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Abstract 

   
7-ketocholesterol (7KC), an oxidized derivative of cholesterol, has been implicated in a variety of chronic 

diseases including atherosclerosis, Alzheimer’s disease, Parkinson’s disease, cancer and age-related macular 

degeneration. It is formed by the autooxidation of cholesterol and especially cholesterol-fatty acid esters found in 

lipoprotein deposits, its elevated concentrations are associated with disruption of cellular homeostasis, 

decreased cell viability, and increased cell death.Enzymatic cleavage of 7-KC can serve as a key solution for the 

cure of a number of chronic diseases directly associated with its accumulation. A bacterial strain isolated from 

manure piles was characterized taxonomically and identified as Thermobifida fusca IP1 on the basis of 

amplification and sequencing of 16s rDNA. This isolate was tested for its ability to degrade 7-ketocholesterol in 

M9 liquid medium and showed to utilize 7-KC as the sole carbon and energy source. The degradation of 7-KC 

was hundred percent when tested in liquid culture. High Performance Liquid Chromatography (HPLC) analysis 

also showed complete removal of the compound from the sample after twelve days. This bacteriacan effectively 

be used to remove 7-KC and can lead to the development of a single potential therapeutic enzyme preparation to 

target a number of above mentioned chronic diseases related to 7-KC. 
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Introduction 

7-Ketocholesterol (7-KC) is a naturally occurring 

oxysterol formed by the autooxidation of cholesterol 

and cholesterol-fatty acid esters (Dzeletovic et al., 

1995). It is commonly found in oxidized lipoprotein 

deposits associated with atheromatous plaques 

(Garcia-Cruset et al., 2001; Ohtsuka et al., 2006; van 

Reyk et al., 2006) as well as in lipoprotein deposits in 

Bruch’s membrane and choriocapillaris in the back of 

the retina (Moreira et al., 2009). Cholesterol 

oxidation products, termed oxysterols, are 

increasingly considered of potential  

interest in the pathogenesis of atherosclerotic lesions, 

7-Ketocholesterol is a major oxidation product of 

cholesterol found in human atherosclerotic plaque 

and is more atherogenic than cholesterol 

(Leonarduzzi et al., 2002). 

 

It has been shown to be the major cytotoxic 

component in oxidized LDL (Rodriguez et al., 2004). 

This oxysterol is known to be highly inflammatory 

both in vitro (Brown and Jessup, 1999; Vejux and 

Lizard, 2009) and in vivo (Amaral et al., 2013). Its 

inflammatory and cytotoxic properties have been 

implicated in the pathogenesis of numerous aging 

diseases (Vejux and Lizard, 2009), including 

atherosclerosis (Brown and Jessup, 1999; Reyk et al., 

2006), Alzheimer’s disease (Vejux and Lizard, 2009; 

Poli et al., 2013), cancer (Wang et al., 2013), 

Parkinson’s disease (Poli et al., 2013) and age-related 

macular degeneration (Poli et al., 2013; Rodrı´guez 

and Larrayoz, 2010).  

 

In vitro experiments have shown that 7-

ketocholesterol, a major oxysterol in plaques, induces 

vascular Smooth Muscle Cell’s (SMC’s) death with 

features of apoptosis, such as nuclear condensation 

and internucleosomal DNA fragmentation (Lizard et 

al., 1999).It has been well established that exposure 

of cells to 7-KC elicit a variety of defense responses, 

including inflammation, apoptosis, and the 

stimulation of vascular endothelial growth factor ( 

Vejux et al., 2008).  The ability of 7KC to disrupt 

cellular Ca2+ homeostasis is likely an integral part of 

its toxicity (Berthier et al., 2004;Rimner et al., 2005; 

Spyridopoulos et al., 2001). 

 

7-KC is a major intracellular oxysterol species. 

Sterols, including oxysterols, enter the cell via 

receptor mediated endocytosis of low density 

lipoproteins and traffic to the lysosomes, which are a 

major site of non-enzymatic oxysterol formation. 

Consequently, 7KC levels are the highest in the 

endosomal and lysosomal compartments ( Brown et 

al., 2000). 7KC is known to inhibit sphingomyelinase 

(Maor et al., 1995) and facilitate the intralysosomal 

accumulation of both sphingomyelin and cholesterol, 

possibly leading to foam cell formation. Subsequent 

free cholesterol loading of lysosomes also promotes 

deacidification (Cox et al., 2007), impairs organelle 

trafficking (Fraldi et al., 2010), and inhibits 

chaperone mediated autophagy (Kaushik et al., 

2006). At micromolar concentrations, 7KC causes 

lysosomal membrane permeabilization (LMP). The 

cellular response to LMP depends on the degree of 

permeabilization, with mild LMP causing induction of 

apoptosis or apoptosis-like cell death and sustained 

LMP generally leading to necrosis (Mathieu et al., 

2012).The aim of the present study was to isolate and 

characterize bacteria from environmental 

sample(manure piles) capable of catabolizing 7-KC. 

 

Materials and methods 

Chemicals 

The substrate 7KC was obtained from Sigma-Aldrich  

(97.1% pure). A modified M9 medium was used in all 

experiments as growth medium. The composition of 

M9 was, 6.0 g Na2HPO4, 3.0 g KH2PO4, 0.5 g NaCl, 

1.0 g HN4Cl, 0.185 mg (NH4)6Mo7O24.4H2O, 1.0 ml of 

24.6% (w ⁄ v) MgSO4.7H2O and 1.0 ml of 1.47% (w ⁄ v) 

CaCl2.2H2O in 1000 ml of distilled water (final pH 7). 

 

Isolation of bacteria 

Manure pile sample was collected from Rawalpindi, 

Pakistan in sterile falcon tubes. Samples were 

properly labelled and kept in refrigerator (4 °C) till 

the processing. Sample (10 g) was  suspended into 

100 ml of sterile distilled deionized water, which was 

further used for inoculation purpose.M9 medium (10 
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ml)  amended with 7KC (1mg L-1 or 0.0025 M) as only 

carbon and energy source was inoculated with 10 

drops of environmental sample. To enhance the 

solubility of 7KC, the medium was sonicated for 20 

min prior to inoculation in a bath sonicator. After 

inoculation, culture was incubated in shaking 

incubatorat 30 °C and 250 rpm agitation speed.  

Aliquots (100 µL) were sampled after every 24 hours 

and analyzed for the decrease in the concentration of 

target compound by HPLC. Gowth was monitored by 

taking absorbance at 600 nm by spectrophotometer. 

After indication of decrease in concentration of 7-KC 

from the samples, cultures were streaked on M9 agar 

plates prepared by adding 5.0 mg of 7KC in methanol 

and evaporated to dryness on the surface.Plates were 

incubated at 30 °C for 72 hours. From M9 agar 

surface morphologically different colonies were 

pickedand streaked on the nutrient agar plates in 

order to get pure cultures.Pure cultures were further 

confirmed for 7KC biodegradation potential by 

inoculating in 1ml of M9 medium containing 1mg of 

7KC as the only carbon and energy source.Onepure 

bacterial strain giving positive results for 7KC 

degradation from the environmental samples was 

selected for the molecular identification. 

 

Molecular identification of bacteria 

Genomic DNA extraction 

According the method Adye and Mateles, (1969) 

bacterial culture of 48-72 hour washarvested by 

centrifugation at 7000 rpm for 20 minutes. The cells 

were frozen in liquid N2. The frozen pellets were 

ground with a morter and pestle. The powder was 

suspended in STE (100mMTris-Cl, pH = 8.0, 150 

mMNaCl and 100 mM EDTA) and incubated with 1% 

SDS at 37 °C for 3 hours. The solution was then 

centrifuged at 7000 rpm for 20 minutes to remove 

any cell debris. 

 

The resulting solution was then extracted with a 

solution of phenol : chloroform : Isoamyl alcohol 

(25:24:1) saturated with 10mMtris, pH 8.0, 1mM 

EDTA two times. The genomic DNA was recovered by 

slowly adding cold ethanol to the aqueous solution 

such that the ethanol remained on top of the aqueous 

layer. At the interface a small glass rod was inserted 

and twirled around to spool the DNA onto the rod. 

The spooled DNA was resuspended in  1x, TE (pH = 

7.6) (1ml-1M Tris-HCl, 0.2 ml-0.5M EDTA at pH 8.0, 

988 ml-ddH2O). 

 

The genomic DNA was run at 100 volts for 90 

minutes on a 1% (w/v) agarose gel in 1x TAE (Tris 

Acetate EDTA) buffer containing 5 µL ethidium 

bromide solution (10mg/ml) to determine its relative 

size and concentration. 

 

PCR Amplification of the 16S Ribosomal DNA 

The extracted DNA was subjected to PCR (Gradient 

Cycler, MJ Research, PTC-200, Peltier Thermal 

Cycler) to amplify the 16S ribosomal DNA segments. 

One Taq®2x master mix with GC buffer (New 

England BioLabs®Inc.) was used. It was an optimized 

blend of Taq and Deep VentR
TMDNA polymerases. 

Master mix formulation containedNTPs, MgSO4 and 

other buffer components. Primers sequences used 

were 16S-27F (5'-AGAGTTTGATCMTGGCTCAG-3'), 

(Tm=53.2 °C) and 16S-1492R (5'-

TACGGYTACCTTGTTACGACTT-3')(Tm=54.6 °C).The 

PCR mixture used had a final volume of 50 µL and 

contained 1 µL of each primer (100 µM), 25µL of one 

Taq 2x Master Mix with GC Buffer, 22 µL of distilled 

deionized water and 1 µL of template (800 ng). The 

temperature cycle for the PCR was 1 min of 

denaturation at 94 °C, 1 min of annealing at 48 °C, 

and 3 min of primer extension at 72 °C. 25 additional 

cycles were used and a final primer extension for 10 

min. The amplified DNA product was run on 1.5% 

agarose gel (1.5g agarose/100 ml of 1X TAE) at 100 

Volts for 30 minutes along with 1kb DNA ladder (New 

England BioLabs®Inc).The DNA fragment was excised 

from the agarose gel with a clean, sharp scalpel. 

 

PCR product was purified by QIAquick® Gel 

Extraction Kit (250) (Qiagen Sciences Maryland, 

USA) according to the standard protocol 

recommended by the manufacturer.Automated 

Sequencing Reactions were performed with Perkin 

Elmer ABI Big Dye Reaction Mix.The sequences were 

matched against the NCBI GenBank Database 
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(http://ncbi.nlm.nih.gov/Blast) for phylogenetic 

identification of the bacteria. 

 

Biotransformation experiment with purified culture  

Purified culture was tested for its biodegradability for 

7-KC. Three replicate batches (30 ml) were prepared 

in M9 medium, with 7-KC as only carbon source they 

were inoculated with bacterial culture of the isolate 

and incubated at 30 °C and 150 rpm. Samples (0.5 

ml) were takenfrom each batch after 24 hours 

timeintervalsand were subjected to extraction.7KC 

was then extractedfrom the samples with a mixture of 

hexane/isopropanol (3:2), the solvent was evaporated 

using a rotary evaporator (BÜCHI rotavapor R-200), 

sample was redissolved in 50 μL of methanol, filtered 

andwasanalyzed by reverse phase HPLC (0.72 ml 

min-1, 85:10:5 methanol/water/acetonitrile) using a 

Waters Delta 600 Separation Module with a Waters 

2487 dual λ absorbance detector, photodiodearray 

(235 nm) and aPhenomenex LUNA C18 column 

(4.6by 150 mm).  

 

Results  

Isolation and identification of 7KC degrading 

bacteria from environmental samples 

Using enrichment technique several bacterial colonies 

were isolated for the sample of manure pile. These 

colinies were purified and tested for their growth on 

M9 media with 7-KC as sole carbon and energy source 

(unpublished data). One isolate having good positive 

activity on these plates  was selected and purified. The 

bacterial isolate was growing in M9 media with 7-KC 

as sole carbon and energy source.  

 

Fig. 1. Phylogenetic tree of Thermobifidafusca IP1 (accession number KM677184)isolated from manure piles. 

Taxonomiccharachterization of the bacterial isolate 

IP1 was done. 16SrDNA genewas amplified and 

sequenced, sequences obtained were analysed by 

NCBI BLAST and phylogenetic tree was constructed 

(Fig. 1).The bacterial strain was identified as 

Thermobifidafusca (accession number KM677184).  

 

Degradation of 7-KC by bacterial isolate 

ThermobifidafuscaIP1 

The growth of the bacterial isolate 

ThermobifidafuscaIP1 was detertmined by increase 

in OD600, results are shown in Fig.2 there was a lag 

period of 3-6 hours after that gradual increase in 

growth (Absoption at 600nm) was observed. The 

OD600 reached to a value of 0.8 in 30 hours. 

Degradtion of 7-KC was monitored by HPLC. Within 

the set UV detection range of 190 to 400 nm, no 

accumulation of degradation metabolites was 

revealed.The absorption maximum for 7KC is 233 

nm, allowed accurate determination of 7KC 

concentration.  

 

On the basis of HPLC results, a rapid degradation was 

observed with ThermobifidafuscaIP1 (Fig. 3, 4). 

There was gradual decrease in concentration of 7-KC 

from 1 g.L-1 (initial concentration and reched to non 
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detectable concentration in 12 days). The strain IP1 

cleared the 7KC 20% in 3 days, 85% in 6 days, 94% in 

9 days and below detection levels in 12 days. 

 

Discussion  

Atherosclerosis, macular degeneration, and 

neurodegenerative diseases such as Alzheimer's 

disease, are associated with the intracellular 

accumulation of  recalcitrant substances that impair 

cellular function and viability (Rittmann and 

Schloendorn, 2007). Reversing this accumulation 

may be a valuable therapy, but the accumulating 

substances are refractory to normal cellular 

catabolism so there is need of an exogenous enzyme 

supply to clear these accumulated compounds (de 

Grey et al., 2005).  

 

Fig. 2. Increase in OD600 of the isolate IP1 over a period of 30 hours. A negative control was run containing 7KC 

and surfactant only without IP1 inoculation. 

On the other hand, these substances in ecosystem are 

naturally degraded in the soil and water by 

microorganisms. In environmental bioremediation, 

communities of microorganisms mineralize 

hydrophobic organics using a series of enzymes 

(Rittmann and Schloendorn, 2007). A radically new 

approach is augmenting humans' natural catabolic 

machinery with exogenous supply of microbial 

enzymes. Many recalcitrant organic molecules are 

naturally degraded in the soil. Since the soil in certain 

environments - graveyards, for example - is enriched 

in human remains but does not accumulate these 

substances, it presumably harbours microbes that 

successfully degrade and clear them up. The enzymes 

responsible could be identified and engineered to 

metabolise these substances in vivo (de Grey et al., 

2005). 

 

Due to its high concentration in atherosclerotic 

plaques (Garcia-Cruset et al., 2001; Dreizen et al., 

1978), cytotoxicity, and other pro-atherogenic 

properties, 7KC is a prominent target for medical 

bioremediation. Contributing to the rationale for its 

elimination is that 7KC has also been associated with 

Alzheimer's disease by several studies (Vaya and 

Schipper, 2007; Casserly and Topol, 2004; Carter, 

2007). The etiology of atherosclerosis is clearly a 

complex process, and 7KC certainly contributes. Thus 

reducing levels of 7KC may subsequently reduce the 

rate of LDL uptake and apoptosis, slowing 

atherosclerotic progression (Mathieu et al., 2009). 

 

In medical bioremediation, we hope to utilize single 

or a combination of microbial enzymes to degrade the 

intracellular recalcitrant compounds and convert 

them to innocuous productsso that they can be 

cleared from the affected cells. Here, we present 

preliminary, but promising results for the bacterial 

biodegradation of 7-ketocholesterol, the main 

accumulator of foam cells associated with 
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atherosclerosis. In particular, we report on the 

isolation of bacterial strains found to effectively 

degrade 7-KC. All the isolates were capable of 

utilizing 7KC as the sole organic substrate, resulting 

in its mineralisation, a key step towards identifying 

the key enzymes that may lead to a therapy.

 

Fig. 3. (i) HPLC analysis for 7KC extracted from cultural medium of T. fusca IP1on Day 3 (a) Day 6 (b), Day 9 (c) 

and and Day 12 (d).   
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We got several positive hits for 7KC biodegradation 

from environmental samples. One of isolate IP1 was 

further investigated for its 7KC biodegradation 

activity, and was identified as Thermobifidafusca on 

the basis of 16srDNA sequencing results.Several 

steroid degrading bacteria have been isolated from 

soil samples previously (Merino et al., 2013).On the 

basis of HPLC results, complete degradation was 

observed with isolateThermobifidafusca IP1. The 

isolateremoved the 7KC below detection levels within 

12 days.  

 

Fig. 4. HPLC analysis of 7KC degradation (experiment conducted at 30 °C, pH 7, 150 RPM) by environmental 

isolate, Thermobifidafusca IP1 in the 12-days incubation period. Three samples were run for isolate IP1 and the 

control. 

7KC like Cholesterol is a steroid, i.e. a class of 

terpenoid lipids, an imbalance in their blood level 

causes serious diseases in humans.Bacterial 

degradation of steroids is widespread, many bacteria 

are capable of transforming steroids, and this 

property is used for the biotechnological production 

of steroid drugs (Bortoliniet al., 1997; Donova and 

Egorova, 2012;  Mahato and Garai, 1997). In addition, 

bacteria from diverse phylogenetic groups can 

degrade naturally occurring steroids completely and 

use them as sources of carbon and energy (Holert et 

al., 2013).  

 

Bacteria belonging to the genera Nocardia, 

Arthrobacter, Bacillus, Brevibacterium, 

Corynebacterium, Streptomyces, Microbacterium, 

Serratia, Achromobacter, Pseudomonas 

orProtaminobacter, were reported to accomplish 

partial or complete cholesterol degradation 

(Whitmarsh, 1964; Brown and Peterson, 1966; Arima 

et al., 1969; Ferreira and Tracey, 1984; Drzyzga et al., 

2009; 2011; Fernández de Las Heraset  

al., 2009; Ge et al., 2011). 

 

Conclusion 

In summary, we have found thatisolated bacterial 

strain  can degrade the oxysterol 7KC. The isolate 

demonstrated ability to utilize 7KC as sole carbon 

source. Overall, these results support the notion that 

oxysterol levels might be controlled  by 

biodegradation processes, and further investigation of 

specific microbial enzymes involved in catabolism as 

well as the specific pathways involved in microbial 

7KC degradation can be the next goals leading to 

come up with identifying enzymes capable of 

transforming oxysterols for potential environmental, 

industrial, pharmaceutical, and medical 

applications.This attempt at harnessing an exogenous 

enzyme to achieve the catabolic function of cells is in 

some ways similar to enzyme replacement therapies 

aimed at reversing lysosomal storage disease.7-KC 

has been associated with numerous age-related and 

neurodegenerative diseases, and thus is an important 

therapeutic target. The biodegradation of 7KC and its 
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ultimate removal from body can serve as a mean to 

reverse disease conditions associated with its 

accumulation in body. 
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