

Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 8, No. 5, p. 195-205, 2016 http://www.innspub.net

OPEN ACCESS

Plants That No Body Wanted: An Assessment of the Conservation Status of Plant in Mohmand Agency FATA, Pakistan

Shah Khalid^{*}, Syed Zahir Shah

Islamia College Peshawar, Pakistan

Article published on May 27, 2016

Key words: Biotic Stress, Conservation status, Wild Flora, IUCN Criteria, Mohmand Agency.

Abstract

The current study was an attempt to encompass the conservation status of plants of Mohmand Agency, (FATA) Pakistan. IUCN Criteria was followed for the assessment of the conservation status of the plants in the area. Total 170 plants, belonging to 48 families were reported from the area out of which 13 (7.6%) plants were found to be endangered. These plants include Albizia lebbek Tamarix indica, Tecomella undulata, Acacia modesta, Acacia nilotica, Pinus roxburgii, Ziziphus mauritiana, Caralluma tuberculata, Cotoneaster nummularia, Dodonaea viscosa, Nannorhops ritchiana, Olea ferruginea and Salvadora persica. Biotic stress is extremely high due to anthropogenic disturbances and overgrazing, making 32 (18%) plants vulnerable, 87 (51%) rare and 38 (22%) plants infrequent. Fabaceae family was the most affected one, with 3 species being endangered, followed by Apocynaceae, Arecaceae, Bignoniaceae, Oleaceae, Pinaceae, Rhamnaceae, Rosaceae, Salvadoraceae, Sapindaceae and Tamaricaceae with 1 species each. In vulnerable status, Poaceae was the highest threatened family with 7 species, followed by Brassicaceae with 4, fabaceae with 3 and Apocynaceae and Rhamnaceae with 1 species each. There were 13 rare plants each in family Asteraceae and Poaceae. Highest number of infrequent plants belong to Asteraceae family (7), followed by Lamiaceae and Brassicaceae with 5 species each. Current status of the plants was attributed to the biological disturbance, habitat loss, habitat modification and political instability of the region, which has decreased the wild flora over the last few decades decreased over the last few decades due to intense biotic stress.

*Corresponding Author: Shah Khalid 🖂 shahkhalid@icp.edu.pk

Introduction

Plants are an important part of biodiversity, which have an enormous effect on the ecosystem. They live of other living organism, including human (Ahmad *et al.*, 2010; Bocuk *et al.*, 2011) having all the essential requirement for their life (Morgan, 1981). It is observed that loss of many plants form the tropical forest is due to the destruction and degradation of natural habitats by the activities of humans (Wilson, 1998). In the same manner the plants in the Himalayan region of Pakistan are facing this problem due to intense anthropogenic disturbance (Khan *et al.*, 2014).

The destruction of fauna is not only the destruction of plants, but a threat human civilization (Dyke, 2003). It is not the loss of a single plant, it's a loss of an ecosystem (Ellison *et al.*, 2005). It has been noted that with the extinction of a single species whole surroundings are affected; single species can structure and define an ecological system (Ellison *et al.*, 2010). It has been reported that loss of a single species can result in the loss of 30 different other species (Krishnamurthy, 2003).

It is widely accepted that extinction rate of plants has a touched a level that we are losing one species each day, which is ten to ten thousand time faster than its natural rate (Hilton-Taylor, 2000; Akeroyd, 2002). Loss of this level is due to loss and alteration of habitat, urbanization, introduction of new invasive species, plant disease and pollution along with global climatic change (Thomas *et al.*, 2004). Number of plants, that are threatened, have almost crossed 80,000 species (Butt *et al.*, 2015). We are endangering the plants now with our own activities (Hamilton & Hamilton, 2006).

Pakistan, along with other issues, has this important issue of loss of biodiversity (Alam and Ali, 2010). This region of the world, supporting a wide range of different ecosystems (Khan *et al.*, 2014), has 6000 different plant species (Ali and Qaisere, 2010). Rapid urbanization (Butt *et al.*, 2015) and lack of proper knowledge and techniques for the collection and use of plants (Ahmad, 2007; Razzaq et al., 2015) has led to the extinction of many plants. About 10% of the total reported flora of Pakistan is endangered (Shinwari et al., 2012). The data about the current conservation status of plants in Pakistan has some controversies as in some reports 709 plants are threatened (Chaudhri and Qureshi, 1991), according to some others, 580 plants (Nasir, 1991); a recent studies showed that only 21 plants are at threatened level (Ali and Qaiser, 2010). Walter and Gillet (1998) have stated that only 14 plants are threatened. IUCN considered the most is authoritative and comprehensive source of the global biodiversity conservation status (IUCN, 2004; Jamal, 2009). According to IUCN (1994) report, 20 plants species are under the title of threatened species (Shah and Baig, 1999). In 2008 IUCN survey showed 19 plants to be threatened.

It is the job of ecologist to find out to understand the intimate ties, that human has with other form and biodiversity, and make him aware of the importance of biodiversity (Davis and Richardson, 1995). This will result in a changed approached towards biodiversity (Ramakrishnan *et al.* 1998, Mishra *et al.* 2003). Conservation awareness should be given proper weightage and it must be promoted just like our culture (Long Chunlin and Pei Shengji, 2003). In Pakistan a few projects have been launched for the assessment and conservation of natural flora (Jan *et al.*, 2014).

The present study is an effort to understand the relationship of human with plants, and their role in the conservation status of the plants in Mohmand Agency. Mohmand Agency (FATA) is a district in Pakistan, lying on Durand Line between Pakistan and Afghanistan (34.5000° N, 71.3333° E). It is part of a narrow strip of land that is lying on the Pakistan-Afghanistan border. People of the area are having a high degree of dependency on the plants; and the plants are used as fuel, fodder, medicine, timber and for many other purposes. Due to the less development

and conservative nature of the people (Ahmad, 1980), they very much related to natural resources of the region and mostly with plants, for their various daily uses. Extensive usage of the plants, made many of plants very rare in the area (locals of the area.).

Materials and methods

Mohmand Agency was thoroughly visited and interviews were taken from the 100 local individuals including elder men (40%), and women (15%), as elders are considered more informative about the uses of the plants (Mussarat *et al.*, 2014), "hakeems"a local medical practitioner who prescribe mostly herbal medicines (15%) some youngsters (10%) and herders (20%), following the Code of Ethics (The ISE Code of Ethics, 2006). The plants were collected, identified and confirmed from flora of Pakistan, mounted and vouchered, and were submitted to Department of Botany, Islamia College Peshawar. For identification of the conservation status, IUCN criteria (Anon, 2001; Shah and Hussain, 2012; Bacha, 2013) was followed, and the plants were divided into 5 categories, on the bases of their availability, collection, growth and part used. Scores were assigned to the plants according to the given criteria (Table 1).

Results

Plants were divided into 5 categories that were reflecting their conservation status. Total 170 plants belonging to 48 families were found in Mohmand agency that were assessed for their conservation status. It was reported that 13 plants were found to be endangered.

Table 1. IUCN Criteria Followed For Assigning Plant to Different Conservation Categories.

Score	Availability	Collection	Growth	Part used		
0	Uncommon or very rare	< 1000 kg/yr	Regrowth in more 3 years	Root/Whole plant		
1	Less common or rare	500-1000 kg/yr	Regrowth within 3 years	Bark		
2	Occasional	300-500 kg/yr	Regrowth within 2 years	Seeds, Fruits		
3	Abundant	100-200 kg/yr	Regrowth within 1 year	Flowers		
4	NA	NA	Regrowth in a season	Leaves/Gum/Latex		
Plants in D	ifferent Categories on the B	ases of Their Score			ĺ	
Total	0-4	5-8	9-12	13-14	15-16	
Category	E	V	R	Ι	D	

E: Endangered; V: Vulnerable; R: Rare; I: Infrequent; D: Dominant.

These plants include Albizia lebbek Tamarix indica, Tecomella undulata, Acacia modesta, Acacia nilotica, Pinus roxburgii, Ziziphus mauritiana, Caralluma tuberculata, Cotoneaster nummularia, Dodonaea viscosa, Nannorhops ritchiana, Olea ferruginea and Salvadora persica (Table 2, Fig. 1).

Monotheca buxifolia, Rhazya stricta, Sageretia thea, Ziziphus nummularia, Peganum harmala, Periploca aphylla, Ephedra intermedia and Withania coagulans, along with other 32 plants were found to be vulnerable. Fagonia indica, Nerium indicum and Cassia senna were among 88 plants that are rare. Thirty two plants were found to be infrequent, including Forskaolea tenacissima, Aristida cyanantha, A. adscensionis and Verbascum thapsus

(Table 2).

There was no dominant species in the area, which is clear from the environmental condition and annual rain fall of the area.

Among the 48 families, Fabaceae was the most affected family with 3 endangered species, followed by Apocynaceae, Arecaceae, Bignoniaceae, Oleaceae, Pinaceae, Rhamnaceae, Rosaceae, Salvadoraceae, Sapindaceae and Tamaricaceae with 1 species each. In vulnerable status, Poaceae was the highest threatened family with 7 species, followed by Brassicaceae with 4, fabaceae with 3, Apocynaceae and Rhamnaceae with 1 species each (Table 2).

Serial	Family	Plant	A	С	G	PU	TS	Status
1	1.Acanthaceae	Diclipetra bupleuroides Nees	1	3	3	4	11	Rare
2		Justicia adhatoda L.	1	3	3	4	11	Rare
3	2.Aizoaceae	Trianthema portulacastrum L.	1	2	4	0	7	Vulnerable
1	3.Amaranthaceae	Achyranthes aspera L.	0	3	3	4	10	Rare
5		Aerva javanica (Burm. f.) Juss.	2	3	4	4	13	Infrequent
5		Chenopodium album L.	3	3	3	0	9	Rare
7		Chenopodium murale L.	3	3	3	0	9	Rare
3		Pupalia lappacea (L.) Juss.	1	3	4	4	12	Rare
9		Salsola kali L.	2	3	4	4	13	Infrequent
10		Suaeda aegyptiaca (Hasselq.) Zohary	2	3	4	4	13	Infrequent
11	4.Amaryllidaceae	Allium griffithianum Boiss.	1	3	4	4	12	Rare
12	5.Apocynaceae	Calotropis procera (Aiton) W.T. Aiton	2	3	2	4	11	Rare
ıз		Caralluma tuberculata N.E. Br.	0	1	3	0	4	Endangered
14		Nerium indicum Mill.	3	3	0	4	10	Rare
15		Periploca aphylla Decne.	1	3	0	4	8	Vulnerable
16		Rhazya stricta Decne.	3	2	0	0	5	Vulnerable
17	6.Arecaceae	Nannorrhops ritchiana (Griff.) Aitch.	0	0	0	4	4	Endangered
8	7.Asparagaceae	Asparagus gracilis Salisb.	1	3	3	4	11	Rare
9		Asparagus setaceus (Kunth) Jessop	1	3	3	4	11	Rare
20		Scilla griffithii Hochr.	1	3	3	4	11	Rare
21	8.Asteraceae	Artemisia maritima Ledeb.	1	3	4	0	8	Vulnerable
22		Calendula arvensis L.	3	3	3	4	14	Infrequent
<u>2</u> 3		Carthamus lanatus L.	3	3	3	4	13	Infrequent
24		Carthamus oxycantha M.Bieb.	3	3	3	2	11	Rare
25		Centauria iberica Trevir. ex Spreng.	2	3	4	4	13	Infrequent
26		Cousinia prolifera Jaub. & Spach	3	3	3	4	13	Infrequent
27		Crepis sancta (L.) Babc.	3	3	4	4	14	Infrequent
28		Echinops echinatus Roxb.	2	3	1	4	10	Rare
29		Erigeron trilobus (Decne.) Boiss.	1	3	3	0	7	Vulnerable
30		Filago hurdwarica (Wall. ex DC.) Wagenitz	3	3	4	0	10	Rare
31		Filago pyramidata L.	2	3	4	0	9	Rare
32		Ifloga spicata (Forssk.) Sch. Bip.	2	3	3	4	12	Rare
33		Lactuca serriola L.	3	3	3	4	13	Infrequent
34		Lactuca tatarica (L.) C.A. Mey.	2	3	3	4	12	Rare
35		Launaea procmbens (Roxb.) Ramayya	& 2	3	3	4	12	Rare
		Rajagopal						
36		Pentanema vestitum Y. Ling	2	3	3	4	12	Rare
37		Phagnolon niveum Edgew.	2	3	3	4	12	Rare
38		Pterachaenia stewartii (Hook.f.) R.R.Stewart	1	3	3	4	11	Rare
39		Saussurea heteromalla (D. Don) HandMazz.	2	3	3	4	12	Rare
40		Silybum marianum (L.) Gaertn.	2	3	3	2	10	Rare
41		Sonchus asper (L.) Hill	3	3	3	4	13	Infrequent
42		Taraxacum officinale F.H. Wigg.	3	3	4	4	14	Infrequent

Table 2. Plants with Families and Conservation Status.

J. Bio. Env. Sci. 20

7	n	1	6
4	U	1	U

43	9.Bignoniaceae	Tecomella undulata (Sm.) Seem.	0	2	0	0	2	Endangered
44	10.Boraginaceae	Anchusa arvensis (L.) M. Bieb.	2	3	3	4	7	Vulnerable
45		Arnebia griffithii Boiss.	2	3	3	4	12	Rare
46		Ehretia obtusifolia Hochst. ex A. DC.	1	3	0	4	8	Vulnerable
47		Heliotropium europaeum L.	3	3	4	4	14	Infrequent
48		Heliotropium ovalifolium Forssk.	3	3	4	0	10	Rare
49		Nonea caspica (Willd.) G. Don	2	3	3	4	12	Rare
50		Nonea edgeworthii A. DC.	1	3	3	4	11	Rare
51		<i>Onosma hispida</i> Wall. ex G. Don	1	3	3	4	11	Rare
52	11.Brassicaceae	Alyssum desertorum Stapf	3	2	3	0	8	Vulnerable
53		Arabidopsis thaliana (L.) Heynh.	2	2	3	0	7	Vulnerable
54		Capsella bursa-pastoris (L.) Medik.	2	3	3	0	8	Vulnerable
55		Cardaria draba (L.) Desv.	1	3	3	0	7	Vulnerable
56		Coronopus didymus (L.) Sm.	2	3	4	4	13	Infrequent
57		Farsetia jacquemontii Hook. f. & Thomson	2	3	4	4	13	Infrequent
58		Goldbachia laevigata (M. Bieb.) DC.	2	3	3	4	12	Rare
59		Lepidium apetalum Willd.	2	3	4	4	13	Infrequent
60		Malcolmia africana (L.) W.T. Aiton	3	2	4	4	13	Infrequent
61		Malcolmia cabulica (Boiss.) Hook. f. & Thomson	3	2	4	4	13	Infrequent
62		Sisymbrium irio L.	2	3	3	4	12	Rare
63	12.Cannabaceae	Cannabis sativa L.	2	3	3	4	12	Rare
64	13.Capparaceae	Capparis decidua (Forssk.) Pax	1	3	3	4	12	Rare
65	14.Caprifoliaceae	Lonicera japonica Thunb.	0	3	0	4	7	Vulnerable
66	14.eupinonaceae	Scabiosa olivieri Coult.	1	3	4	4	12	Rare
67	15.Caryophyllaceae	Arenaria serpyllifolia L.	2	3	3	ч 0	8	Vulnerable
68	15.euryophynaeeue	Herneraria cinerea DC	2	3	3 4	0	9	Rare
69		Herneraria hirsuta L.			4	0	9 10	Rare
-		Silene apetala Willd.	3	3				Infrequent
70		Spergula arvensis L.	3	3	4	4	14	Rare
71		Vaccaria hispanica (Mill.) Rauschert	1	3	3	4	11	Rare
72			2	3	3	4	12	Vulnerable
73		Velezia rigida L. Cleome brachucarpa M. Vahl ex Triana a	2	2	4	0	8	Vulnerable
74	16.Cleomaceae	Cleome brachycarpa M. Vahl ex Triana a Planchon	& 2	3	3	0	8	vumerable
75	17.Cucurbitaceae	Citrullus colocynthis (L.) Schrad.	0	3	4	4	11	Rare
75 76	18.Ephedraceae	Ephedra intermedia Schrenk ex C.A. Mey.	0	3	4	4	7	Vulnerable
77	19.Euphorbiaceae	Euphorbia granulata Forssk.	2	3	4	4	/ 13	Infrequent
78	20.Fabaceae	Acacia modesta Wall.	3	3 0	4	4	3	Endangered
79	20.Pabaccac	Acacia nilotica (L.) Willd. ex Delile	3 3	0	0	0	3 3	Endangered
79 80		Albizia lebbeck (L.) Benth.		1	0	0	3 2	Endangered
81		Astragalus hamosus L.	1					Rare
82		Astragalus namosus L. Astragalus pyrrhotrichus Boiss.	3	3	3	0	9 8	Vulnerable
82 83		Astragalus pyrrhorichus Boiss. Astragalus scorpioides Pourr. ex Willd.	2	3	3	0		Rare
-		Astragalus scorptolaes Fourr, ex white. Astragalus tribuloides Delile	1	3	3	4	11	Rare
84 8-		Astragatus tribuloiaes Denie Cassia senna L.	3	2	1	4	10 o	
85			0	3	3	2	8	Vulnerable
86		Medicago minima (L.) L.	3	3	4	4	14	Infrequent

J. Bio. Env. Sci. 2

7	n	1	6
4	U	T	U

87		Trigonella incisa Hornemann ex Fischer & Meye	r 3	3	4	0	10	Rare
88		Vicia sativa L.	1	2	3	0	6	Vulnerable
89	21.Geraniaceae	Erodium alnifolium Guss.	2	3	4	4	13	Infrequent
90		Erodium ciconium (L.) L'Hér. ex Aiton	2	3	4	4	13	Infrequent
91		Erodium cicutarium (L.) L'Hér. ex Aiton	2	3	4	4	13	Infrequent
92		Geranium rotundifolium L.	2	3	1	4	10	Rare
93	22.Lamiaceae	<i>Ajuga bracteosa</i> Wall. ex Benth.	2	3	4	4	13	Infrequent
94		Mentha longifolia (L.) Huds.	2	2	4	4	12	Rare
95		Micromeria biflora (BuchHam. ex D. Do	on) 2	3	4	4	13	Infrequent
		Benth.						
96		Nepeta raphanorhiza Benth.	1	3	3	4	11	Rare
97		<i>Otostegia limbata</i> (Benth.) Boiss.	2	3	2	4	11	Rare
98		Salvia aegyptiaca L.	3	3	4	4	14	Infrequent
99		Salvia moocroftiana Wall. ex Benth.	2	3	4	4	13	Infrequent
100		Teucrium stocksianum Boiss.	2	3	3	4	12	Rare
101		Ziziphora tenuior L.	3	3	4	4	14	Infrequent
102	23.Linaceae	Linum corymbulosum Rchb.	2	3	4	4	13	Infrequent
103	24.Malvaceae	Malva neglecta Wallr.	2	2	4	4	12	Rare
104		Malva parviflora L.	1	2	4	4	11	Rare
105	25.Nitrariaceae	Peganum harmala L.	3	2	3	0	8	Vulnerable
106	26.Nyctaginaceae	Boerhavia procumbens Banks ex Roxb.	2	3	4	0	9	Rare
107	27.Oleaceae	Olea ferruginea Royle	2	2	0	0	4	Endangered
108	28.Papveraceae	Fumaria indica Pugsley	2	3	4	4	13	Infrequent
109		Papaver rhoeas L.	2	3	3	2	10	Rare
110	29.Pinaceae	Pinus roxburgii Sarg.	0	3	0	0	3	Endangered
111	30.Plantaginaceae	Kickxia incana (Wall.) Pennell	2	3	3	4	12	Rare
112		Kickxia ramosissima Janch.	2	3	3	4	12	Rare
113		Misopates orontium (L.) Raf.	1	3	3	4	11	Rare
114		Plantago lanata Lag. & Rodr.	3	3	3	2	11	Rare
115		Plantago ovata Forssk.	2	3	3	2	10	Rare
116		Veronica biloba L.	1	3	3	4	11	Rare
117	31.Plumbaginaceae	Limonium macrorhabdon Kuntze	1	3	3	4	11	Rare
118	32.Poaceae	Agrostis viridis Gouan	2	2	4	0	8	Vulnerable
119		Aristida adscensionis L.	3	2	4	4	13	Infrequent
120		Aristida cyanantha Nees ex Steud.	2	3	4	4	13	Infrequent
121		Brachypodium distachyon (L.) P. Beauv.	3	2	4	0	9	Rare
122		Bromus pectinatus Thunb.	3	1	3	0	7	Vulnerable
123		Cenchrus ciliarus L.	2	2	4	0	8	Vulnerable
124		Chrysopogon serrulatus Trin.	2	3	3	0	8	Vulnerable
125		Cymbopogon jwarancusa (Jones) Schult.	2	2	4	4	12	Rare
126		Cynodon dactylon (L.) Pers.	3	3	4	0	10	Rare
127		Eragrostis papposa (Roem. & Schult.) Steud.	2	3	4	0	9	Rare
128		<i>Heteropogon contortus</i> (L.) P. Beauv. ex Roem. Schult.	& 2	2	4	4	12	Rare
129		Hordeum jubatum L.	3	2	4	0	9	Rare

J. Bio. Env. Sci. 20

7	n	1	6
4	U		U

130		Hordeum murinum L.	3	2	3	0	8	Vulnerable
131		Lamarckia aurea (L.) Moench	2	3	4	0	9	Rare
132		Pennisetum oreintale Rich.	2	2	4	0	8	Vulnerable
133		Phalaris minor Retz.	3	2	4	0	9	Rare
134		Phleum paniculatum Huds.	2	3	4	0	9	Rare
135		Poa annua L.	3	3	4	0	10	Rare
136		Poa bulbosa L.	2	3	4	0	9	Rare
137		Rostraria cristata (L.) Tzvelev	2	2	4	0	8	Vulnerable
138		Tetrapogon villosus Desf.	2	2	4	0	8	Vulnerable
139		Themeda anathera (Nees ex Steud.) Hack.	2	3	4	0	9	Rare
140	33.Polygalaceae	Polygala hohenackeriana var. rhodopea Velen.	2	3	3	4	12	Rare
141	33.Polygonaceae	Emex spinosus (L.) Campd. (Polygonaceae)	3	3	4	4	14	Infrequent
142		Polygonum plebeium R. Br.	2	3	4	4	13	Infrequent
143		Rumex dentatus L.	2	2	4	4	12	Rare
44		<i>Rumex hastatus</i> D. Don	2	2	4	4	12	Rare
145		Rumex vesicarius L.	2	2	4	2	10	Rare
146	34.Primulaceae	Anagallis arvensis L.	2	3	3	4	12	Rare
47	35.Rananculaceae	Clematis graveolens Lindl. (Rananculaceae)	1	3	3	4	11	Rare
48		Rananculus muricatus L.	2	3	4	4	13	Infrequent
49	36.Resedaceae	Oligomeris linifolia (Vahl) J.F. Macbr.	2	3	4	4	13	Infrequent
150	37.Rhamnaceae	Sageretia thea (Osbeck) M.C. Johnst.	1	2	0	2	5	Vulnerable
151		Ziziphus mauritiana Lam.	2	1	0	0	3	Endangered
152		Ziziphus nummularia (Burm. f.) Wight & Arn.	2	2	0	2	6	Vulnerable
53	38.Rosaceae	Cotoneaster nummularius Fisch. & C.A. Mey.	1	1	0	2	4	Endangered
¹ 54		Duchesnea indica (Andrews) Teschem.	2	3	4	0	9	Rare
55	39.Rubiaceae	Galium aparine L.	2	3	4	0	9	Rare
156	40.Salvadoraceae	Salvadora persica L.	1	3	0	0	4	Endangered
L57	41.Sapindaceae	<i>Dodonaea viscosa</i> Jacq. (Sapindaceae)	3	1	1	0	4	Endangered
58	42.Sapotaceae	Monotheca buxifolia (Falc.) A. DC.	3	0	0	2	5	Vulnerable
159	43.Scrophulariaceae	e Scrophularia striata Boiss.	1	3	3	4	11	Rare
60		Verbascum thapsus L.	2	3	3	4	12	Infrequent
61	44.Solanaceae	Datura innoxia Mill. Solanaceae	2	3	4	2	11	Rare
62		Solanum nigrum L.	2	3	4	0	9	Rare
63		Solanum surattense Burm. f.	2	3	3	2	10	Rare
64		Withania coagulans (Stocks) Dunal	3	3	1	4	7	Vulnerable
65		Withania somnifera (L.) Dunal	1	3	3	2	9	Rare
.66	45.Tamaricaceae	Tamarix indica Willd.	1	1	0	0	2	Endangered
167	46.Thymelaeaceae	Thymelaea passerina (L.) Coss. & Germ.	2	3	3	4	12	Rare
168	47.Urticaceae	Forsskaolea tenacissima L.	3	3	4	4	14	Infrequent
.69	48.Zygophyllaceae	Fagonia indica Burm. f.	3	3	4	0	10	Rare
.70		Tribulus terrestris L.	3	2	4	0	9	Rare

There were 13 rare plants each in family Asteraceae and Poaceae. Boraginaceae was next in order of rare plants, with 5 species, followed by Fabaceae, Amaranthaceae, Caryophyllaceae, Lamiaceae, Plantaginaceae and Polygonaceae with 4 species each. Solanaceae, Asparagaceae and Scrophulariaceae each were having 3 species in rare class, followed by Brassicaceae, Apocynaceae, Acanthaceae, Malvaceae and Zygophyllaceae with 2 species each. Thirteen families were reported to have only 1 plant each in rare class, while rest of the families did not has any plant in the said class (Table 2).

Highest number of infrequent plants belong to Asteraceae family (7), followed by Lamiaceae and Brassicaceae with 5 species each. Amaranthaceae and Geraniaceae were reported to have 3, while Poaceae and Polygonaceae had 2 species each in infrequent class. Eleven families were reported to have only 1 plants each in infrequent categories. From the results it can be concluded that Fabaceae and Asteraceae were the most affected families in terms of conservation status (Table 2).

Discussion

Conservation status of the plants is dependent upon grazing and uses by the locals (Humayun *et al.*, 2006) i.e. less palatable and unpalatable species are more conserved compared to palatable one (Ghazanfar and Osborne, 2010). Anthropogenic disturbances and overgrazing can lead to loss of 49 percent species from an area. Use of the fuel wood is the main cause in degradation of the forests (Humayun *et al.*, 2006).

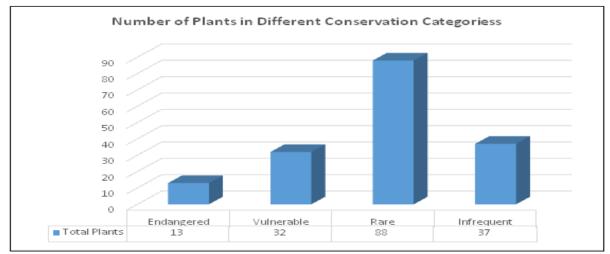


Fig. 1. Total Plants in each Endangered, Vulnerable, Rare and Infrequent Status.

Mohmand agency, being very rural and economically less developed has a population, which is dependent on natural sources up to maximum level, and that is why plants of this area are facing extreme biotic stress. We have reported almost the same trends, as by these workers, that there are many disturbances which can directly affect the conservation of a plants species. Almost all the above mentioned threats, that are dangerous the biodiversity are present in one form or the other in the study area, and that is the reason that status of the plant regarding its conservation is very poor.

Overall conservation status of plants in Pakistan is poor, and many plants are under the tag of threatened and endangered species. According to the locals, many areas, that were used to a site of different kinds of plants are now occupied by houses and cultivated land, which resulted in the loss of wild flora from the region. Many local said that the current diversity of the plants is very less compared to flora of this region 50 years ago. *Caralluma tuberculata* and *Nannorhops ritchiana* were the two most cited plants by the local for their conservation status. These plants had decreased to an alarming level in the area.

The possible decrease of *Caralluma tuberculata* is that it is a much liked and highly valued vegetable in the area, and that is why it is very extensively collected. The collection is unwise and uneducated, which resulted in loss of the diversity of this plants form plain area in Mohmand agency. *N. ritchiana* plants is also having the same condition and its species number has been decrease for the past few decades. The possible reason for the decline of this species is that the plant is locally used for making various handicrafts (mats, caps, utensils etc.) generally by all locals, and specifically by a clan of Mohmand called Utmankhel. The excessive usage of this plants is possible reason for the decline of this species in the region.

The threat to the plants in the area has many dimensions. Locals are illiterate and economically poor. They are unable to grasp the importance of the biodiversity in the area. They do not know how to economically collect and use the plants so the plant could sustain for the coming generations. If some of them know the importance of plants, unfortunately they have no second option, and they have to cut plants, mostly for fuel purpose. Another dimension of this problem is the political instability of the region. The people have been displace several times in the las decade, and still the condition of the peace is very unpredictable, so the locals are unable to give proper attention to conservation issues. Population explosion is another aspect in this regard. With increase in number of people, biotic stress is increasing on the plants, and more plants are used by human directly, and there animals indirectly. The area is having a rich flora of medicinal plants, which are needed to be conserved in the earliest possible time.

Conclusion

Conservation status assessment of 170 plants of Mohmand agency showed that there were 13 plants in the area that are endangered.

There are 32 plants, which are vulnerable and it needs proper attention; eighty eight plants are vulnerable while only 37 plants are infrequent.

Family fabaceae, with 4 plants in endangered

category is the most threated family.

The current status of the flora speaks for the unhealthy conservation status of the wild flora of Mohmand agency, which should be properly addressed on urgent bases.

Acknowledgement

The author is thankful to Prof. Dr. Syed Zahir Shah for providing the basic idea about the research project and Aaron M. Ellison, Harvard Forest, Harvard University, USA for helping in putting the collected data in the form of a manuscript. We also extend our thanks to Political Agent and Tribal Elders of Mohmand Agency for providing security measures and support during the research work.

References

Ahmad I, Ahmad MSA, Hussain M, Ashraf M, Ashraf MY, Hameed M. 2010. Spatiotemporal aspects of plant community structure in open scrub rangelands of sub mountainous Himalayan plateaus. Pakistan Journal of Botany **42(5)**, 3431-3440.

Ahmad SA. 2007. Medicinal wild plants from Lahore-Islamabad Motorway (M-2). Pakistan Journal of Botany **39(2)**, 355-375.

Ahmad AS. 1980. Pukhtun Economy and Society: Traditional structure and economic development in a tribal society. *Routledge and Kegan Paul Publishers*, London.

Akeroyd J. 2002. A rational look at extinction. Plant Talk **28**, 35-37.

Alam J, Ali SI. 2010. Contribution to the Red List of the Plants of Pakistan. Pakistan Journal of Botany **42(5)**, 2967-2971.

Ali H, Qaiser M. 2010. Contribution to the Red List of Pakistan. A case study of *Astragalus gahiratensis* (Fabaceae-Papilionoideae). Pakistan Journal of Botany **42(3)**, 1523-1528. Ali H, Qaiser M. 2010. Contribution to the Red List of Pakistan: A case study of Astragalus gahiratensis Ali (Fabaceae-Papilionoideae). Pakistan Journal of Botany **42**, 1523–1528.

Bocuk H, Ture C, Ketenoglu O. 2009. Plant diversity and conservation of the northeast Phrygia region under the impact of land degradation and desertification (Central Anatolia, Turkey). Pakistan Journal of Botany **41(5)**, 2305-2321.

Butt A, Mateen F, Javed I, Jabeen A. 2015. A Comparative Analysis of National and International Plant Conservation Techniques: A Review. Journal of Science and Engineering Research, **2(3)**, 3044-50.

Chaudhry M, Qureshi R. 1991. Pakistan Endangered Flora II: A Checklist of rare and seriously threatened taxa of Pakistan. Pakistan Systematics **5(1)**, 84.

Davis G, Richardson D. 1995. Mediterranean Type Ecosystems: The Function of Biodiversity. Springer, Berlin, Germany, p.366.

Dyke, FV. 2003. Conservation Biology. McGraw Hill, New York.

Ehrlich PR, Ehrlich A. 1981. Extinction the cause and consequences of the disappearance of species. Random House, N.Y.

Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL, Sobczak WV, Stinson KA, Stone JK, Swan CM, Thompson J, von Holle B, Webster JR. 2005. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment 9, 479-48.

Ellison AM, Poltkin AAB, Foster D, Orwig DA. 2010. Experimentally testing the role of foundation

species in forests: the Harvard Forest Hemlock Removal Experiment. Methods in Ecology & Evolution 1, 168–179.

Ghazanfar SA. 2010. Restoring Saline Habitats: Identification and name changes in halophytes of the Arabian Peninsula. In: Urbanisation, Land Use, Land Degradation and Environment. (Eds.): MunirOzturk, AhmetRuhiMermut, Ali Celik.New Delhi; NAM S&T Centre.

Hamayun M, Khan SA, Sohn EY, Lee I. 2006. Folk medicinal knowledge and conservation status of some economically valued medicinal plants of District Swat, Pakistan. Lyonia **11(2)**, 101-113.

Hamilton A, Hamilton P. 2006. Plant Conservation. An Ecosystem Approach. Bath Press, UK.

Hilton-Taylor C. 2000. 2000 IUCN Red List of Threatened Species. IUCN, Gland, Switzerland and Cambridge, UK.

IUCN. 2004. IUCN website species information service,

www.iucn.org/themes/ssc/programs/sisindex.htm.

IUCN. 2008. IUCN Red List of Threatened species, www.iucnredlist.org cited on May 31, 2013.

Jamal Z. 2009. Biodiversity, Ethnobotany and Conservation Status of the Flora of Kaghan Valley Mansehra, NWFP. Pakistan. Ph.D. Thesis, Department of Botany, QAU Islamabad, Pakistan.

Jan G, Jan FG, Humayun M, Khan K, Khan A. Diversity and conservation status of vascular plants of Dir Kohistan valley, Khyber Pakhtunkhwa Province. Journal of Biodiversity and Environmental Sciences 5(1), 164-172.

Khan M A, Khan MA, Hussain M, Mujtaba G. 2014. Plant diversity and conservation status of

Himalayan Region Poonch Valley Azad Kashmir (Pakistan). Pakistan Journal of Pharmaceutical Sciences **27(5)**, 1215-1239.

Khan M, Hussain F, Musharaf S. 2013a. Biodiversity of plant species in Tehsil Takht-e-Nasrati, Pakistan. International Journal of Biodiversity and Conservation, **5(1)**, 39-46.

Khan M, Hussain F, Musharaf S. 2013b. Floristic Composition and Biological Characteristics of the Vegetation of Sheikh Maltoon Town, District Mardan, Pakistan. Annual Review & Research in Biology **3(1)**, 31-41.

Krishmamurthy KV. 2003. A Textbook of biodiversity Science Publishers Inc. Enfield, NH, USA.

Long C, Shengii P. 2003. Cultural diversity promotes conservation and application of biological diversity, Acta Botanical Yunnanica 14 (Supp.), 11 – 22.

Mishra BP, Tripathi RS, Tripathi OP, Pandey HN. 2003. Effect of disturbance on fur dominant and economically important woody species in a broadleaved subtropical humid forest of Meghalaya, northeast India. Current Science **84**, 1449-1453.

Morgan, WT. 1981. Ethnobotany of the Turkana: Use of Plants by a Pastoral People and their Livestock in Kenya. Journal of Economic Botany **35** (96), 130.

Mussarat S, Abdel-Salam NM, Tariq A, Wazir SM, Ullah R, Adnan M. 2014. Use of Ethno medicinal Plants by the People Living around Indus River. Evidence-Based Complementary and Alternative Medicine **2014**, 1-14.

Nasir YJ. 1991. Threatened Plants of Pakistan. In:Ali SI, Ghaffa A. (eds.) Plant Life of South Asia:Proceedings of the International Symposium Karachi,229, 234

RamakrishnanPS,SaxenaKG,ChandrashekaraUN. 1998. Conserving the SacredforBiodiversityManagement.OxfordandIBHPublication Co. Pvt.Ltd., Newdelhi, India.

Razzaq A, Hadi F, Rashi A, Ibrar M, Ali U. 2015. Exploration of Medicinal Plants and Their Conservation Status at Higher Altitude of District Shangla, Khyber Pakhtunkhwa, Pakistan. American-Eurasian Journal of Agricultural & Environmental Science **15 (3)**, 328-331.

Shah M, Baig KJ. 1999. Threatened Species Listing in PAKISTAN: Status, Issues and Prospects in using IUCN Red List Criteria at National Level: A Regional Consultative Workshop for South and Southeast Asia, IUCN Reg. Biodivers. Program, Asia, 70-81.

Shinwari ZK, Gilani SS, Shoukat M. 2002. Ethnobotanical resources and implications for curriculum. In: Shinwari ZK, Hamilton A, Khan AA. (eds.), Proceedings of Workshop on Curriculum Development in Applied Ethnobotany, **21**, 34. May, 2-4, Nathiagali, Abbotabad, WWF Pakistan.

The ISE Code of Ethics. 2006. International Society of Ethnobiology [WWW Document], n.d. URL http://www.ethnobiology.net/whatwedo/coreprogra ms/iseethicsprogram/codeofethics/accessed04.01.16.

Thomas CD, Gameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Jaarsveld AS, Midgley GF, Miles L, Ortega- Huerta MA, Peterson AT, Phillips OL, William SE. 2004. Extinction risk from climate change. Nature **427**, 145-148.

Walter KS, Gillet HJ. 1998. IUCN Red list of Threatened Plants. World Conservation Monitoring Center.-IUCN-The World Conservation Union, Gland, Switzerland and Cambridge, UK.

Wilson EO. 1998. Biodiversity, National academy Press, Washington Dc, USA.