azadirachtin 

formulation) caused significant increase of the ACP 

activity in 4th instar larvae of the Egyptian cotton 

leafworm Spodoptera littoralis (Gaaboub et al., 

2012). A significant elevated level of ACP was 

measured in larvae and pupae of the mosquito Aedes 

aegypti by exposure to Neemazal (a neem 

formulation) (Koodalingam et al., 2014). The 

activities of some detoxification enzymes, involved in 

the metabolism of xenobiotics, increased (such as 

ACP) as response to the PGR, kinetin, in the mustard 

aphid Lipaphis erysimi (Rup et al., 2002, 2006), the 

fruit fly Zaprionus paravittiger (Sharma et al., 1997) 

and the melon fly Bactrocera cucurbitae (Kaur and 

Rup, 2003). 

 

To explicate the predominantly induced ACP activity 

in the 5th and 7th instar larvae of G. mellonella after 

force-feeding of 3rd instar larvae on diets 

supplemented with IAA, IBA, 2,4-D and 6-BA, in the 

present study, these PGRs might promote the 

ecdysone production in G. mellonella, that is 

responsible for the increase of lysosome number as a 

lysosomal ACP enzyme (Bassal and Ismail, 1985).  

 

The increasing ACP activity could be, also, 

understood because ACP activity, directly or 

indirectly, interferes with the digestion, absorption 

and positive transport of nutrient in the midgut 

(Smirle et al., 1996; Senthil Nathan et al., 2004). 

Also, increasing ACP activity in G. mellonella larvae, 

in the current study, might indicate a physiological 

adaptability to compensate for the PGRs-induced 

oxidative stress (Altuntaş, 2015) or might be related 

to an inhibition of lipid peroxidation process and 

physiological response mechanism against the PGRs' 

toxicity for cellular detoxification (Altuntaş et al., 

2016). 
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In contrast, all PGRs exhibited reducing effects on the 

ACP activity in pupae of different ages (early-, mid- 

and late-aged pupae), after continuously force-

feeding of 3rd instar larvae of G. mellonella on diets 

mixed with these compounds, in the current study.  

 

These results were consistent with some reported 

results of reduced activity of ACP in larvae of some 

insects by certain plant-derived compounds, such as 

the grasshopper Euprepocnemis plorans after 

treatment with some neem limonoids (Al-Dali, 2007); 

the house fly Musca domestica after treatment with 

Margosan-O (Azadirachtin preparation) or Jojoba oil 

(Ghoneim et al., 2008); S. littoralis after treatment 

with Azadirachtin (Ayyangar and Rao, 1990) or 

essential oils of some aromatic plants (Ibrahim and 

Abd El-Kareem, 2018); the desert locust Schistocerca 

gregaria after treatment with Neemazal (a neem 

preparation)(Hamadah, 2009); the tobacco cutworm 

Spodoptera litura after treatment with 

Andrographolide (Edwin et al., 2016);  Rhizopertha 

dominica after treatment with hexane extract of 

Capparis deciduas (Upadhyay, 2013); Tribolium 

castaneum after treatment with various doses of 

different extracts of Melia azedarach, Nicotiana 

tabacum, Azadirachta indica and Colosynthus 

citrullus (Ali et al., 2015). After treatment of 4th instar 

larvae of S. littoralis with LC50 of garlic, peppermint, 

eucalyptus, and lavender oils, ACP activity was 

significantly inhibited (Ibrahim and Abd El-Kareem, 

2018). Datta et al. (2021) fed larvae of Spodoptera 

litura on diet treated with the ethyl acetate extract of 

Alpinia galangal and determined the activity of ACP, 

after 48 and 96 hrs of feeding. They recorded an 

inhibitory effect of this extract on the activity of this 

enzyme.

 

Table 4. Alkaline phosphatase activity (IU/L) in the homogenized whole body of G. mellonella pupae after force-

feeding of 3rd instar larvae on diet mixed with LC50 concentrations of plant growth regulator (PGR). 

PGR 

 

Pupal age 

Early-aged pupae Mid-aged pupae Late-aged pupae 

Indole-3-Acetic Acid Mean±SD 71.8±3.0 d 78.1±1.4 d 82.7±2.7 d 

Change (%) -63.3 -65.2 -69.6 

Indole-3-butyric acid Mean±SD 2.5±0.3 d 4.7±0.1 d 8.9±0.6 d 

Change (%) -98.7 -97.9 -96.7 

2,4-Dichlorophenoxy 

acetic acid 

Mean±SD 13.5±2.3 d 20.7±1.7 d 26.6±0.8 d 

Change (%) -93.1 -90.9 -90.2 

6-Benzyladenine Mean±SD 18.2±1.0 d 21.0±1.1 d 23.0±0.6 d 

Change (%) -90.7 -90.6 -91.5 

Control Mean±SD 196.0±6.5 225.0±5.0 272.3±22.5 

(d): see footnote of table (1). 

For the interpretation of decreasing activity of ACP in 

G. mellonella pupae of different ages, after force-

feeding of 3rd instar larvae on diets mixed with IAA, 

IBA, 2,4-D and 6-BA, in the present study, it is 

important to point out that the ineffectiveness of a 

toxic material for controlling the insect pests, and  

subsequently  the  development  of  resistance against 

that material, are  due  to  the  action  of  detoxifying 

enzymes  which  are  either  insensitive  to the toxic 

material or able to degrade it to less toxic metabolites 

(Biddinger et al., 1996). Therefore, decreasing activity 

of ACP, in pupae, in the present study, indicated that 

this enzyme play no role in detoxification of the tested 

PGRs and failure of these pupae to decrease their 

toxicities or detoxify them. Also, the declination of 

ACP activity in G. mellonella pupae, as a response to 

treatment with PGRs, might be due to strong 

inhibition of ecdysone which is followed by 

subsequent decrease in number of lysosomes and in 

turn declined level of ACP (Hassan, 2002). In 

addition, decreasing ACP activity might be due to the 

reduced phosphorus liberation for energy metabolism 
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and decreased rate of metabolism, as well as 

decreased rate of transport of metabolites (Senthil 

Nathan et al., 2005). 

 

Disturbed ALP activity in G. mellonella by PGRs 

Many controversial effects of several botanicals on 

ALP activity are reported in the available literature 

(Senthil-Nathan et al., 2005; Basiouny et al., 2010; 

Ghoneim et al., 2016). In the current investigation, 

the force-feeding of 3rd instar larvae of G. mellonella 

on diets supplemented with the PGRs, IAA, IBA and 

2,4-D resulted in a considerable increase of ALP 

activity in haemolymph of 5th and 7th instar larvae. 

This result was, to a great extent, in accordance with 

the reported results of increasing ALP activity in some 

insects after treatment with some plant-derived 

products. For example, the lectins significantly 

increased the level of ALP activity in the bright-line 

brown-eye Lacanobia oleracea larvae (Fitches and 

Gatehouse, 1998). Induced activity of ALP was 

determined in the yellow fever mosquito Aedes 

aegypti larvae after treatment with Neemazal (an 

Azadirachtin preparation) (Koodalingam et al., 2014). 

Water dilutions of Biostop Moustiques® were applied 

on 4th instar larvae of susceptible and resistant strains 

of the major malaria vector mosquito Anopheles 

gambiae. The ALP activity was significantly induced 

in both strains (Ahadji-Dabla et al., 2015). Also, ALP 

activity was reported to be induced in some insects 

after treatment with extracts of certain plants, such as 

in larvae of the cabbage white butterfly Pieris rapae 

by methanolic extract of Silybium marianum 

(Hasheminia et al., 2013); in haemolymph of newly 

emerged adults of the desert locust Schistocerca 

gregaria by different extracts of the Khella Ammi 

visnaga fruits (Ghoneim et al., 2014) and in 

haemolymph of S. gregaria nymphs and adults by 

certain extracts of Nigella sativa (Ghoneim et al., 

2016). In the 4th instar larvae of S. littoralis, ALP 

activity significantly induced by LC50 of peppermint 

and eucalyptus oils (Ibrahim and Abd El-Kareem, 

2018). After feeding of the whitefly Bemisia tabaci 

adults on tomato seedlings sprayed with different 

concentrations of IAA, activity of ALP increased in the 

treated adults (Di et al., 2014).  

The induced ALP activity in 5th and 7th instar larvae of 

G. mellonella after force-feeding of 3rd instar larvae 

on diets supplemented with the PGRs, IAA, IBA and 

2,4-D, in the present study, might indicate the 

involvement of this enzyme in detoxification process 

against these PGRs and an increasing capability of 

larvae to detoxify them (Sharifi et al., 2013). Also, the 

increased ALP activity could be due to a juvenoid 

effect of the tested PGRs, since juvenile hormone 

leads to increasing ALP level in insects (Omar, 2010). 

In general, the induced ALP activity in G. mellonella 

larvae could be a protective physiological response 

against the action of the tested PGRs (Ahadji-Dabla et 

al., 2015) or indicated a physiological adaptability to 

compensate for PGRs-induced oxidative stress 

(Altuntaş, 2015).  

 

On the contrary, the force-feeding of 3rd instar larvae 

of G. mellonella on diets supplemented with 6-BA led 

to remarkably reduced ALP activity in the 5th and 7th 

instar larvae, in the present study. Also, all PGRs, 

IAA, IBA, 2,4-D and 6-BA, exhibited predominant 

reducing effects leading to decreasing ALP activity 

throughout the pupal stage. These results were, to 

some extent, in corroboration with those results of 

declined ALP in some insects after treatment with 

some PGRs or other botanicals. For example, 

decreased ALP activity was determined in L. erysimi 

(Rup et al., 2002, 2006), Z. paravittiger (Sharma et 

al., 1997) and B. cucurbitae (Kaur and Rup, 2003) 

after treatment with the PGR, kinetin. The inhibitory 

effects on ALP activity were reported for extracts of 

some plants on some insects, such as hexane extract 

of C. deciduas on R. dominica (Upadhyay, 2013); 

different extracts of Curcuma longa on T. castaneum 

(Umadevi and Sujatha, 2013); A. visnaga seed 

extracts on last instar nymphs of S. gregaria 

(Ghoneim et al., 2014); different extracts of M. 

azedarach, N. tabacum, A. indica and C. citrullus on 

T. castaneum adults (Ali et al., 2015); LC50 of Acorus 

calamus (essential oil) extracts or Biosal (a neem 

preparation) on Callosobruchus analis (Arif et al., 

2015). After treatment of S. litura with 

Andrographolide, activity of ALP had been 

remarkably inhibited in larvae (Edwin et al., 2016). 
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Also, ALP activity was decreased when S. littoralis 4th 

instar larvae were treated with garlic and lavender 

oils (Ibrahim and Abd El-Kareem, 2018). Datta et al. 

(2021) fed larvae of Spodoptera litura on diet treated 

with different concentrations of the ethyl acetate 

extract of Alpinia galangal and determined the 

activity of ALP, after 48 and 96 hrs of feeding. They 

recorded an inhibitory effect of this extract on the 

activity of this enzyme.  

 

In the present study, the remarkable reduction of ALP 

activity in G. mellonella larvae, after treatment with 

6-BA, and in pupae, after treatment with IAA, IBA, 

2,4-D and 6-BA, could be explicated as previously 

mentioned for ACP reduction in the same insect by 

the same PGRs. However, the modulation of ALP 

could be interpreted rather in terms of a specific 

response towards a given stressor, like PGRs, in the 

current investigation, than in terms of a non-specific 

protective response. 

 

Conclusion 

Depending on the present study, the tested PGRs, 

viz., IAA, IBA, 2,4-D and 6-BA, exhibited 

predominant inducing effects on the G. mellonella 

larvae to attain increasing phosphatase activities but 

predominant reducing effects on the enzymatic 

activities in pupae. Because the induction of 

detoxification metabolic system plays an important 

role in insect's detoxification mechanism, increasing 

activities of ACP and ALP in larvae denoted an 

increasing capability of G. mellonella to detoxify the 

tested PGRs. Therefore, these PGRs may be 

ineffective compounds for the IPM program of G. 

mellonella, dangerous pest of Apiculture.  
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