

Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 8, No. 5, p. 239-248, 2016 http://www.innspub.net

OPEN ACCESS

Association Analysis for morphological traits in *Triticum urartu* and *Triticum boeoticum* populations using IRAP and REMAP markers

Mojgan TabriziVand Taheri, Seyed Siamak Alavi Kia*, Mohammad Moghaddam Vahed, Seyed Abolghasem Mohammadi, Pari Andaz

Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, Iran

Article published on May 27, 2016

Key words: Association analysis, IRAP, REMAP, Triticum boeoticum, Triticum urartu.

Abstract

The two einkorn wheats, *Triticum boeoticum* and *Triticum urartu*, that known as 'A' genome donor to cultivated wheat are the main elements of many wheat breeding programs. In order to analyze association of IRAP and REMAP markers with some morphological traits, 44 genotypes of *T. urartu* and 76 genotypes of *T. boeoticum* from west and north-west of Iran were used. Stepwise regression analysis between molecular data as predictors and each morphological traits data as dependent variables was performed to identify informative markers associated with the studied traits. The associated IRAP and REMAP markers explained %16-85 and %24-89 of the variation of each individual trait, respectively. The most explained variation belongs to traits days to heading and harvest index with association of 11 REMAP loci. Totally, 15out of 26 scorable IRAP combinations showed significant regression with 12 morphological traits. While, 28 out of 41 REMAP scorable combinations had significant regression with all 15 morphological traits. Totally, insertional genomic region of *NIKITA* and *LTR7286* retrotransposons indicated the highest association with most of the studied traits. Therefore, it's possible to use these retrotransposons along with morphological traits in wheat breeding programs to identify suitable parents to produce mapping populations and also Marker-assisted selection programs, after necessary validation.

*Corresponding Author: Seyed Siamak Alavi Kia 🖂 ss.alavikia@tabrizu.ac.ir

Introduction

Three species including *T. monococcum*, *T. boeoticum* and *T. urartu* belongs to the einkorn wheat group (Mizumoto *et al.*, 2002). Einkorn wheats are diploid and self-pollinated species (2n=2X=14), known as closely wild relatives of bread and durum wheats (Kilian *et al.*, 2007).*T. boeoticum* and especially *T. Urartu* are known as two main candidate species for "A" genome donor to bread and durum wheats (Eslami Farouji *et al.*, 2015).

West and north-west of Iran includes a large area of Fertile Crescent and is one of the important centers for wild wheat distribution (Kimber and Feldman, 1987). So, this area is potentially ideal for exploring suitable genes to further introgression into cultivated wheat (Van Slagren, 1994). Marker assisted selection is one of the main applications of molecular markers. Selection of plants with superior morphological traits is mainly objected in plant breeding programs. So, any technique helping the early selection of the favorite attributes can make the breeding period shorter and increase the efficiency of the selection (Gupta *et al.*, 1999). This point will be highlighted about some wild species that are trouble in field phenotyping such as *T. boeoticum* and *T. urartu*.

retrotransposon sequences are easily accessible from any plant genome, widely dispersed throughout the length of all chromosomes, commonly found in the euchromatic region and as molecular markers are highly informative (Kumar and Hirichika, 2001).

IRAP and REMAP are two retrotransposon based marker systems that used in a variety of applications, including measurement of genetic diversity and population structure, chromatin modification and epigenetic reprogramming, similarity and cladistic relationships, determination of essential derivation and marker-assisted selection (Kalendar*et al.*, 2011). Using linkage-based association analysis in wheat, a large number of genes for various traits have already been tagged (Gupta *et al.*, 1999). However, previous linkage-based studies usually allowed identification of genes at distance 10-30 CM from the closest markers which is hardly suitable either for marker-assisted breeding or for identification of functional genes. Furthermore, in linkage-based analysis, only few genotypes that are used as parents of mapping populations could be screened for marker trait associations, placing another limitation of linkage based analysis. In the recent past, association studies have been conducted which not only allow mapping of genes with higher level of confidence but also allow detection of genes, which would otherwise escape detection on linkage-based studies (Neale and Savolainen, 2004).

Multiple regression analysis based on association of a marker with the phenotype gives estimates and test of significance of the parameters of multiple linear regression equations. It also provides the coefficient to determination (R²) which indicates the proportion of variability of a dependent variable that can be explained by a linear function of independent variables (Gomez and Gomez, 1984). Roy et al. (2006) reported association of the total 131 SSR, 43 SAMPL and 166 AFLP markers with at least one of the 14 agronomical studied traits in bread wheat via multiple regression analysis Associated SSR markers with flowering time were identified under different growing regimes in barley by means of regression approach (Ivandic et al., 2002). Khaled et al. (2015) used regression analysis to identify linked ISSR and RAPD markers with yield traits in bread wheat under normal and drought conditions and showed that, UBC-881 and OPF-10 markers significantly regressed with traits. In the study of ISSR Marker-trait association analysis using regression in bread wheat highly significant associations were reported with the studied traits (Motawea et al., 2015). Marsafari et al. (2014) used multiple regressions to identify RAPD, ISSR informative markers for traits in Iranian date palm and reported high association with morphological traits. Basaki et al. (2011) analyzed stepwise regression of morphological traits in pomegranate with microsatellite markers. Each of 14 traits showed significant association on with 14 of the

23 polymorphic SSR bands. Khaled and Hamam, (2015) reported significant regression for days to heading and spike length using 61 ISSR and 40 SRAP markers in bread wheat. The aim of this study was to identify informative IRAPs and REMAPs associated with morphological traits in *T. boeoticum* and *T. urartu* populations using multiple regression.

Materials and methods

Plant materials and field experiment

Plant materials of current study consisted of 14 populations (44 genotypes of five T. urartu populations and 76 genotypes of nine T. boeoticum populations) collected from west and north-west of Iran (Table1). In order to vernalize the materials, seeds were germinated during 4 days in 20 °C, then planted in plastic pots and kept in growing chamber for 4 weeks under moisture of %70 and 16 hours lighting condition. Genotypes were assessed during growing season of 2014 in a randomized complete block design with two replications at the research station of Faculty of Agriculture, University of Tabriz. The following traits were measured during growing season: flag leaf length, flag leaf width, plant height, main spike length, main spike weight, number of spikelet, number of seeds, seeds weight, total number of tiller, number of fertile tiller, total spikes weight, biomass weight, days to heading, seed yield and harvest index.

DNA extraction and PCR reaction

Genomic DNA was extracted from leaf samples using Lodhi et al. (1994) method. The quality and concentration of DNA were measured using and %0.8 spectrophotometry agarose gel electrophoresis. Eight single IRAP primer, 28 IRAP primer combinations and 88 REMAP combinations (combined from eight IRAP and 11 ISSR primers) were employed to study association between markers and traits (Table 2). PCR Amplification was performed in a total volume of 10 µl containing 1.65 μl of dH2O, 4 μl of Taq-polymerase master mix, 1 μl of each primer and 0.35 µl MgCl₂. The amplification condition was conducted at 94°C for 4 min for initial denaturation step; followed by 38 cycles of three steps: denaturation for 1 min at 94 °C, annealing for 55s at respective temperature and extension for 2 min at 72 °C with a final extension for 7 min at 72 °C.PCR products were separated by %1.8 agarose gel electrophoresisin 1X TBE buffer with constant voltage of 130V for 2 hours. The amplified DNA fragments were visualized under UV light and photographed using a gel documentation system.

Statistical analysis

Clear and distinguishable amplified fragments were scored in binary system whereas 1 for presence and o for absence of bands. The Number of polymorphic loci, Polymorphic Information Content (PIC), expected heterozygosity (H_e), number of effective allels (N_e) and shannon's information index (I) were calculated using GenAlEx 6.4 (peakall and Smouse, 2006).Stepwise regression analysis between morphological traits as dependent and molecular markers as independent variables was performed using SPSS (version 16).

Results

Variation of morphological traits

Analysis of variance revealed significant differences among the accessions of *T. boeoticum* at %1 level of probability in all 15 traits, indicating the existence of high diversity in these *boeoticum* populations. While, ANOVA showed significant differences among genotypes in terms of all traits except days to heading in *T. urartu* accessions (Table 3).

Markers efficiency and polymorphism

26 out of 36 IRAP and 41 out of 88 REMAP combinations amplified polymorphic and scorable banding patterns. High percentages of polymorphism were detected by IRAP (%84.62) and REMAP (%75.53) markers. Analysis of molecular variance results showed significant phi for IRAP and REMAPs. Estimation of variance within population was higher than among populations (Table 4). IRAP combinations amplified a total of 170 loci in range of150-2500 bp.

Species	Code	Collectingregion	Longitude	Latitude
T.boeoticum	114	ghazvin	50-40-32	34-23-27
T.boeoticum	12	kermanshah	47-32-32	34-19-33
T.boeoticum	126	hamedan	48-8-38	33-11-27
T.boeoticum	10	kordestan	46-28-27	36-19-31
T.boeoticum	163	Chaharmahalbakhtiari	50-51-40	35-17-26
T.boeoticum	171	lorestan	48-13-32	30-44-25
T.boeoticum	257	Kermanshah	47-33-21	33-24-25
T.boeoticum	19	Kermanshah	46-57-26	33-32-19
T.boeoticum	3	West azerbaijan	45-45-28	36-39-20
T.urartu	154	Kohgiluyehboyerahmad	51-11-34	34-47-32
T.urartu	15	Kordestan	46-16-18	34-27-22
T.urartu	165	Kermanshah	47-22-25	33-31-28
T.urartu	162	Chaharmahalbakhtiari	50-51-29	33-53-30
T.urartu	486	kordestan	42-19-31	35-37-34

Table 1. The geoposition of studied T. urartu and T.boeoticum populations.

Table 2. Name and sequence of primers.

Code	Primer	Sequence	Primer	Sequence5'→3'
825	ISSR1	(AC) ₈ T	Sukkula	GATAGGGTCGCATCTTGGGCGTGAC
826	ISSR2	(AC) ₈ C	Nikita	CGCATTTGTTCAAGCCTAAACC
827	ISSR3	(AC) ₈ G	LTR6149	CTCGCTCGCCCACTACATCAACCGCGTTTATT
830	ISSR4	(TG)8G	3 LTR	TGTTTCCCATGCGACGTTCCCCAACA
834	ISSR5	(AG) ₈ yT	LTR6150	CTGGTTCGGCCCATGTCTATGTATCCACACATGTA
835	ISSR6	(AG) ₈ yC	5 LTR1	TTGCCTCTAGGGCATATTTCCAACA
840	ISSR7	(GA) ₈ yT	5 LTR2	ATCATTCCCTCTAGGGCATAATTC
841	ISSR8	(GA) ₈ yC	LTR7286	GGAATTCATAGCATGGATAATAAACGATTATC
845	ISSR9	(CT) ₈ rG		
847	ISSR10	(CA) ₈ rC		
848	ISSR11	(CA) ₈ rG		

The combinations resulted from seven IRAP primers produced on average 6.53 bands per individual. Maximum and minimum PIC values about IRAP loci resulted from *5'LTR1-LTR6150* (0.481) and *5'LTR2-LTR6149* (0.298) IRAP combinations, respectively (Table 5). In REMAP analysis, 41 combinations amplified 214 loci in range of 150-2500 bp. *ISSR827*- $5'LTR_1$ (0.495) and ISSR825-LTR7286 (0.317) showed the maximum and minimum PIC values, respectively among REMAP loci. Also, the highest and lowest values for H_e was detected respectively for *sukkula-3'LTR*and5'*LTR2-LTR6149*IRAP, *ISSR848-5'LTR2* and *ISSR827-LTR7286*REMAP combinations (Table 5).

Table 3. Analysis of variance for morphological traits.

	SV	Number spikelet	of Number seeds	of Seeds w	eight Number tiller	of fertile Days to	heading Harvest index
7	Repeat	9.416 ^{ns}	97.815 ^{ns}	0.006 ^{ns}	29.384 ^{ns}	1.089 ^{ns}	35.526*
	Genotype	23.919**	139.458*	* 0.036**	87.523**	76.773*	* 19.345**
cun	Between	70.061**	128.523 ⁿ	us 0.0363 ¹	^{ns} 215.903 ^{**}	253.85	9** 46.384**
T.boeoti	Within	17.412	140.99	0.0366	69.417	51.799	15.532
	Error	6.249	62.983	0.014	27.238	13.943	5.253
	Repeat	28.125	236.531	0.012	0.001	0.003	0.005
	Genotype	36.436**	171.96**	0.051**	1.136**	0.227^{ns}	⁵ 0.019 [*]
artu	Between	148.530**	175.835	0.050	1.321	0.273	0.037^{*}
	Within	22.424	171.475	0.051	1.112	0.221	0.017
T.ur	Error		9.871	62.404	0.018	0.607	0.278 0.013

*, ** and ns Significant at %5 and %1 probability levels and not significant respectively.

242 | Taheri *et al*.

		•								
	SV	Flag leaf width	Flag leaf	Plant height	Yield	Main spike	Biomass	Total spikes	Total number	Main spike
			length			length		weight	of tiller	weight
	Repeat	2.317^{*}	17.175**	90.325^{ns}	2.635^{ns}	2.016 ^{ns}	18.237 ^{ns}	25.105^{ns}	46.283 ^{ns}	0.049 ^{ns}
	Genotype	2.723**	16.196**	327.842**	7.310**	8.030**	284.296**	69.630**	119.578**	0.230**
uma	Between	10.675**	89.804**	384.984*	15.826**	29.683**	716.741**	150.759**	278.926**	0.449**
sotic	Within	1.602	5.815	319.783	6.108	4.976	223.309	58.189	97.106	0.198
$\Gamma.bo$	Error	0.564	2.146	102.192	2.010	1.646	69.760	19.149	35.865	0.063
	Repeat	0.001	4.368	66.427	0.004	1.234	12.734	0.139	9.031	1.017*
	Genotype	3.489**	13.769**	349.581**	3.154**	7.052**	383.708**	81.3**	102.742*	0.345**
	Between	22.055**	67.715**	1486.044**	624.867	30.346**	3.59^{*}	101.089	97.968	0.348
artu	Within	1.168	7.026	207.523	3.056	4.140	353.563	78.826	103.338	0.345
T.ur.	Error	0.97	3.587	139.442	1.312	3.19	172.418	35.576	57.095	0.175
		1		1 1 1						

Table 3. Continued.

*, ** and ns Significant at %5 and %1 probability levels and not significant respectively.

Association between IRAP markers and morphological traits

Totally, 25 out of all 170 polymorphic IRAP loci were associated with all 15 morphological traits (table 6). Biomass showed significant regression with only one marker, days to heading with eight markers, harvest index with five markers, each of the traits flag leaf length, seeds weight, total spikes weight and yield with two markers, traits number of fertile tiller, plant height, main spike length, flag leaf width and main spikes weight with four markers.

Table 5. The polymorphism information content (PIC) value and expected heterozygosity (H_e) of IRAPs and REMAPs.

Primer combinationH, aPIC PrimerPrimerH, c PrimerPIC c c 2517RPrimerH, cPIC c <b< th=""><th></th><th></th><th></th><th></th><th></th><th></th></b<>						
3LTR 0.298 0.381 ISSR826-5LTR2 0.259 0.478 LTR 6550 0.407 0.444 ISSR826-LTR6149 0.288 0.428 NIKITA 0.364 0.419 ISSR826-LTR6150 0.333 0.463 SILTR 0.364 0.419 ISSR826-TICR 0.344 0.447 LTR 6149 0.312 0.379 ISSR841-3'LTR 0.299 0.456 5'LTR2 0.331 0.393 ISSR847-3'LTR 0.2424 0.438 3'LTR - LTR 6149 0.392 0.476 ISSR847-3'LTR 0.2424 0.439 3'LTR-NIKITA 0.341 0.431 ISSR847-3'LTR 0.2425 0.410 SUKKULA-LTR6150 0.299 0.370 ISSR847-SUKKULA 0.245 0.410 SUKKULA-3'LTR 0.430 0.452 ISSR847-SUKKULA 0.347 0.426 5'LTR2-TRE410 0.312 0.354 ISSR847-SUKKULA 0.347 0.492 SUKKULA-5'LTR2 0.316 0.468 ISSR840-NIKULA 0.346 0.493 S'LTR2-TR6100 0.209 0.296 ISSR845-SUKKULA 0.39	Primer combination	He	PIC	Primer	H _e	PIC
$\begin{array}{llllllllllllllllllllllllllllllllllll$	3'LTR	0.298	0.381	ISSR826-5'LTR2	0.259	0.478
SUKKULA 0.342 0.379 ISSR826-IXTRA 0.272 0.365 NIKITA 0.364 0.419 ISSR826-IXTR6150 0.333 0.463 5/LTR 0.364 0.312 0.379 ISSR847-3/LTR 0.299 0.465 5/LTR2 0.331 0.393 ISSR847-3/LTR 0.299 0.435 3/LTR - LTR 6149 0.392 0.476 ISSR826-LTR7286 0.313 0.439 3/LTR - NIKTIA 0.341 0.431 ISSR835-NIKITA 0.242 0.436 SUKKULA - LTR6150 0.299 0.370 ISSR847-3/UKKULA 0.282 0.410 SUKKULA - SLTR2 0.312 0.354 ISSR840-SUKKULA 0.233 0.444 SUKKULA - SLTR2 0.312 0.355 0.408 ISSR840-SUKKULA 0.229 0.426 5/LTR2-IRK017A 0.209 0.298 ISSR840-SUKKULA 0.346 0.489 5/LTR2-IRK017A 0.265 0.420 ISSR840-SUKKULA 0.346 0.489 5/LTR2-IRK017A 0.365 0.420 ISSR845-SUTR1 0.368 0.493 5/LTR2-IRK017A 0.352 </td <td>LTR 6150</td> <td>0.407</td> <td>0.444</td> <td>ISSR826-LTR6149</td> <td>0.288</td> <td>0.428</td>	LTR 6150	0.407	0.444	ISSR826-LTR6149	0.288	0.428
NIKITA 0.364 0.419 ISSR826-3'LTR 0.353 0.463 5'LTR1 0.362 0.449 ISSR826-3'LTR 0.344 0.447 LTR 6149 0.311 0.379 ISSR847-3'LTR 0.242 0.438 3'LTR- NLTR 6149 0.392 0.476 ISSR826-1/R7286 0.313 0.439 3'LTR- NLKITA 0.341 0.431 ISSR83-SUKKULA 0.242 0.438 SUKKULA-1/TR 0.341 0.431 ISSR83-SUKKULA 0.245 0.416 SUKKULA-5/LTR 0.430 0.452 ISSR840-SUKKULA 0.323 0.444 SUKKULA-5/LTR 0.430 0.452 ISSR840-SUKKULA 0.323 0.444 SUKKULA-5/LTR 0.315 0.408 ISSR840-SUKKULA 0.347 0.492 5/LTR2-1/R6149 0.209 0.298 ISSR840-SUKKULA 0.346 0.493 5/LTR2-1/R6149 0.316 0.431 ISSR840-SUTR1 0.308 0.493 5/LTR2-1/R6149 0.379 0.464 ISSR840-SUKKULA 0.346 0.493 5/LTR1-NIKITA 0.320 0.4	SUKKULA	0.342	0.379	ISSR826-NIKITA	0.272	0.365
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NIKITA	0.364	0.419	ISSR826-LTR6150	0.353	0.463
LTR 6149 0.312 0.379 ISSR841-3TTR 0.299 0.456 5'LTR2 0.331 0.393 ISSR847-3'LTR 0.242 0.438 3'LTR - LTR 6149 0.392 0.476 ISSR826-LTR2286 0.313 0.439 3'LTR - NIKITA 0.341 0.431 ISSR825-SUKKULA 0.282 0.416 SUKKULA - LTR6150 0.299 0.370 ISSR845-SUKKULA 0.323 0.444 SUKKULA - S'LTR2 0.312 0.354 ISSR840-SUKKULA 0.323 0.444 SUKKULA - S'LTR2 0.315 0.408 ISSR840-SUKKULA 0.3212 0.458 5'LTR2-NIKITA 0.265 0.420 ISSR840-SUKKULA 0.308 0.493 5'LTR2-VIKITA 0.320 0.467 ISSR840-SUKULA 0.306 0.499 5'LTR1-NIKITA 0.320 0.467 ISSR848-SUKULA 0.308 0.493 5'LTR1-VIKITA 0.320 0.467 ISSR848-SUKULA 0.306 0.491 5'LTR1-NIKITA 0.320 0.467 ISSR848-SUKKULA 0.306 0.491 5'LTR1-LTR6149 0.320 0.467	5'LTR1	0.362	0.449	ISSR826-3'LTR	0.344	0.447
5LTR2 0.331 0.393 ISSR847-3LTR 0.242 0.438 3LTR 1LTR 6149 0.392 0.476 ISSR826-LTR7286 0.313 0.439 3LTR NIKITA 0.341 0.431 ISSR835-SUKKULA 0.282 0.416 SUKKULA-LTR6150 0.299 0.370 ISSR835-NIKITA 0.245 0.410 SUKKULA-5LTR2 0.430 0.452 ISSR847-SUKKULA 0.332 0.444 SUKKULA-5LTR2 0.312 0.354 ISSR840-SUKKULA 0.347 0.492 5LTR2-NIKITA 0.315 0.408 ISSR840-NIKITA 0.229 0.426 5LTR2-3LTR 0.265 0.420 ISSR840-SUKKULA 0.308 0.493 5LTR2-3LTR 0.316 0.431 ISSR848-SUKKULA 0.308 0.493 5LTR2-1TR6150 0.316 0.431 ISSR848-SUKKULA 0.305 0.410 5LTR2-1TR6150 0.316 0.431 ISSR848-SUKKULA 0.361 0.449 5LTR1-SUKKULA 0.320 0.467 ISSR848-SUTR1 0.361 0.441 5LTR1-SUKKULA 0.320	LTR 6149	0.312	0.379	ISSR841-3'LTR	0.299	0.456
3'LTR - LTR 6149 0.392 0.476 ISSR826-LTR/286 0.313 0.439 3'LTR - NIKITA 0.341 0.431 ISSR835-SUKKULA 0.282 0.416 SUKKULA - LTR6150 0.299 0.370 ISSR835-SUKKULA 0.245 0.410 SUKKULA-3'LTR 0.430 0.452 ISSR840-SUKKULA 0.323 0.444 SUKKULA-5'LTR2 0.312 0.354 ISSR840-SUKKULA 0.347 0.492 5'LTR2-NIKITA 0.315 0.408 ISSR840-SUKKULA 0.347 0.492 5'LTR2-NIKITA 0.315 0.408 ISSR840-SUKKULA 0.308 0.493 5'LTR2-NIKITA 0.316 0.431 ISSR840-SUKULA 0.306 0.493 5'LTR2-TR6150 0.316 0.431 ISSR848-SUKULA 0.346 0.489 5'LTR1-NIKITA 0.320 0.467 ISSR848-SULRA 0.305 0.491 5'LTR1-SUKKULA 0.352 0.480 ISSR847-SULRA 0.305 0.401 5'LTR1-SUKKULA 0.356 0.439 ISSR847-SULRA 0.305 0.401 5'LTR1-SUKKULA 0.356 0.440	5'LTR2	0.331	0.393	ISSR847-3'LTR	0.242	0.438
3 ^T LR-NIKITA 0.341 0.431 ISSR835-SUKKULA 0.282 0.416 SUKKULA-LTR6150 0.299 0.370 ISSR847-SUKKULA 0.2455 0.410 SUKKULA-3 ^T LTR 0.430 0.452 ISSR847-SUKKULA 0.323 0.444 SUKKULA-5 ^T LTR2 0.312 0.354 ISSR840-LTR6149 0.212 0.452 5 ^T LTR2-NIKITA 0.209 0.298 ISSR840-NIKITA 0.229 0.426 5 ^T LTR2-NIKITA 0.315 0.408 ISSR840-NIKITA 0.229 0.426 5 ^T LTR2-TR6150 0.316 0.421 ISSR840-SUKKULA 0.346 0.489 5 ^T LTR1-NIKITA 0.320 0.467 ISSR848-SUKKULA 0.336 0.493 5 ^T LTR1-NIKITA 0.320 0.467 ISSR848-SUTR2 0.378 0.400 5 ^T LTR1-NIKITA 0.352 0.480 ISSR847-SUKULA 0.305 0.491 5 ^T LTR1-SUKULA 0.352 0.480 ISSR847-SUKULA 0.305 0.491 5 ^T LTR1-SUKULA 0.356 0.439 ISSR847-SUKULA 0.305 0.491 5 ^T LTR1-SUKULA 0.351	3'LTR - LTR 6149	0.392	0.476	ISSR826-LTR7286	0.313	0.439
SUKKULA - LTR6150 0.299 0.370 ISSR835-NIKTTA 0.245 0.410 SUKKULA-3'LTR 0.430 0.452 ISSR847-SUKKULA 0.323 0.444 SUKKULA-5'LTR2 0.312 0.354 ISSR847-SUKKULA 0.327 0.492 5'LTR2-ITR6149 0.209 0.298 ISSR840-NIKITA 0.212 0.458 5'LTR2-NIKITA 0.315 0.408 ISSR840-NIKITA 0.229 0.426 5'LTR2-SILTR 0.316 0.420 ISSR840-SILTR 0.308 0.493 5'LTR1-LTR6150 0.316 0.421 ISSR848-SUKKULA 0.346 0.489 5'LTR1-ITR6150 0.316 0.431 ISSR848-SUKKULA 0.358 0.431 5'LTR1-ITR6150 0.341 0.464 ISSR848-SUKKULA 0.305 0.401 5'LTR1-SUKKULA 0.325 0.440 ISSR847-SUKKULA 0.305 0.401 5'LTR1-SUKKULA 0.352 0.440 ISSR827-SUKKULA 0.305 0.401 5'LTR1-SUKKULA 0.352 0.440 ISSR827-SUKKULA	3'LTR- NIKITA	0.341	0.431	ISSR835-SUKKULA	0.282	0.416
SUKKULA-3'LTR 0.430 0.452 ISSR847-SUKKULA 0.323 0.444 SUKKULA-5'LTR2 0.312 0.354 ISSR840-SUKKULA 0.347 0.492 5'LTR2-LTR6149 0.209 0.298 ISSR840-SUKKULA 0.347 0.492 5'LTR2-NIKITA 0.315 0.408 ISSR840-NIKITA 0.229 0.426 5'LTR2-STR 0.265 0.420 ISSR840-SUKKULA 0.346 0.489 5'LTR2-ITR6150 0.316 0.431 ISSR848-SUKKULA 0.346 0.489 5'LTR1-ITR6149 0.379 0.464 ISSR848-SUKKULA 0.368 0.491 5'LTR1-NIKITA 0.320 0.467 ISSR848-SUKKULA 0.305 0.401 5'LTR1-NIKITA 0.352 0.480 ISSR827-SUKKULA 0.305 0.401 5'LTR1-SUKKULA 0.352 0.480 ISSR827-SUKKULA 0.301 0.474 5'LTR1-SUKKULA 0.352 0.480 ISSR827-SUKKULA 0.361 0.474 5'LTR1-SUKKULA 0.352 0.440 ISSR827-SUKKULA 0.361 0.474 1TR 6150- NIKITA 0.356 0.4	SUKKULA - LTR6150	0.299	0.370	ISSR835-NIKITA	0.245	0.410
SUKKULA-5'LTR2 0.312 0.354 ISSR840-SUKKULA 0.347 0.492 5'LTR2-LTR6i49 0.209 0.298 ISSR840-SUKKULA 0.212 0.458 5'LTR2-NIKITA 0.315 0.408 ISSR840-SUKKULA 0.229 0.426 5'LTR2-SILTR 0.265 0.420 ISSR840-S'LTR 0.308 0.493 5'LTR2-LTR6150 0.316 0.431 ISSR840-S'LTR2 0.376 0.431 5'LTR1-LTR6149 0.320 0.464 ISSR848-S'LTR2 0.378 0.431 5'LTR1-SUKKULA 0.352 0.480 ISSR848-S'LTR1 0.358 0.491 5'LTR1-SUKKULA 0.352 0.480 ISSR847-SUKKULA 0.305 0.401 5'LTR1-SUKKULA 0.356 0.439 ISSR827-SUKKULA 0.305 0.401 5'LTR1-SUKKULA 0.356 0.439 ISSR847-S'LTR1 0.374 0.481 ITR 6150- LTR6149 0.382 0.454 ISSR847-S'LTR1 0.374 0.481 NIKITA-SUKKULA 0.245 0.449 ISSR847-S'LTR1 </td <td>SUKKULA-3'LTR</td> <td>0.430</td> <td>0.452</td> <td>ISSR847-SUKKULA</td> <td>0.323</td> <td>0.444</td>	SUKKULA-3'LTR	0.430	0.452	ISSR847-SUKKULA	0.323	0.444
5'LTR2-LTR6149 0.209 0.298 ISSR840-LTR6149 0.212 0.458 5'LTR2-NIKITA 0.315 0.408 ISSR840-NIKITA 0.229 0.426 5'LTR2-3'LTR 0.265 0.420 ISSR840-3'LTR 0.308 0.493 5'LTR2-LTK6150 0.316 0.431 ISSR848-5'LTR2 0.378 0.431 5'LTR1-LTR6149 0.379 0.464 ISSR848-5'LTR2 0.378 0.431 5'LTR1-LTR6149 0.320 0.467 ISSR848-5'LTR2 0.378 0.431 5'LTR1-SUKKULA 0.352 0.480 ISSR827-SUKKULA 0.305 0.401 5'LTR1-3'LTR 0.244 0.362 ISSR827-SUKKULA 0.305 0.401 5'LTR1-3'LTR 0.244 0.362 ISSR827-SUKKULA 0.339 0.495 LTR 6150 0.341 0.481 ISSR827-SUKKULA 0.331 0.474 LTR 6150-NIKITA 0.356 0.439 ISSR827-SUKKULA 0.331 0.476 SUKKULA-LTR6149 0.351 0.443 ISSR841-SUKKULA 0.331 0.446 SUKKULA-LTR6149 0.367 0.470	SUKKULA-5'LTR2	0.312	0.354	ISSR840-SUKKULA	0.347	0.492
5'LTR2-NIKITA 0.315 0.408 ISSR840-NIKITA 0.229 0.426 5'LTR2-3'LTR 0.265 0.420 ISSR840-3'LTR 0.308 0.493 5'LTR2-LTR6150 0.316 0.431 ISSR848-S'LTR2 0.308 0.493 5'LTR1-LTR6149 0.379 0.464 ISSR848-S'LTR2 0.378 0.431 5'LTR1-SUKKULA 0.320 0.467 ISSR848-S'LTR1 0.358 0.491 5'LTR1-SUKKULA 0.352 0.480 ISSR834-NIKITA 0.278 0.400 5'LTR1-SUKKULA 0.352 0.480 ISSR827-SUKKULA 0.305 0.401 5'LTR1-SUKKULA 0.356 0.439 ISSR827-SUKKULA 0.305 0.401 5'LTR-3'LTR 0.244 0.362 ISSR827-SUKKULA 0.330 0.474 5'LTR1-SUKKULA 0.325 0.443 ISSR845-5'LTR1 0.339 0.495 LTR 6150- NIKITA 0.352 0.454 ISSR847-SUKKULA 0.341 0.446 SUKKULA-LTR6149 0.351 0.443 ISSR841-SUKKULA 0.337 0.470 SUKKULA 0.367 0.470	5'LTR2-LTR6149	0.209	0.298	ISSR840-LTR6149	0.212	0.458
5 ¹ LTR2-3 ¹ LTR 0.265 0.420 ISSR840-3 ¹ LTR 0.308 0.493 5 ¹ LTR2-LTR6150 0.316 0.431 ISSR848-SUKKULA 0.346 0.489 5 ¹ LTR1-LTR6149 0.379 0.464 ISSR848-5 ¹ LTR2 0.378 0.431 5 ¹ LTR1-SUKKULA 0.320 0.467 ISSR848-5 ¹ LTR1 0.278 0.400 5 ¹ LTR1-SUKKULA 0.352 0.480 ISSR848-5 ¹ LTR1 0.278 0.400 5 ¹ LTR1-SUKKULA 0.352 0.480 ISSR847-SUKKULA 0.305 0.401 5 ¹ LTR1-SUKKULA 0.352 0.480 ISSR827-SUKKULA 0.305 0.401 5 ¹ LTR1-SUKKULA 0.356 0.439 ISSR827-SUKKULA 0.361 0.474 LTR 6150- NIKITA 0.356 0.439 ISSR847-SUTR1 0.339 0.495 ILTR 6150- LTR6149 0.381 0.443 ISSR841-SUKKULA 0.341 0.446 SUKKULA-LTR6149 0.351 0.443 ISSR847-SUTR1 0.311 0.446 SUKKULA-LTR6150 0.367 0.470 ISSR837-SUTR2 0.307 0.470 ISSR835-5 ¹ LTR1	5'LTR2-NIKITA	0.315	0.408	ISSR840-NIKITA	0.229	0.426
5'LTR2-LTR6150 0.316 0.431 ISSR848-SUKKULA 0.346 0.489 5'LTR1-LTR6149 0.379 0.464 ISSR848-5'LTR2 0.378 0.431 5'LTR1-NIKITA 0.320 0.467 ISSR848-5'LTR1 0.358 0.491 5'LTR1-SUKKULA 0.352 0.480 ISSR834-NIKITA 0.278 0.400 5'LTR1-SUKKULA 0.352 0.480 ISSR827-SUKKULA 0.305 0.401 5'LTR1-J'LTR 0.341 0.481 ISSR827-NIKITA 0.361 0.474 LTR 6150-NIKITA 0.356 0.439 ISSR827-SUKKULA 0.305 0.495 LTR 6150-LTR6149 0.382 0.454 ISSR847-SUKKULA 0.331 0.446 NIKITA-SUKKULA 0.245 0.449 ISSR841-SUKKULA 0.341 0.446 SUKKULA-LTR6149 0.351 0.443 ISSR847-LTR7286 0.278 0.456 SUKKULA-LTR6150 0.367 0.470 ISSR835-S'LTR7286 0.337 0.470 ISSR845-5'LTR1 0.282 0.465 ISSR835-3'LTR 0.315 0.443 ISSR845-5'LTR1 0.286 <t< td=""><td>5'LTR2-3'LTR</td><td>0.265</td><td>0.420</td><td>ISSR840-3'LTR</td><td>0.308</td><td>0.493</td></t<>	5'LTR2-3'LTR	0.265	0.420	ISSR840-3'LTR	0.308	0.493
5'LTR1- LTR6149 0.379 0.464 ISSR848-5'LTR2 0.378 0.431 5'LTR1-NIKITA 0.320 0.467 ISSR848-5'LTR1 0.358 0.491 5'LTR1-SUKKULA 0.352 0.480 ISSR832-NIKITA 0.278 0.400 5'LTR1-LTR6150 0.341 0.481 ISSR827-SUKKULA 0.305 0.401 5'LTR1-3'LTR 0.244 0.362 ISSR827-NIKITA 0.361 0.474 0.50 0.439 ISSR827-SUKKULA 0.305 0.495 LTR 6150- NIKITA 0.356 0.439 ISSR827-5'LTR1 0.339 0.495 LTR 6150- LTR6149 0.382 0.454 ISSR840-5'LTR1 0.374 0.481 NIKITA-SUKKULA 0.245 0.449 ISSR841-SUKKULA 0.341 0.446 SUKKULA-LTR6149 0.351 0.443 ISSR841-SUKKULA 0.337 0.470 SUKKULA-LTR6150 0.367 0.470 ISSR847-SUTR286 0.337 0.470 ISSR845-5'LTR1 0.282 0.465 ISSR835-3'LTR 0.315 0.443 ISSR845-5'LTR1 0.286 0.446 ISSR83-3'	5'LTR2-LTR6150	0.316	0.431	ISSR848-SUKKULA	0.346	0.489
5 ¹ LTR1-NIKITA 0.320 0.467 ISSR848-5 ¹ LTR1 0.358 0.491 5 ¹ LTR1-SUKKULA 0.352 0.480 ISSR834-NIKITA 0.278 0.400 5 ¹ LTR1-LTR6150 0.341 0.481 ISSR827-SUKKULA 0.305 0.401 5 ¹ LTR1-3 ¹ LTR 0.244 0.362 ISSR827-SUKKULA 0.301 0.474 1 ¹ LTR 6150-NIKITA 0.356 0.439 ISSR827-5 ¹ LTR1 0.339 0.495 LTR 6150-LTR6149 0.382 0.454 ISSR847-5 ¹ LTR1 0.374 0.481 NIKITA-SUKKULA 0.245 0.449 ISSR841-SUKKULA 0.341 0.446 SUKRULA-LTR6149 0.351 0.443 ISSR841-SUKKULA 0.311 0.446 SUKKULA-LTR6150 0.367 0.470 ISSR847-ITR7286 0.337 0.470 REMAPs ISSR845-5 ¹ LTR1 0.282 0.465 ISSR837-3 ¹ LTR 0.315 0.443 ISSR845-5 ¹ LTR1 0.282 0.466 ISSR837-3 ¹ LTR 0.315 0.443 ISSR845-5 ¹ LTR2 0.309 0.448 ISSR837-3 ¹ LTR 0.315 0.443 I	5'LTR1- LTR6149	0.379	0.464	ISSR848-5'LTR2	0.378	0.431
5'LTR1-SUKKULA 0.352 0.480 ISSR834-NIKITA 0.278 0.400 5'LTR1-LTR6150 0.341 0.481 ISSR827-SUKKULA 0.305 0.401 5'LTR1-3'LTR 0.244 0.362 ISSR827-SUKKULA 0.361 0.474 LTR 6150- NIKITA 0.356 0.439 ISSR827-SUKKULA 0.339 0.495 LTR 6150- LTR6149 0.382 0.443 ISSR840-5'LTR1 0.374 0.481 NIKITA-SUKKULA 0.245 0.449 ISSR841-SUKKULA 0.341 0.446 SUKKULA-LTR6149 0.351 0.443 ISSR841-LTR7286 0.337 0.470 REMAPs ISSR835-ITR7286 0.337 0.4428 ISSR835-ITR7286 0.307 0.443 ISSR845-5'LTR1 0.282 0.465 ISSR835-3'LTR 0.315 0.443 ISSR835-5'LTR2 0.309 0.448 ISSR835-3'LTR 0.311 0.417 ISSR825-LTR6149 0.317 0.450 ISSR83-3'LTR7286 0.307 0.470 ISSR825-LTR7286 0.242 0.422 ISSR83-3'LTR7286 0.307 0.443 ISSR825-LTR7286	5'LTR1-NIKITA	0.320	0.467	ISSR848-5'LTR1	0.358	0.491
5'LTR1-LTR6150 0.341 0.481 ISSR827-SUKKULA 0.305 0.401 5'LTR1-3'LTR 0.244 0.362 ISSR827-NIKITA 0.361 0.474 LTR 6150- NIKITA 0.356 0.439 ISSR827-5'LTR1 0.339 0.495 LTR 6150- LTR6149 0.382 0.454 ISSR847-5'LTR1 0.374 0.481 NIKITA-SUKKULA 0.245 0.449 ISSR847-5'LTR1 0.374 0.481 SUKKULA-LTR6149 0.351 0.443 ISSR847-SUKKULA 0.311 0.446 SUKKULA-LTR6150 0.367 0.470 ISSR847-LTR7286 0.337 0.470 REMAPs ISSR835-5'LTR2 0.309 0.448 ISSR835-3'LTR 0.315 0.443 ISSR845-5'LTR1 0.282 0.465 ISSR835-3'LTR 0.315 0.443 ISSR825-5'LTR2 0.309 0.448 ISSR835-3'LTR 0.311 0.417 ISSR825-LTR6149 0.317 0.450 ISSR83-5'LTR7286 0.307 0.470 ISSR825-LTR7286 0.249 0.317 ISSR845-3'LTR 0.311 0.417 ISSR825-LTR7286 <t< td=""><td>5'LTR1-SUKKULA</td><td>0.352</td><td>0.480</td><td>ISSR834-NIKITA</td><td>0.278</td><td>0.400</td></t<>	5'LTR1-SUKKULA	0.352	0.480	ISSR834-NIKITA	0.278	0.400
5'LTR1-3'LTR 0.244 0.362 ISSR827-NIKITA 0.361 0.474 LTR 6150- NIKITA 0.356 0.439 ISSR827-5'LTR1 0.339 0.495 LTR 6150- LTR6149 0.382 0.454 ISSR840-5'LTR1 0.374 0.481 NIKITA-SUKKULA 0.245 0.449 ISSR841-SUKKULA 0.341 0.446 SUKKULA-LTR6149 0.351 0.443 ISSR841-LTR7286 0.278 0.456 3'LTR-LTR6150 0.367 0.470 ISSR847-LTR7286 0.263 0.428 ISSR845-5'LTR1 0.282 0.465 ISSR835-3'LTR 0.315 0.443 ISSR835-5'LTR2 0.309 0.448 ISSR837-3'LTR 0.315 0.443 ISSR825-SUKKULA 0.286 0.446 ISSR837-3'LTR 0.311 0.417 ISSR825-SUKKULA 0.286 0.446 ISSR837-3'LTR 0.307 0.470 ISSR825-LTR6149 0.317 0.450 ISSR837-3'LTR 0.311 0.417 ISSR825-SUKKULA 0.222 0.422 ISSR837-3'LTR 0.309 0.448 ISSR825-LTR7286 0.317 0.4	5'LTR1-LTR6150	0.341	0.481	ISSR827-SUKKULA	0.305	0.401
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5'LTR1-3'LTR	0.244	0.362	ISSR827-NIKITA	0.361	0.474
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LTR 6150- NIKITA	0.356	0.439	ISSR827-5'LTR1	0.339	0.495
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LTR 6150- LTR6149	0.382	0.454	ISSR840-5'LTR1	0.374	0.481
SUKKULA-LTR6149 0.351 0.443 ISSR841-LTR7286 0.278 0.456 3'LTR-LTR6150 0.367 0.470 ISSR847-LTR7286 0.337 0.470 REMAPs ISSR835-LTR7286 0.263 0.428 ISSR845-5'LTR1 0.282 0.465 ISSR835-3'LTR 0.315 0.443 ISSR835-5'LTR2 0.309 0.448 ISSR834-SUKKULA 0.311 0.417 ISSR825-SUKKULA 0.286 0.446 ISSR834-LTR7286 0.307 0.470 ISSR825-SUKKULA 0.286 0.446 ISSR834-LTR7286 0.307 0.470 ISSR825-LTR6149 0.317 0.450 ISSR827-LTR7286 0.307 0.470 ISSR825-3'LTR 0.242 0.425 ISSR845-3'LTR 0.349 0.487 ISSR825-LTR7286 0.249 0.317 ISSR845-3'LTR 0.349 0.487 ISSR847-5'LTR1 0.335 0.435 0.435 0.425 ISSR845-S'LTR6150 0.263 0.425	NIKITA-SUKKULA	0.245	0.449	ISSR841-SUKKULA	0.341	0.446
3'LTR- LTR6150 0.367 0.470 ISSR847-LTR7286 0.337 0.470 REMAPs ISSR835-LTR7286 0.263 0.428 ISSR845-5'LTR1 0.282 0.465 ISSR835-3'LTR 0.315 0.443 ISSR835-5'LTR2 0.309 0.448 ISSR834-SUKKULA 0.311 0.417 ISSR825-SUKKULA 0.286 0.446 ISSR834-SUKKULA 0.307 0.470 ISSR825-LTR6149 0.317 0.450 ISSR827-LTR7286 0.307 0.470 ISSR825-3'LTR 0.242 0.425 ISSR827-LTR7286 0.175 0.395 ISSR825-1TR7286 0.249 0.317 ISSR845-3'LTR 0.263 0.427 ISSR847-5'LTR1 0.335 0.435 0.435 0.435 0.425	SUKKULA-LTR6149	0.351	0.443	ISSR841-LTR7286	0.278	0.456
REMAPs ISSR835-LTR7286 0.263 0.428 ISSR845-5'LTR1 0.282 0.465 ISSR835-3'LTR 0.315 0.443 ISSR835-5'LTR2 0.309 0.448 ISSR834-SUKKULA 0.311 0.417 ISSR825-SUKKULA 0.286 0.446 ISSR834-SUKKULA 0.307 0.470 ISSR825-LTR6149 0.317 0.450 ISSR827-LTR7286 0.175 0.395 ISSR825-3'LTR 0.242 0.425 ISSR845-3'LTR 0.349 0.487 ISSR825-LTR7286 0.249 0.317 ISSR845-3'LTR 0.263 0.425 ISSR847-5'LTR1 0.335 0.435 0.435 0.435 0.435	3'LTR- LTR6150	0.367	0.470	ISSR847-LTR7286	0.337	0.470
ISSR845-5'LTR1 0.282 0.465 ISSR835-3'LTR 0.315 0.443 ISSR835-5'LTR2 0.309 0.448 ISSR834-SUKKULA 0.311 0.417 ISSR825-5'LTR2 0.309 0.448 ISSR834-SUKKULA 0.311 0.417 ISSR825-SUKKULA 0.286 0.446 ISSR834-ITR7286 0.307 0.470 ISSR825-LTR6149 0.317 0.450 ISSR827-LTR7286 0.175 0.395 ISSR825-3'LTR 0.242 0.425 ISSR845-3'LTR 0.349 0.487 ISSR825-LTR7286 0.249 0.317 ISSR845-3'LTR 0.263 0.425 ISSR847-5'LTR1 0.335 0.435 ISSR847-5'LTR1 0.263 0.425 ISSR847-5'LTR1 0.325 0.402 ISSR845-SUKKULA ISSR847-5'LTR1 <	REMAPs			ISSR835-LTR7286	0.263	0.428
ISSR835-5'LTR2 0.309 0.448 ISSR834-SUKKULA 0.311 0.417 ISSR825-SUKKULA 0.286 0.446 ISSR834-LTR7286 0.307 0.470 ISSR825-LTR6149 0.317 0.450 ISSR827-LTR7286 0.175 0.395 ISSR825-3'LTR 0.242 0.425 ISSR845-3'LTR 0.349 0.487 ISSR825-LTR7286 0.249 0.317 ISSR845-3'LTR 0.263 0.425 ISSR847-5'LTR1 0.335 0.435 ISSR847-5'LTR1 0.225 0.402	ISSR845-5'LTR1	0.282	0.465	ISSR835-3'LTR	0.315	0.443
ISSR825-SUKKULA 0.286 0.446 ISSR834-LTR7286 0.307 0.470 ISSR825-LTR6149 0.317 0.450 ISSR827-LTR7286 0.175 0.395 ISSR825-3'LTR 0.242 0.425 ISSR845-3'LTR 0.349 0.487 ISSR825-LTR7286 0.249 0.317 ISSR845-3'LTR 0.263 0.425 ISSR847-5'LTR1 0.335 0.435 ISSR847-5'LTR1 0.225 0.402	ISSR835-5'LTR2	0.309	0.448	ISSR834-SUKKULA	0.311	0.417
ISSR825-LTR6149 0.317 0.450 ISSR827-LTR7286 0.175 0.395 ISSR825-3'LTR 0.242 0.425 ISSR845-3'LTR 0.349 0.487 ISSR825-LTR7286 0.249 0.317 ISSR845-1TR6150 0.263 0.425 ISSR847-5'LTR1 0.335 0.435 0.402 0.402 0.402	ISSR825-SUKKULA	0.286	0.446	ISSR834-LTR7286	0.307	0.470
ISSR825-3'LTR 0.242 0.425 ISSR845-3'LTR 0.349 0.487 ISSR825-LTR7286 0.249 0.317 ISSR848-LTR6150 0.263 0.425 ISSR847-5'LTR1 0.335 0.435 0.402 0.402 0.402	ISSR825-LTR6149	0.317	0.450	ISSR827-LTR7286	0.175	0.395
ISSR825-LTR7286 0.249 0.317 ISSR848-LTR6150 0.263 0.425 ISSR847-5'LTR1 0.335 0.435 ISSR826-SUKKULA 0.225 0.402	ISSR825-3'LTR	0.242	0.425	ISSR845-3'LTR	0.349	0.487
ISSR847-5'LTR1 0.335 0.435 ISSR826-SUKKULA 0.225 0.402	ISSR825-LTR7286	0.249	0.317	ISSR848-LTR6150	0.263	0.425
ISSR826-SUKKULA 0.225 0.402	ISSR847-5'LTR1	0.335	0.435		-	
	ISSR826-SUKKULA	0.225	0.402			

243 | Taheri et al.

Traits number of spikelet and total number of tiller didn't show any association with IRAP markers. The highest number of informative bands was identified for days to heading with 8 IRAP markers (adjusted $R^2=0.855$) and the lowest IRAP associated marker was *3'LTR (e)* with biomass (adjusted $R^2=0.163$).

Association between REMAP markers and morphological traits

Totally, 60 out of all 214 polymorphic REMAP loci were associated with all 15 morphological traits (Table 7).

Trait	Informative marker	Adjusted R ²	Standardized regression coefficient
Biomass	3'LTR (e)	0.163	0.426
Days to heading	5'LTR2-3'LTR(g)	0.855	-0.478
	5'LTR2-LTR6149(e)		-0.251
	5'LTR1-LTR6150(a)		0.484
	5'LTR1(a)		-0.242
	5'LTR2-LTR6149(c)		-0.345
	5'LTR1-SUKKULA(b)		-0.169
	5'LTR2-3'LTR(b)		-0.196
	5'LTR2-LTR6149(b)		-0.172
Harvest index	3'LTR- NIKITA(c)	0.686	0.349
	5'LTR1-NIKITA(i)		0.342
	5'LTR1-SUKKULA(b)		-0.305
	5'LTR2-LTR6149(c)		-0.280
	SUKKULA(g)		-0.252
Flag leaf length	LTR 6150- NIKITA(e)	0.335	-0.441
	5'LTR2-3'LTR(e)		0.386
Flag leaf width	NIKITA-SUKKULA(e)	0.583	-0.411
	LTR 6150- NIKITA(e)		-0.355
	3' LTR - LTR 6149(c)		-0.319
	5'LTR1(f)		0.302
Main spike weight	5'LTR1(e)	0.556	0.378
	5'LTR2-NIKITA(d)		0.384
	5'LTR1-NIKITA(g)		-0.468
	5'LTR1-LTR6150(a)		-0.357
Fertile tiller number	3'LTR(b)	0.422	-0.422
	5'LTR1-NIKITA(a)		-0.369
	5'LTR2-3'LTR(g)		-0.312
Plant height	NIKITA-SUKKULA(e)	0.428	-0.544
	5'LTR2-NIKITA(h)		0.422
	5'LTR1-LTR6150(a)		-0.373
Main spike length	5'LTR2-NIKITA(d)	0.467	0.264
	NIKITA-SUKKULA(e)		-0.499
	5'LTR1-NIKITA(h)		0.434
Seeds weight	5'LTR2-NIKITA(d)	0.276	0.427
	5'LTR2-LTR6150(d)		0.363
Total spikes weight	SUKKULA(g)	0.318	0.459
	5' LTR2(c)		0.379
Yield	SUKKULA(g)	0.264	0.420
	5' LTR2(c)		0.354

Table 6. Results of Stepwise regression of IRAP markers onmorphological traits.

The associated markers each explained %24.2 (number of spikelet) to %89.7 (days to heading) of the total available variation for each morphological traits. The variation of days to heading (%89.7) was determined by *ISSR835-5'LTR2(b)*, *ISSR835-5'LTR2(c)*, *ISSR835-NIKITA(e)*, *ISSR825-3'LTR(a)*, *ISSR826-NIKITA(c)*, *ISSR840-LTR6149(a)*, *ISSR826-5'LTR2(a)*, *ISSR840-LTR7286(i)*, *ISSR841-LTR7286(g)*, *ISSR840-NIKITA(c)* and *ISSR845-*

5'LTR1(e).The locus ISSR826-SUKKULA(c) was linked with most traits such as: biomass, number of fertile tiller, total number of tiller, total spikes weight and yield. Some other REMAP markers such as, ISSR827-NIKITA(b), ISSR834-SUKKULA(a) and ISSR826-SUKKULA(c) were jointly associated with traits biomass, total spikes weight and yield. ISSR825-3'LTR(a), ISSR840-LTR6149(a) and ISSR845-5'LTR1(e) were jointly associated with days to heading and harvest index and ISSR847-3'LTR(b)plus ISSR825-3'LTR(c) with main spikes weight and seeds weight. The reason for existing same associating markers for different traits could bepleiotropy effect or linkage of controller loci of these traits. The number of REMAP markers associated with each morphological trait was ranged in 2-11 markers (Table 7).

Trait	Informative marker	Adjusted R ²	Standardized regression coefficient
Biomass	ISSR827-NIKITA(b)	0.461	-0.431
	ISSR841-3'LTR(a)		0.303
	ISSR834-SUKKULA(a)		-0.307
	ISSR847-5'LTR1(a)		0.240
	ISSR826-SUKKULA(c)		0.220
Days to heading	ISSR835-5'LTR2(b)	0.897	-0.186
	ISSR835-5'LTR2(c)		-0.232
	ISSR835-NIKITA(e)		0.244
	ISSR825-3'LTR(a)		0.208
	ISSR826-NIKITA(c)		-0.195
	ISSR840-LTR6149(a)		0.194
	ISSR826-5'LTR2(a)		-0.270
	ISSR825-LTR7286(i)		-0.221
	ISSR841-LTR7286(g)		-0.140
	ISSR840-NIKITA(c)		-0.143
	ISSR845-5'LTR1(e)		-0.116
Harvest index	ISSR845-5'LTR1(c)	0.858	-0.222
	ISSR845-5'LTR1(e)		-0.227
	ISSR825-3'LTR(a)		0.119
	ISSR847-5LTR1(c)		-0.168
	ISSR847-3'LTR(e)		-0.230
	ISSR840-LTR6149(a)		0.229
	ISSR826-SUKKULA(b)		0.276
	ISSR834-NIKITA(b)		-0.171
	ISSR840-LTR6149(b)		-0.203
	ISSR826-NIKITA(e)		-0.134
	ISSR835-5'LTR2(a)		-0.136
Flag leaf length	ISSR847-5'LTR1(e)	0.562	-0.299
	ISSR847-5'LTR1(b)		0.319
	ISSR827-LTR7286(b)		-0.217
	ISSR825-LTR7286(h)		0.284
	ISSR827-SUKKULA(a)		-0.245
Flam landa dal	155R825-L1R7286(f)		-0.226
Flag leaf width	155R835-L1R7286(n)	0.477	-0.385
	155R827-L1R7286(a)		0.393
	155K841-L1K/280(u)		0.296
	155K640-5L1KI(C)		0.234
Main miles woight	$155K020-3L1K(\ell)$ $155R04\pi o'l TD(h)$	0 = 16	0.216
Main spike weight	ISSR04/-3LIR(0) ISSP80r-0'ITP(c)	0.540	-0.422
	ISSR025-3LTR(C) $ISSP84r_r'ITP1(a)$		-0.423
	ISSR045-5 LTRI(u) ISSP807-ITP7086(c)		0.343
	ISSR02/-LIR/200(C) ISSP040 NIVITA(a)		0.3/1
	ISSR847-5'ITR1(a)		0.230
Fertile tiller	$ISSR89_{z-z'}ITR_{2}(a)$	0.606	-0.280
number	1000000000000000000000000000000000000	0.000	0.009
	ISSR841-LTR7286(e)		0.198
	ISSR834-SUKKULA(c)		-0.270
	ISSR834-NIKITA(b)		-0.348
	ISSR845-5'LTR1(e)		-0.238
	ISSR826-SUKKULA(c)		0.216
	ISSR826-LTR6150(b)		-0.189
Plant height	ISSR826-LTR7286(f)	0.335	0.425
0 -	ISSR825-LTR6149(e)	000	0.387
	ISSR826-LTR7286(e)		-0.416
	ISSR826-LTR6150(d)		-0.265

Table 7. Results of Stepwise regression of REMAP markers on morphological traits.

Trait	Informative marker	Adjusted	Standardized regression coefficient
		R ²	-
Seeds number	ISSR834-LTR7286(f)	0.299	0.407
	ISSR848-LTR6150(c)		0.344
	ISSR835-LTR7286(h)		-0.333
	ISSR848-LTR6150(a)		-0.270
Main spike length	ISSR848-LTR6150(c)	0.317	0.462
	ISSR826-NIKITA(d)		0.326
	ISSR827-SUKKULA(d)		-0.314
Number of spikelet	ISSR826-LTR7286(f)	0.242	0.428
	ISSR834-LTR7286(f)		0.296
Seeds weight	ISSR847-3'LTR(b)	0.255	0.315
	ISSR825-3'LTR(c)		-0.363
	ISSR834-SUKKULA(a)		-0.277
Total tiller number	ISSR834-NIKITA(b)	0.329	-0.472
	ISSR847-5'LTR1(a)		0.228
	ISSR826-SUKKULA(c)		0.300
	ISSR835-5'LTR2(b)		0.261
Total spikes weight	ISSR841-3'LTR(a)	0.652	0.291
	ISSR827-NIKITA(b)		-0.332
	ISSR834-SUKKULA(a)		-0.251
	ISSR825-LTR6149(c)		0.279
	ISSR826-SUKKULA(c)		0.411
	ISSR847-SUKKULA(a)		-0.325
	ISSR847-LTR7286(f)		0.228
	ISSR841-3'LTR(c)		0.233
	ISSR826-NIKITA(c)		0.239
	ISSR826-LTR6150(e)		-0.205
Yield	ISSR834-SUKKULA(a)	0.496	-0.294
	ISSR827-NIKITA(b)		-0.340
	ISSR847-SUKKULA(a)		-0.392
	ISSR826-SUKKULA(c)		0.321
	ISSR826-SUKKULA(b)		-0.276
	ISSR826-5'LTR2(b)		-0.239

Table 7. Continued.

Among the studied 15 traits, days to heading and harvest index showed significant regression with 11 marker while, number of spikelet regressed with 2 markers.

Discussion

High percentages of polymorphism detected by IRAPs and REMAPs indicated the activity of these retrotransposon elements in *T. urartu* and *T. boeoticum* speicies. Also high level of diversity observed for morphological traits in both *T.urartu* and *T. boeoticum* populations. High PIC values were observed in this research, mean of PIC for IRAP and REMAPs were 0.38 and 0.40 respectively. This outcome confirmed a high efficiency of these primer combinations. So, they can be used to distinguish closely related species and genetic diversity. Fathi *et* al. (2014) reported the good PIC values from 0.32 to 0.44 for IRAPs in Aegilops triuncialis. IRAP primer combinations amplified 170 loci at total and produced on average 6.53 bands for each individual. This value was reported approximately 8 in Aegilops tauschi using barley retrotransposons (Saedi et al., 2008). According to analysis of molecular variance (AMOVA), within population variance was higher than among population, in both IRAP and REMAP analysis. It was because of high variation within the populations of these wild species that reported in some other related researches, too. In the study of gene diversity in T. urartu and T.boeoticum of Iran by means of IRAP markers, %84 of total variation attributed to within population and %16 was ascribed to the among population differences (Eslami Farouji et al., 2015).

Totally,15 out of 26 scorable IRAP combinations showed significant regression with 12 morphological traits. While, 28 out of 41 REMAP scorable combinations had significant regression with all 15 morphological traits. Among the 170 IRAP and 214 REMAP polymorphic loci, respectively 25 and 60 loci showed association with morphological traits. Based on multivariate regression analysis, IRAP and REMAP markers respectively explained %16-85 and %24-89 of the total variation of each individual morphologic trait. These percent of explanation seems reliable comparing with other similar researches. Khaled et al. (2015) showed that ISSR and RAPD markers explained a maximum regression (%18.29- 34.95) of the total available variation for individual associated traits. The present results showed that the IRAP combinations 5'LTR1-LTR6150(a), SUKKULA and NIKITA-SUKKULA(e) associated with the most number of traits. Therefore, these retrotransposon combinations had correlation with most of the studied traits. These combinations had also the highest number of polymorphic bands respectively (6, 9 and 9). Two IRAP combinations 5'LTR2-LTR6149(c) and 5'LTR1-SUKKULA(b) had significant association with both traits days to heading and harvest index. This could be because of pleiotropy effects or linkage in this marker loci.

Totally *NIKITA* retrotransposon in IRAP and *LTR7286* in REMAPs had the highest associations with most of the traits in this study. Also *NIKITA* produces the highest polymorphic bands (15), and it shows high copy number and important role in evolution of wheat genome. *LTR7286* amplified high number of bands in REMAPs with *ISSR826*, *ISSR841*, *ISSR 847*, *ISSR 835*, *ISSR834* and *ISSR 827*. This may indicates the close insertion of this element near some microsatellite sequences.

According to obtained results of IRAP and REMAP markers, retrotransposons *NIKITA*, *5'LTR1* and *5'LTR2* in IRAP *and LTR7286*, *SUKKULA*, *3'LTR* and *NIKITA* in REMAPs, showed significant associations with more traits; therefore it is possible to validate

these markers and use along in future breeding and MAS programs in wheat.

Acknowledgment

We thank "Center of Excellent in Cereal Molecular Breeding, University of Tabriz, Iran "that supported this research and provided insight and expertise that greatly assisted the research.

Refrences

Basaki T, Choukan R, Khayam Nekouei SM, Mardi M, Majidi E, Fraji S, Zeinolabedini M. 2011. Association analysis for morphological traits in pomegranate (*Punicageranatum* L.) using microsatellite markers. Middle East Journal of Scientific Research **9**, 410-417.

Eslami Farouji A, Khodayari H, Saeidi H,Rahiminejad MR. 2015. Genetic diversity of diploid *Triticum* species in IRAN assessed using inter-retroelement amplified polymorphisms (IRAP) markers. Biologia **1**, 52-60.

Fathi T, Sohani MM, Samizadeh H, Mehrabi AA. 2014. Molecular genetic diversity of *Aegilops triuncialis* L. revealed by IRAP markers. International Journal of Biosciences **4**, 164-170.

Gomez KA, Gomez AA. 1984. Statistical procedures for agricultural research, 2nd edition. John wiley, New York, USA.

Gupta PK, Varshney RK, Sharma PC, Ramesh B. 1999. Molecular markers and their applications in wheat breeding.Plant Breeding **118**, 369-390.

Ivandic V, Hacket CA, Nevo E, Keith R, Thomas WTB, Forster BP. 2002. Analysis of simple sequence repeats (SSR) in wild barley from the Fertile Crescent: association with ecology, geography and flowering time. Plant Molecular Biology **48**, 511-527.

Kalendar R, Flavell AJ, Ellis THN, Sjakset T,

Schulman AH. 2011. Analysis of plant diversity with retrotransposon-based molecular markers. Heredity **106**, 520-530.

Khaled AGA, Hamam KA. 2015.Association of molecular markers with phenotypic traits of bead wheat genotypes. Egyptian Journal of Genetics and Cytology **44**, 115-130.

Khaled AGA, Motawea MH, Said AA. 2015. Identification of ISSR and RAPD markers linked to yield traits in bread wheat under normal and drought conditions. Journal of Genetics Engineering and Biotechnology **13**, 243-252.

Kilian B, Deusch H, Effgen S, Brandolini A, Kohl J, Martin W,Salamini F. 2007. Independent wheat B and G genome origins in outcrossing *Aegilops*progenitorhaplotypes. Molecular Biology and Evolution **24**, 217-227.

Kimber G, Feldman M. 1987. Wild wheat: An introduction. Special Report No. 353, College of Agriculture, University of Missouri, Columbia, USA.

Kumar A, Hirochika H. 2001. Applications of retrotransposons as genetic tools in plant biology. Trends in Plant Science **6**, 127-134.

Lodhi M, Guang NingYe N, Weeden F, Bruce I. 1994. A simple and efficient method for DNA extraction from grapevine cultivars, *vitis* species and *ampelopsis*. Plant Molecular Biology Reporter **12**, 6-13.

Marsafari M, Mehrabi AA, Tahmasebi Z. 2014. The identification of RAPD and ISSR informative markers with some quality traits of fruit in some of Iranian date palm. International Journal of Plant Animal and Environmental Sciences **4**, 714-722.

Mizumoto K, Hirosawa S, Nakamura C, Takumi S. 2002. Nuclear and chloroplast genome genetic diversity in the wild wheat, *Triticum urartu*, revealed by AFLP and SSL analysis. Hereditas **137**, 208-214.

MotaweaMH, Said AA, Khaled AGA. 2015. ISSR marker-trait associations and stability analysis in bread wheat varieties. Plant Breed Biotech **3**, 167-177.

Neale DB, Savolainen O. 2004. Association genetics of complex traits in conifers. Trends in Plant Science **9**, 325-330.

Peakall R, Smouse PE. 2006. GenAlEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes **6**, 288-295.

Roy JK, Bandopadhyay R, Rustagi S, Baylan HS, Gupta PK. 2006. Association analysis of agronomically important traits using SSR, SAMPLE and AFLP markers in bread wheat.Current Science **90**, 683-689.

Saeidi H, Rahiminejad MR, Heslop Harrison JS. 2008. Retroelement insertional polymorphisms diversity and phylogeography within diploid D-genome *Aegilopstauschii* (*triticeaepoaceae*) sub-taxa in Iran. Annals of Botany **101**, 855-861.

Van Slageren MW. 1994. Wild wheats. Amonograph of *Aegilops* L. and *Amllyopyrum* (Jaub. &Spach) Eig (Poaceae).Wageningen Agricultural University Papers 7, 513.