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Abstract 

   
Reactive oxygen species (ROS) are highly reactive molecules produced during cellular metabolism and due to 

some environmental factors. These species have ability to induce damage in vital molecules. The body has 

several antioxidant systems to cope with but imbalance of oxidants and antioxidants creates a condition 

commonly known as oxidative stress. The excess production of ROS is the main cause of oxidative stress. In last 

forty years, oxidative stress was considered as major factors for pathological disorders and ageing. In body, ROS 

have dual role either beneficial or harmful in the biological systems. They either act as beneficial (NO•) in the 

form of signaling or harmful producing the health disorders. Mitochondrion is the major site for ROS 

production. The other sources include peroxisomes, endoplasmic reticulum, membrane and cytosol. ROS are 

studying for their pathogenesis of obesity, diabetes, cancer, inflammation, cardiovascular disease, 

neurodegenerative disorders and aging. In this review, sources, causes and consequences of superoxide radical, 

singlet oxygen, ozone, hydrogen peroxide, hydroxyl radical, peroxynitrite, peroxyl and alkoyl radicals and 

reactive nitrogen species are critically analyzed and discussed in details 
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Introduction 

The oxidative stress may be the disturbance between 

ROS and ability of antioxidant system to remove them 

in the biological systems. Jones (2006) defined it as 

disorder of redox signaling and control. According to 

Sies (1997) the term oxidative stress means serious 

imbalance between antioxidant and production of 

ROS (Datta et al., 2015). ROS increase dramatically 

during the oxidative stress and causes lipid 

peroxidation, intact with nucleic acid, lipid and 

protein and causes loss of membrane integrity, 

functional changes and mutation. All these factors 

contribute to health disorder (Kataria et al., 2010) 

which will be discussed latter in this review. In body it 

actually has two roles. It is either beneficial or 

harmful. In moderate concentration, superoxide 

anion, nitric oxide (NO•) and other reactive oxygen 

species play a critical role in signaling. In higher 

concentration due to over production of ROS causes 

the oxidative stress that leads to the pathological 

conditions including cardiovascular diseases, cancer 

(Sosa et al., 2013), diabetes mellitus (Yang et al., 

2011), inflammation, neurodegenerative diseases and 

ageing (Oyinloye et al., 2015). 

 

Body has several enzymatic and non-enzymatic 

system including catalase (CAT), superoxide 

dismutase (SOD), GSH-Px and glutathione-S-

transferase (GST), glutathione peroxidase, vitamin E 

components and glutathione (Memısoğullari et al., 

2003; Shafaq, 2012). Several synthetic and elements 

such as cerium also mimic the natural antioxidant 

scavenging the free radicals and ameliorated the 

oxidative stress (Khan et al., 2015). Therefore, the 

aim of this review was to critically analyze the 

available literature for source types of reactive oxygen 

species and health disorder due to oxidative stress.  

 

General concept about the free radicals and 

Oxidative stress  

Oxygen is the most common source of free radicals in 

the biological systems. Over production of ROS 

inhibit the body normal function and cause damage to 

both cells and tissues (Wickens, 2001). It is basically 

produced from cellular substance of endogenous 

organelles  include mitochondria, peroxisomes, 

cytochrome P450 and inflammatory cells (Inoue et al., 

2003). The exogenous sources are environmental 

sources including the ionization radiations, ultraviolet 

rays and pollutants (Klaunig et al., 2010; Krumova 

and Cosa, 2016).  

 

ROS primarily attacks on the cell membrane because 

it reacts with fatty acid of membrane and form the 

lipid peroxide. The accumulation of lipid peroxide 

leads to the production of maloiadehyde a potential 

carcinogen agent. This lipid peroxidation cause 

permanent loss of membrane elasticity and fluidity 

and leads to cell rupture(Klaunig et al., 2010; 

Krumova and Cosa, 2016). The 2nd target of free 

radicals is body protein. The ROS oxidize the cross 

link between amino acid and permanent loss of 

enzymes and connective tissue function (Stadtman, 

1995; Wang et al., 2014). It also target the protein 

synthesis due to inhibition of photosystem II 

(Nishiyama et al., 2011).  The DNA is the 3rd major 

target of ROS in the cell. The ROS breaks the DNA 

after inaction and also causes cross linkage of the 

molecule (Chen et al., 2014).   

 

Sources and production of ROS  

Endogenous sources 

Mitochondria of the cell is the major site for ROS 

production and both complex I and Complex II found 

to be established for mitochondrial ROS generation 

(Dröse and Brandt, 2012). Many enzymes are also 

responsible for the generation of ROS including 

xanthine oxidase (Agarwal et al., 2011), NADPH 

oxidase (Bylund et al., 2010), α-ketoglutarate 

dehydrogenase complex (Ambrus et al., 2011), 

dihydrolipoamide dehydrogenase (Zhang et al., 2011; 

Kareyeva et al., 2012) and d-amino acid oxidases 

(Fang et al., 2002). 

 

NADPHs oxidase peroxisomes present in the 

membrane are also the source of free radicals, which 

consume O2 and generate H2O2 under normal 

condition. The H2O2 in the peroxisome is converted to 

water with the help of catalase enzyme. Oxidative 

stress occurs when the damaged peroxisomes unable 
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to convert it into water and release the H2O2 into 

cytoplasm directly. Under few conditions, H2O2 also 

reacts with O2•- and form highly oxidizing and toxic 

compound (OH•) in the Fenton and Haber-Weiss 

reaction (Fransen et al., 2012). 

 

Gastrointestinal tract is another site for free radical 

synthesis. O2•- is generated from xanthine oxidase and 

then it is converted to H2O2 in a reaction catalyze by 

gluthione peroxidase or catalase. H2O2 produced by 

neutrophils is utilized by meloperoxidase produce 

hypochlorite (OC1-) ions which is very reactive with 

short reaction time and makes the membrane 

impermeable (te Velde et al., 2008). The generated 

ROS in the gastrointestinal tract oxidize the protein, 

damage the DNA and protein creating diseased 

condition in colon (Sanders et al., 2004). 

 

Mitochondrial ROS production 

The electron transport chain consisted of four 

complexes. The electrons move to complex I by 

NADPH and complex II by FADH2. Then the 

electrons move to complex III and finally to IV 

depositing to the molecular oxygen and forming H2O. 

however in some cases, electron leak prematurely to 

O2 before reaching complex IV and formed 

superoxide instead of water in complex I to III 

(Muller et al., 2007). It is estimated that about 1 to 

2% of all consumed O2 formed superoxide, and this 

production is increases independently in aging 

(Aung-Htut et al., 2013; Breitenbach et al., 2014). 

 

Peroxisomal production 

Investigation in the last decades revealed that 

endoplasmic reticulum and peroxisomes produce 

more ROS than mitochondria (Fransen et al., 2012). 

Peroxisomes are filled with variety of enzymes like 

oxidoreductase/flavoenzymes that are considered 

involved in hydrogen peroxide. These enzymes are 

involved in oxidation of fatty acid or D-amino acid 

catabolism producing the hydrogen peroxide 

(Fransen et al., 2012). Some studies also found 

peroxisomes not only involved in the hydrogen 

peroxide but also superoxide production. The 

production of superoxide is mainly due to xanthine 

oxidase during ischemia reperfusion injury (Cantu-

Medellin and Kelley, 2013). Beside the production of 

ROS, peroxisome also generated the RNS by action of 

hemeprotein nitric oxide synthase that catalase the 

oxidation of L-arginine to nitric oxide (Stuehr et al., 

2001; Luis, 2011). 

 

ROS production in Endoplasmic reticulum 

The main contributors in the ROS production are the 

member of cytochrome P450 with the combination of 

disulfide isomers protein (PDI) and endoplasmic 

reticulum oxidoreducation EROI-1. In folding 

process, PDI protein induces disulfide formation in 

receptor protein. The isomers reduce this process and 

regenerated it by oxidio-reduction of ERO1. The 

ERO1 transferred the electrons to molecular oxygen 

through FAD. However, incomplete transfer led to 

superoxide production (Bhandary et al., 2012; 

Benham et al., 2013). 

 

The family of P450 is found mainly in the ER and 

does the takes of xenobiotic detoxification by 

increasing solubility. In the process, electrons 

transferred from NADH to cytochrome P 450 leading 

to xenobiotic hydroxylation. Sometimes the transfer 

of electrons results in the formation of superoxide 

radicals (Bae et al., 2011).   

 

Membranes and Cytosol production of ROS 

Membrane also produces ROS due to activity of 

NADPH oxidases. Electrons move on form NADPH to 

FAD, two heme type to finally O2 forming the 

superoxide (Rinnerthaler et al., 2012).  

 

In cytosol, ROS produced as byproducts of 

arachihonic acid metabolism. Cyclooxygenase and 

Lipoxygenase enzymes used the arachiodic acid as 

substrate and produce H2 prostaglandin and 

leukotriene respectively. Both enzymes have ability to 

produce superoxide in the presence of NADPH and 

NADH (Kukreja et al., 1986; Whicher and Evans, 

2012). The level of arachiodic acid is generally low but 

increase in the skin due to skin inflammatory diseases 

including psoriasis apoptotic dermatitis leading to 

aging (Ziboh et al., 2000; Whicher and Evans, 2012). 



 

306 Khan et al. 

 

Int. J. Biosci. 2016 

Additionally, iron of the cell and organelles react with 

oxygen forming ROS in the cytosol. In reaction which 

is Haber-Weiss reaction, the ferric iron reacts with 

superoxide forming the ferrous iron. In other 

reaction, which is Fenton reaction, ferrous reacts with 

hydrogen peroxide regenerating the ferric iron and 

very reactive hydroxyl radical (OH•) and hydroxide 

(OH-). Both radicals are harmful (Chemizmu and 

Fentona, 2009). The skin acts as interface between 

environment and body the exogenous ROS 

production (Poljšak and Dahmane, 2012; Chen et al., 

2014). 

 

Exogenous sources 

Ionization radiations 

Ionization radiations are believed to be involved in all 

the steps of carcinogenesis including initiations, 

promotion and progression (Little et al., 2008). The 

damage done by these radiations include apoptosis, 

gene mutation and cancer (Riley, 1994; Kadhim et al., 

2013). The biological effects of ionization radiations 

are due to ROS which rapidly produced in radiolysis 

(Tulard et al., 2003). 

 

Nano-materials mediated ROS generation 

Nanomaterial fullerenes and metals ions in nature 

induce oxidative stress (Bonner, 2007; Asghar et al., 

2016). The factors of nanoparticles induce oxidative 

stress are cell inaction, prooxodant functional group 

on nanoparticles and redox cycling on the surface of 

nanoparticles (Huang et al., 2010). However, several 

studies revealed the active role of reactive particle 

surface in the generation of ROS (Schins, 2002; Khan 

et al., 2015; Shakeel et al., 2015; Khan et al., 2015b; 

Asghar et al., 2016). Nanoparticles produces the free 

radicals when oxidant and free radicals bound to the 

active surface of particles e.g. SiO and SiO2 present in 

the quartz particles generated the OH- and O2•- 

species (Knaapen et al., 2004). The other molecules 

such as nitrogen dioxide and ozone also generated the 

oxidative stress on surface of nanoparticles and 

induce oxidative stress (Buzea et al., 2007).  

 

 The free radicals are generated on the nanoparticles 

due to one of following reasons. 

a. Free radicals are produce when the 

nanomaterials are dissolved in the aqueous 

suspension (Fubini and Hubbard, 2003; Asghar et al., 

2015). Upon dissolving nanoparticles release the 

metals ions and induce the oxidative stress (Knaapen, 

et al., 2004). For example, quartz particles produce 

the H2O2 and O2•- in the aqueous suspension. 

 

b. Chemical and metal compounds on the 

surface of nanoparticles also enhanced the ROS 

production and oxidative stress (Wilson et al., 2002). 

 

c. Some transition metals like chromium and 

copper etc. found engaged in generation of ROS in 

Haber-Weiss and Fenton-type reaction. 

 

d. Some metals nanoparticles such as Co, Ni 

etc. also activate the intracellular pathways of MARK 

and NF-αB for inducing the intracellular free radicals 

(Nel et al., 2006). 

 

e. Nanoparticles also activated the 

mitochondrial mediated ROS production. As major 

site, once nanoparticles get enter in to mitochondria, 

they impaired the electron transport chain, activate 

the NADPH like enzymes, depolarization of 

mitochondrial membrane and initiating the ROS 

production (Xia et al., 2006). 

 

f. Internalization of nanoparticles also 

imitated the immune response including neutrophils 

and macrophages contributing to the ROS production 

(Risom et al., 2005). 

 

g. Small particles having high surface to 

volume ratio reported to involved in the ROS 

production due to large number of active sites. The 

large surface area of surface particles are more 

exposed to reaction than interior molecules (Nel et 

al., 2006). All these factors contribute to ROS 

generation and finally oxidative stress. 

 

h.  

Mostly xenobiotic are the exogenous sources of ROS 

productions and oxidative stress. These sources might 



 

307 Khan et al. 

 

Int. J. Biosci. 2016 

be barbiturates, chlorinated compounds, phorbol 

esters and metal ions (Hamid et al., 2016). The 

exogenous sources produced the ROS by metabolism 

of primary radicals or by activating the endogenous 

sources. The resultant oxidative stress induces the 

DNA damage, lipid peroxidation and also modulating 

the antioxidant system (Klaunig and Kamendulis, 

2004; Pu et al., 2006). Some types of ROS discovered 

some of them discuss in table 1. 

 

Table 1. Reactive species and their source and place of synthesis. 

Reactive species Place or source of synthesis 

Hydrogen peroxide Large number of reactions in the body 

Superoxide anion Mitochondria, cardiovascular system 

Nitric oxide Intestinal sub mucosa and some other cells by nitrogen oxide synthase 

Nitrogen dioxide During atmospheric pollution of dioxide 

Peroxyl radicals During oxidative damage of DNA, protein and sugar etc.  

Ozone In atmosphere pollutants  

Peroxynitrite Reaction of NO and superoxide in the body 

Hydroxyl  In Fenton reaction 

Alkoxyl  free radical chain reaction 

 

Superoxide radical (O2•-) 

This reactive species is produced in the mithchondrial 

complex I, III and consider part of intracellular 

signaling (Murphy, 2009). The evidence supported 

that the superoxide involved in the intracellular 

signaling cascade by four ways. 

 

Superoxide radical usually generated due to reduction 

of O2. It is reactive than O2  often associated with 

inflammatory pathway by the activation and 

regulation of inflamasome and inflammatory 

cytokines (Goetz and Luch, 2008; Zhou et al., 2011). 

With long half-life involves in the inactivation of 

catalase, GPX and oxidation of glutathione in the 

absence of scavengers. Different studies revealed the 

role of superoxide in the development of disease state 

including cancer (Ambrosone et al., 1999), 

cardiovascular (Collin et al., 2007), inflammation 

(Afonso et al., 2007) and neurodegenerative diseases 

(Waris and Ahsan, 2006). 

 

The intracellular enzyme SOD is an antioxidant 

metaloenzyme and actively involved in scavenging the 

super oxide radicals. It has different isoforms with 

different metal ions (Copper, manganese and zinc) at 

active site (Zelko et al., 2002). In animal models, the 

SOD protects the brain, heart and liver from ischemic 

and alcohol induced injury (Wheeler et al., 2001). The 

mutation in SOD causes degradation of motor neuron 

and induced paralysis or death, susceptibility to type 

2 diabetes, Alzheimer s disease and cancer (Tamai et 

al., 2006; Wheatley‐Price et al., 2008). Over 

expression of SOD also causes the oxidative stress 

(Kowald et al., 2006). 

 

Singlet oxygen 

It is not a free radical species with ample energy and 

no unpaired electrons but very reactive than O2 with 

10-5 s half-life. It is generated in the electronic 

excitation of molecular oxygen, termination of 

peroxyl radical in peroxidase- mediated reaction 

(Davies et al., 1999). It was first observed in 1924 and 

found out the more reactive form of oxygen. The 

singlet oxygen targets the protein, nucleic acid, sterols 

and lipids consequence in the skin cancer. B-carotene 

and ascorbic acid actively involved in the scavenging 

of the singlet oxygen (Young and Woodside, 2001). 

However, some studies also supported the beneficial 

role of singlet oxygen in the photodynamic therapy of 

carcinogenic cells. In the process of treatment 

carcinogenic cells accumulates the light sensitive 

agent during irradiation that produce the singlet 

oxygen and ROS in most of the cases. The singlet 

oxygen and ROS causes the cell death by cytotoxicity 
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and inducing the apoptosis (Juarranz et al., 2008; 

Plaetzer et al., 2009). Chemically, several compounds 

are used for scavenging the singlet oxygen including 

histidine, azide and 2-phenylisobenzofuran in 

laboratory (Foote et al., 2012). 

 

Ozone (O3) 

Ozone is acidic smelling, irritating, colorless gas and a 

form of elemental oxygen. It is also a powerful 

oxidizing agent than molecular oxygen. Its low 

concentration (0.5 ppm) causes the lung damage. Its 

few hours explore initiate inflammation, damage to 

macrophages of pulmonary tracts and this way 

decreasing the resistance to infection. It also causes 

the irritation of eyes and oxidation of lipid and 

protein.  The inhaled O3 reacts with ascorbates urate 

and GSH of the body. These compounds are 

scavengers of O3 (Halliwell and Gutteridge, 2015). 

 

Hydrogen peroxide (H2O2) 

Like singlet oxygen, hydrogen peroxide (H2O2) is also 

not a free radical species and showed relatively stable 

state in most of the studies (Park and Imlay, 2003). 

However it gained much interest due to its ability of 

generating the ROS. Hydroxyl radical is its most 

important ROS. In biological systems, the H2O2 is 

produced in one of the following processes; (a) 

reduction of the superoxide by SOD generated the 

H2O2 (b) action of amino acid oxidase, glycolate 

oxidase and urate oxidase on their respective 

substrates also generates the H2O2 (Benov, 2001).  

The H2O2 also showed the direct effect on 

intracellular signaling cascades by transduction of 

signals, genetic mutation of catalase enzyme and up 

regulation of SOD (mn) and SOD (Cu). Chen et al. 

(2014) suggested the proliferation of endothelial cells 

after the treatment with H2O2. Catalase and Gpx 

(cellular enzymes) actively involved in scavenging of 

H2O2 and conversion into the H2O (Young and 

Woodside, 2001). 

 

Hydroxyl radical (OH-) 

Hydroxyl radical is considered the most toxic species 

produced by reduction of H2O2 (Park et al., 2004). 

Due to very short half-life (10-9 sec), the hydroxyl 

radical immediately reacts with biomolecules after the 

formation. Fenton- type reaction with Iron (II) and 

zinc (I) and Haber-Weiss reactions are the primary 

sources of cellular hydroxyl radicals.  

 

Fe2+ +H2O2 Fe3+ + -OH + HO- (Fenton reaction) 

O2. - + H2O2 .OH + O2 + HO- {Haber- Weiss reaction 

Haber and Weiss, 1932, (Haber and Weiss, 1934)}  

It causes the oxidation of protein, lipid and nucleic 

acid. Base modification, DNA strand breaks and DNA 

cross linking was also observed after the treatment 

with hydroxyl radicals (Bar-Or et al., 2001). 

 

Peroxynitrite (ONOO-) 

The generated superoxide and nitric oxide in the cell 

reacts to form proxynitrite (ONOO-) under the 

inflammatory condition. The peroxynitrate causes the 

lipid peroxidation and DNA damage. It is also 

involved in the ageing process because of damage to 

guanine in telomeres and decreases the production of 

collagen (Valko et al., 2006; Afonso et al., 2007). The 

other complications include the vasorestrication due 

to low availability of nitric oxide. Selenium in the 

form of selenomethionine and selenocystine found to 

have the protective role against single strand breaks 

in DNA due to ONOO- radical. 

 

Peroxyl (RO2•) and alkoyl (RO•) radicals 

Both radicals are good oxidizing agent since they have 

ability of accepting electrons (Buettner and Jurkiwicz, 

1996). Under the biological medium both reactive 

species undergo molecular rearrangement to form 

other radicals. RO• found to initiate lipid peroxidation 

by two pathways including, fatty acid hydroperoxide 

(LOOH) independent pathway and LOOH dependent 

pathways (Aikens and Dix, 1991). The carbon 

centered radical of RO• has the ability to reacts 

directly with certain biological molecules like DNA 

and albumin. RO2• also induce peroxidation of lipids 

and damage the protein including lysosomes (Bailey 

et al., 2003). 

 

Metal based generated ROS 

Metals ions such as Cu, Co, Mg, Ni, Zn are biological 

very important due to their contribution in normal 
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physiological functioning including, electron 

transport chain, oxygen transport, catalyst and part of 

various protein. However, metal ions are toxic too, if 

mis-regulated during homeostasis.  

 

This condition leads to the oxidative stress due to 

generation of ROS and onset of many diseases like, 

anemia, hemochromatosis, Wilson s disease Monks 

diseases, cancer, diabetes, inflammation and 

neurodegenerative diseases (Beutler, 2007; Brewer, 

2007; Jomova and Valko, 2011). Among the metal 

ions, copper and iron are more focused and their role 

in the generation of ROS is more extensively study. It 

is due to the fact both the metals ions are involved in 

the generation of OH• (Beutler, 2007; Jomova and 

Valko, 2011). This hydroxyl radical induce the DNA 

damage and cell death in the fibroblast of 

mammalian.  

 

Copper is the 3rd most found metal in the human body 

after zinc and iron (Brandolini et al., 2002). The 

copper also generated the hydroxyl radical during the 

Fenton-type reaction but 50 times faster than iron 

(Bar-Or et al., 2001; Shen and Anastasio, 2012). The 

copper concentration is closely maintained to avoid 

the toxic level (Que et al., 2008). However elevated 

level is associated with oxidative stress and related 

disease (Mishra et al., 2008; Que et al., 2008) 

including Alzheimer’ s disease (Zappasodi et al., 

2008), cancer (Gupte and Mumper, 2007) Wilson’ s 

disease (Ala et al., 2007) renal diseases (Mishra et al., 

2008) and cardiovascular disorders (Leone et al., 

2006; Shen and Anastasio, 2012). 

External environment polluted with some heavy 

metals are also the source of oxidative stress and 

toxicity. For example, Khan et al. (2015b) critically 

reviewed the toxicity and oxidative due to silver 

nanoparticles in fish model. Hamid et al. (2016) 

investigated the level of murrcury and its impact on 

the antioxidant system of fish. 

 

Cell has inherent ability to cope with metal based 

oxidative damage. The cell has various metal binding 

sites in metaloprotein including transferrin, 

ceruloplasmin, metallothionein and ferritin 

(Letavayová et al., 2006; Kontoghiorghes et al., 

2008). Some chelating drugs such as, deferiprone, 

ferrior amino B are used for iron and N. scetyl 

cysteine amide, tetrathiomolybdale and penicillamine 

for copper to minize the toxic effects (Zheng et al., 

2008). 

 

Reactive nitrogen species (NOS) 

The byproduct of nitrogen oxide synthase form the 

2nd group of free radicals mainly expressed in 

intestinal submucosa ad some selected cells 

(Ghafourifar and Cadenas, 2005). It has usually long 

half-life due to rapid diffusion into blood where it 

inactivated by hemoglobin. The nitric oxide has some 

vital role in the body including neurotransmission, 

immune-dilation and blood pressure regulation 

(Matheson et al., 2000). It also prevents the adhesion 

of leukocytes and toxicity of H2O2 to endothelial cells 

(Binion et al., 2000). However, the over production of 

RNS is responsible to impairment of antioxidative 

system and contributes the damage to large intestine 

mucous of membrane (Ya Sklyarov et al., 2011). The 

reaction between O2•- and NO• also leads to the 

formation of aggressive oxidizing agent the 

peroxynitrte (ONOO-) that causes the fragmentation 

of DNA and lipid peroxidation. 

 

Impacts of ROS and RNS 

Lipid peroxidation 

Both RNS and ROS are responsible for lipid 

peroxidation particularly in the membrane. As the 

membrane is consisted of polyunsaturated lipids and 

lipoprotein, the membrane is primary target of lipid 

peroxidation; a hydroperoxy group is attached or 

introduced into unsaturated fatty acid with 

hydrophobic tail and causes the alterations. These 

structural alterations disturb the hydrophobic lipid-

lipid interaction and create the hydroperoxy radicals 

and aldehydes derivatives. The ultimate end product 

of lipid peroxidation (Malondialdehyde) causes 

damage to protein by reacting with histidine 

imidazole group, lysine amino group and sulphydryl 

group of cysteine (Catalá, 2009). Severe lipid 

peroxidation was seen in the patients with 

inflammatory bowel disease depending upon the type  
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(Kruidenier et al., 2003; Asghar et al., 2016). 

 

Aging 

Aging research has targeted on a central finding that 

dates back to the year 1956. During year, Denham 

Harman projected that reactive oxygen species (ROS) 

accumulate over time and are a main contributor to 

the aging process (Harman, 1955). This idea was 

broadened sixteen years later by Harman himself  

identifying mitochondria because the main source of 

ROS, forming the basis for the mitochondrial radical 

theory of aging (Harman, 1972). In the last decade, 

serious doubts arose that ROS are indeed the 

foremost vital elements that are fueling aging (Hekimi 

et al., 2011). Intrinsic aging is delineated as results of 

genetic factors and corporal changes that 

occur/appear throughout the conventional aging 

process, whereas extrinsic aging focuses on aging 

process accelerated by environmental influences 

(Farage et al., 2008). It had been proposed that solely 

3 % of all aging factors have a genetic background 

(Poljšak and Dahmane, 2012).The deterioration of 

metabolic processes and normal physiological 

functions cause aging. According to the free radical 

theory, the ROS is generated as byproduct of 

biological oxidation which induces damage to 

macromolecules ultimately dis-functioning and cell 

death(Harman, 1955). 

 

Being the major site of intracellular superoxide 

production and major target of free radicals, 

mitochondria are closely associated with aging 

process. Mitochondrial ROS causes damage to 

mitochondrial constituents including mitochondrial 

DNA, protein and lipids (Park and Imlay, 2003; 

Belhadj Slimen et al., 2014). The oxidant induces 

mutation in the mitochondrial DNA defer rationed 

mitochondrial normal bioenergetics function leading 

to the aging. The damages in mitochondrial DNA 

increase with age which leads to DNA break and 

somatic mutation. These mutation cause the 

impairment of respiratory chain complex and 

increasing the mutation and oxidative damage, 

energy supply and normal cellular function alters 

leading to the apoptosis (Judge and Leeuwenburgh,  

2007). 

 

Effect on DNA 

Several chemical reactions that involved the oxygen 

generated the reactive intermediate that damages the 

DNA. This damage causes mutations leading to the 

cancer. The researchers are trying to explore the role 

of reactive intermediate in the carcinogenesis (Gupta 

et al., 2013).  

 

Hydroxyl radical produced during Fenton reaction 

causes oxidation of nuclear DNA. The reaction of ROS 

with free radicals also leads to deleterious effect on 

DNA and produced mutagenesis. Most familiar DNA 

alteration induced by oxidative stress is 8-oxo-2ˊ 

deoxyguanosine which pair both adenine and cytosine 

forming the GC and TA transition (Kaiser et al., 

2004). This mutation was seen in the skin especially 

in aging (Sauvaigo et al., 2010). Along with 

modification in DNA base, ROS also produce double 

and single DNA breaks (Caldecott, 2008). 

Effect on protein 

 

Oxidative stress induces reversible and irreversible 

oxidative modifications in the protein. Irreversible 

modification including tyrosine nitration and 

carbonylation are associated with oxidative stress and 

used as biomarkers in diseases and aging (Prokai et 

al., 2007; Rao and Møller, 2011). Reversible 

modification includes cysteine modification (Cai and 

Yan, 2003). It reflects the change in cellular redox 

state and involved in the singling cascades (Finkel, 

2011; Chung et al., 2013). 

Cancer 

 

Hydroxyl radical has ability to react with guanosine of 

nucleotide chain and form 8-oxo-2ˊ deoxyguanosine 

and high frequencies of this dimer were observed in 

tumor (Kuppusamy and Zweier, 1989; Ishikawa et al., 

2008; Kumar et al., 2008). Basal cell cancer, 

melanoma and squamous cell cancer were the most 

frequent cancer types in skin and  due to mutation in 

tumor suppressor gene P53 (Brash et al., 1996). 

Transversion of G to T is the most prominent 

mutation in P53 gene and due to oxidation of guanine  
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(Waris and Ahsan, 2006). 

 

Mutation in P53 increases the risk of cancer due to cell 

inability of apoptosis. Various studies revealed ROS 

not only involve in the inducing of tumor but also in 

its progression. The tumor produces significant 

amount of H2O2 that promote the tumor progression 

(Waris and Ahsan, 2006). ROS also promotes the 

release of calcium from locally endoplasmic reticulum 

store which activates the protein kinase C (PKC). The 

PKC was found to involve in the cell apoptosis, cell 

migration, proliferation and reorganization of 

cytoskeleton (Klaunig et al., 2010). Alteration in the 

signaling pathway is the most common reason for 

cancer genesis (de Gruijl et al., 2001). Most of studies 

revealed the generation of ROS in the melanomas. As 

melanocyte transformations the melanomas tend to 

disorganized and promote the ROS. This ROS activate 

the proto-oncogene pathways (Fruehauf and Trapp, 

2008). 

 

Neurodegenerative diseases 

Oxidative damage to neurons is the most common 

reason for most of neurodegenerative diseases. The 

oxidative stress is responsible for death or 

dysfunction of neural cell leading to pathogenesis.  

 

Acrolein, 4-hydroxy-2,3-nonenal (HNE), F2-

isoprostanes and malondialdehyde (MDA) are the 

most important products of lipid peroxidation. 

Elevated level of HNE is the reason for Alzheimer s 

disease (Selley et al., 2002). The oxidative stress 

modifies the DNA base pairing by hydroxylation  

which increases the level of 8-hydroxyguanine and 8 

hydroxy 2 deoxyguanine initiating the AD (Gabbita et 

al., 1998; Nakabeppu, 2014). In AD the activity of 

catalase, glutathione peroxide, superoxide dismutase 

and glutathione reductase increase and use as 

biomarker of oxidative stress related diseases 

(Pappolla et al., 1992; Zhao and Zhao, 2013). 

 

Heart Disease  

Several lines of evidence demonstrate that oxidative 

stress plays a very important role in the pathological 

process and development of cardiovascular diseases, 

as well as hypertension, atherosclerosis, dyslipidemia, 

angina pectoris, myocardial infraction, and heart 

failure (Linke et al., 2005; Little et al., 2008; Csányi 

and Miller, 2014). Many studies conjointly support 

the role of OS in disease pathological process of 

coronary heart disease. Paradoxically, though 

moderate exercise poses an acute oxidant stress, 

regular endurance exercise is related to improved 

cardiovascular operate and a reduction in traditional 

CHD risk factors. These new findings are consistent 

with the hypothesis that adaptations elicited by acute 

exposures to exercise-induced oxidative stress result 

in long-term vascular protection. This happens 

through activation of signaling pathways that result in 

accumulated synthesis of intracellular antioxidants 

and antioxidant enzymes and shrunken ROS 

production during exercise (Pandey and Rizvi, 2009). 

 In case of atherosclerosis, several evidences 

supported the free radicals role in the development of 

pathogenesis (Steinberg, 1997). In this hypothesis, 

low density lipoprotein (LDL) that are the main 

circulating part leave the antioxidant replete plasma, 

enter to sub-endothelial space of arteries  and got 

oxidized there. The oxidized LDL initiates the process 

of formation of atherosclerotic lesions. The 

microphages take these oxidized LDL and release the 

other factors that stimulate the proliferation of 

smooth muscles. These oxidized LDL also facilitates 

cellular adhesion and binding of leukocytes, speed up 

the plaque formation and causes the stroke and heart 

attacks (Steinberg, 1997; Singh et al., 2015). 

Moreover the LDL also showed involvement in the 

blockage of nutritional antioxidant system (Tribble  

and Committee, 1999). 

 

Stroke is the pathological condition and occurs due to 

the cell death because of oxidative stress in the 

condition of ischemia (Alexandrova et al., 2004; 

Bretón and Rodríguez, 2012). There are two types of 

strokes including ischemic stroke and hemorrhagic 

stroke. Several evidences support the role and 

generation of ROS in both conditions leading to 

oxidative stress. The oxidative stress interrupts the 

normal flow of blood flow and metabolic pathways 

which is the leading cause of ischemic strokes 
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(Piantadosi and Zhang, 1996). In the hemorrhagic 

strokes, the blood borne cells (neutrophils, 

macrophages/monocytes) accumulates and increases 

the oxidative stress and eventually causes the disease. 

Effect on visceral obesity  

 

Obesity showed close relationship with metabolic 

syndrome. It is now recognized that adipose tissue 

being metabolically active play a critical role in the 

regulation of homeostasis of energy and pathological 

effects in obesity related diseases. The role of white 

adipose tissue medaling inflammation in 

cardiovascular and diabetes disease is the hot topic of 

current investigation. Infiltrated adipose tissue by 

bone morrow produced the macrophage that secrete 

adipose and cytokinase in the systematic circulation 

result chronic inflammation (Wellen and 

Hotamisligil, 2005; Lugogo et al., 2011). Obese 

persons have higher level of oxidative stress marker 

and these markers increase with gain of weight 

(Vincent et al., 2010; Savini et al., 2013). Multiple 

sources are found associated to obesity including 

inherent source that increase fat distribution and 

adiposity. Some other sources are behavioral changes 

that make a person obese. Increased adipose tissue 

significantly correlated with increased level of 

oxidative stress biomarkers (Fujita et al., 2006; 

Steffes et al., 2006; Bonomini et al., 2015). 

 

Obesity is also associated with several conditions 

including, insulin resistance, hyper tension, 

hyperlipidemia and diabetes. Each of these increases 

the oxidative stress in the obese persons (Shaheen et  

al., 2007). 

 

Eating balance and rich in antioxidant is necessary to 

maintained the healthy life and reduce the oxidative 

stress (Khan et al., 2016). Unfortunately this 

protection is less effective in obese person having 

sedentary life style with diet of lower dietary 

antioxidant and lover vitamin level (Nayak et al., 

2000). Obesity increases the chronic oxidative stress 

that causes the endogen damage found mostly in the 

cardiovascular system and nonalcoholic hepatic 

steatosis (Roberts and Sindhu, 2009; Kizhakekuttu  

and Widlansky, 2010). 

 

Conclusion 

Reactive oxygen species and reactive nitrogen species 

are very reactive species produce during the oxidative 

metabolisms and due to environmental pollutant 

sources. These ROS causes oxidative stress in the 

organisms including the human beings. The oxidative 

stress causes damage to genetic materials inducing 

the health disorder and aging. Therefore, it is 

recommended both natural and synthesis antioxidant 

should be used to cope with imbalance of oxidatant 

and antioxidant level. 
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