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Abstract 

An exact prediction and modeling of drought is essential for watersheds management. The main contribution of 

this research is in the design, performance and comparison of drought forecasting models using Focused Time 

Delay Neural Networks (FTDNN). The network was trained to perform one-step-ahead predictions. Standardized 

Precipitation Index(SPI) were applied in various time scales including 3, 6, 9, 12, 18, 24 and 48 monthly time 

series in 14 synoptic stations in Central Iran during 1965–2014. Five categories of back-propagation training 

algorithms namely resilient back propagation (RP), batch gradient descent (GD and GDX), Quasi-Newton 

(BFGS), conjugate gradient (CGF, CGP, and CGB) and Levenberg-Marquardt (LM) were used. Then, according to 

the best algorithm, the number of neurons in the hidden layer was optimized and the best performance was 

identified. The number of epochs, high Correlation Coefficient (R2), least Root Mean Squared Error (RMSE) and 

Mean Absolute Error (MAE) were considered to evaluate the performance of the FTDNN model at each step. The 

result showed that the Levenberg-Marquardt (LM) was the best algorithm and node 31 was the most efficient for 

drought prediction. Finally, the designed network was applied on all of the SPIs time series to determine the best 

in prediction according to statistical parameters. It was found that better results can be achieved by increasing the 

duration of the time series. According to the results obtained, FTDNN trained by LM is an efficient tool to model 

and predict drought events especially in long term time series. 

*Corresponding Author: Abbasali Vali  vali@kashanu.ac.ir
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Introduction 

Drought monitoring and development of an early 

cautionary system can lead to effective forecast of 

future drought events (Belayneh et al., 2014). Several 

forecasting techniques have been proposed to assess 

the probable evolution of drought related hydro 

meteorological factors or drought indices based on 

either physical/conceptual or data driven models.  

 

Although physical/conceptual models can prepare a 

vision into catchment processes, they are problematic 

due to their being laborious in the implementation of 

forecasting applications, requiring various types of 

data and resulting in models that are excessively 

complex (Beven, 2006). Data driven models need 

minimum information requirements and less 

development times, and have been found to be perfect 

in several hydrological predicting applications 

(Adamowski, 2008). 

 

Among data driven models, artificial Neural Networks 

(ANN), which are derived from the human nervous 

system, have been recognized as a very strong tool in 

dealing with complex problems such as pattern 

recognition, clustering and function approximation. 

ANN with adequate complexity can estimate any 

function to a greater accuracy (Hornik et al., 1989).  

 

Moreover, ANN is considerably able to learn and 

provide precise output even if the input contains error 

(Crone, 2004; Şenkal et al., 2012).In several studies, 

it has been used as a drought forecasting tool 

(Belayneh and Adamowski, 2012; Belayneh et al., 

2014; Dastorani and Afkhami, 2011; Jamshidi et al., 

2011; Keskin et al., 2011; Kim and Valdés, 2003; 

Sepulcre-Canto et al., 2012). 

 

Time delay neural network model is an efficient 

model for response prediction based on past input. 

Waibel (1989) is the first to introduce the Time-Delay 

neural network (TDNN) and adopted time delays in 

connection with feed forward networks, it has been 

successfully applied in several studies (Afkhami et al., 

2010; Charaniya and Dudul, 2013; Dastorani and 

Afkhami, 2011; N. A.Charaniya, 2013; Xie et al., 

2006; Yazdani et al., 2009). 

In their study, Luk et al. (2000) used ANNs to 

forecast the spatial distribution of precipitation for an 

urban catchment.  

 

They implemented three types of ANNs including 

multi-layer feed-forward neural networks (MLFN), 

partial recurrent neural networks and time-delay 

neural networks (TDNN) to perform one-step-ahead 

forecasts. Their result demonstrated that MLFN and 

TDNN could capture the dynamic structure of the 

precipitation procedure. 

 

There are numerous algorithms for training a 

multilayer feed-forward artificial neural network. 

Scientists in every field have surveyed the efficiency of 

each category of algorithms on the training of neural 

networks. For instance, Mokbnache and Boubakeur 

(2002) compared the performance of three 

algorithms: Levenberg-Marquardt, Back Propagation 

(BP) with momentum, and BP with momentum and 

adaptive learning rate to classify/rank the trans-

former oil dielectric and cooling state.  

 

They recognized that the BP with momentum and 

adaptive learning rate improve the accuracy of the BP 

with momentum and also gives a fast convergence to 

the network. In order to predict the stream-flow and 

to discriminate the lateral stress in soils lacking 

cohesion, Kişi and Uncuoğlu (2005) compared the 

conjugate gradient, Levenberg-Marquardt and 

resilient algorithms.  

 

They found that the Levenberg- Marquardt algorithm 

was quicker and achieved better performance than 

the other algorithms in training.  

 

Adeoti and Osanaiye (2013) compared the efficiency 

of various algorithms on the performance of ANN for 

pattern recognition of bivariate process and found 

that the Levenberg-Marquardt is the best algorithm 

process in terms of recognition accuracy and the 

resilient back propagation is best in terms of speed 

and mean square error performance. 
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This study is focused on assessment of time delay 

neural network on long-term drought forecasting of 

well-known meteorological drought indices means 

Standardized Precipitation Index (SPI) in Central 

Iran. To achieve the goal, a variety of TDNN were 

used, which consists of a feed forward network with a 

tapped delay line at the input layer, called the focused 

time-delay neural network (FTDNN).  

 

In the first step, by considering the same conditions 

and using the 12-month SPI obtained from the 

Mehrabad station in Tehran, the best algorithm was 

obtained. Then according to the most efficient 

algorithm, hidden layer neurons were optimized, and 

finally, the designed network was conducted on the 

SPIs of 14 stations located in Central Iran, to 

determine the best models for performing one-step-

ahead predictions. 

 

Materials and methods 

Study area 

Central Iran is bordered by the Alborz Mountains in 

the north, the Zagros Mountains in the south and 

west, and the scattered mountains of Khorasan in the 

east. The average elevation of this area is 1,300m, but 

it drops to 700 m inside Dasht-eKavir, and further to 

300 m in the central part of Lut.  

 

The Alborz and Zagros mountains block the 

Mediterranean rain-bearing wind from entering into 

Central Iran, thus lowering the average annual 

rainfall within this area to less than 300 mm 

(Ghorbani, 2013). 

 

The climate in the study area is dominantly arid and 

semiarid based on the De Martonne index (De Marto 

(de Martonne, 1926; Nne, 1926). The mean annual 

temperature is variable from 15 to about 30ºC within 

the study area, also the minimum and maximum daily 

temperatures are−18 and 51ºC, respectively(Naderi 

and Raeisi, 2015). 

 

The monthly rainfall data, measured in millimeter 

(mm), was obtained from Meteorological Stations in 

Central Iran with 50 year records (1965-2014). The 

geographical location and characteristics of stations 

are given in Fig.1 and Table 1, respectively. 

 

Fig. 1. The spatial distribution of 14 synoptic stations 

in Central Iran. 

 

Table 1. Synoptic stations characteristics in Central Iran. 

Station name X coordinate Y coordinate Elevation (m) 

Arak 49.77 34.10 708 
Bam 58.35 29.10 66.9 
Esfahan 51.67 32.62 1550.4 
Fasa 53.68 28.97 1288.3 
Ghazvin. 50.05 36.25 279 
Kashan 51.45 33.98 982.3 
Kerman 56.97 30.25 1753 
Sabzevar 57.72 36.20 977.6 
Semnan 53.55 35.58 130.8 
Shahrud 54.95 36.42 345.3 
Tabas 56.92 33.60 711 
Tehran 51.32 35.68 190.8 
Yazd 54.28 31.90 1237.2 
Zanjan 48.48 36.68 663 

Standardized precipitation index 

https://en.wikipedia.org/wiki/Alborz_Mountains
https://en.wikipedia.org/wiki/Zagros_Mountains
https://en.wikipedia.org/wiki/Khorasan_Province
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The Standardized Precipitation Index is a 

meteorological drought index (SPI) that was 

introduced by McKee et al. (1993) (McKee et al., 

1993). The index is based only on precipitation data 

hence its evaluation is relatively easy, its value is not 

affected by the regional geography and finally it is 

possible to describe drought on multiple time scales. 

These properties distinguish the SPI from the other 

indices (Belayneh and Adamowski, 2012). 

 

The SPI is calculated by fitting a probability density 

function to the frequency distribution of precipitation 

summed over the time scale of interest. This is 

performed independently for each month (or any 

other time-based of the raw precipitation time-series) 

and for each location in space (Moradi Dashtpagerdi 

et al., 2014). 

 

Gamma distribution is the most common way to 

perform the aim (Edossa et al., 2010; Hayes et al., 

1999). The gamma distribution is defined by its 

probability density function as: 

                     (1) 

 

Where α> 0 and β>0 are the shape factor and the 

scale factor, respectively, and x>0 is the amount of 

precipitation. Γ (α) is the gamma function which is 

defined as: 

                       (2) 

 

Fitting the distribution to the data needs that and β 

be estimated. There are different methods for the 

estimating of these two parameters. For instance 

Edwards (1997) proposed a method using the 

calculation of Thom (1958) for maximum likelihood 

as follows: 

                      (3) 

                          (4) 

 

 

 

Where for n observations 

                           (5)  

 

Respect to resulting parameters the cumulative 

probability of an observed precipitation event for the 

given month or any other time scale can be obtained: 

    (6) 

 

Can be replaced by t to incomplete gamma function 

              (7) 

 

Since Gamma function is not defined for x = 0, and 

there may be no precipitation, the cumulative 

probability becomes 

                 (8) 

 

 Where q is the probability of zero precipitation. The 

cumulative probability, H(x) is then altered into a 

normal standardized distribution with null average 

and unit variance from which is the value of SPI. 

However, is neither practical nor numerically simple 

to use if there are several grid points of numerous 

stations on which to compute the SPI index. Hereon, 

an alternative method is described in Edwards (1997) 

using the technique of approximate conversion 

developed in Abramowitz and Stegun (1965) that 

converts the cumulative probability into a standard 

variable Z. The SPI index is then defined as 

      (9) 

 

Where 

       

(10) 
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where x is the cumulative probability of recorded 

precipitation, and c0, c1, c2, d0, d1, d2 are constants 

with the following values: c0=2.515517, c1=0.802853, 

c2=0.010328, d1=1. 432788, d2=0.189269, d3=0.00-

1308 (Mishra and Desai, 2005).  

 

As shown in Table 2, a drought event occurs at the 

time when the value of the SPI is constantly negative; 

the event finishes when the SPI becomes positive. 

Since SPI is normalized, it can be used to track 

climate changes in any region, regardless of its 

average rainfall. This gives the advantage of 

comparing climate changes in various places and time 

scales (Illeperuma and Sonnadara, 2009). 

 

Table 2. Classification scale of SPI (U.S. Drought 

Monitor Classification Scheme). 

SPI values Ranges 
-0.5 to -0/7 Abnormally Dry 

-0.8 to -1.2 Moderate Drought 
-1.3 to -1.5 Severe Drought 
-1.6 to -1.9 Extreme Drought 
-2.00 and less Exceptional Drought 

 

As presented earlier, the SPI values in various time 

scales (3, 6, 9, 12, 18, 24 and 48 months) were 

calculated for the period of 1965 to 2014, using 

monthly precipitation data from 14 synoptic stations. 

 

 

Fig. 2. Time Delay Neural Network as proposed by 

Alexander Waibel et al. (1989). 

 

Focused time delay neural network 

Focused time-delay neural network (FTDNN) is the 

most straight-forward dynamic network. This is part 

of an overall class of dynamic networks, named 

focused networks, in which the dynamics appear just 

at the input layer of a static multilayer feed forward 

network. This network is appropriate to time-series 

prediction. The following Fig. 2. demonstrates a two-

layer FTDNN. 

 

Training algorithms 

Back propagation is used as a common method of 

training an Artificial Neural Network to perform a 

determined task. The aim of the training is to discover 

the set of weights among neurons that specify the 

global minimum of error function. The back 

propagation algorithm is applied in layered feed 

forward ANNs. Each layer receives its inputs from the 

previous layer and forwards its outputs to the next 

and errors are propagated backwards. In this learning 

process, the network which uses the algorithm, 

computes the outputs according to the examples of 

the input and thereafter, the error is calculated. The 

principal objective of the back propagation algorithm 

is to minimize this error, until the ANN learns the 

training data (Ike and Adoghe, 2013). 

 

All training algorithms apply the gradient of the 

performance function to define in what way the 

weight can be adjusted to minimize performance.  

 

The gradient is determined by a technique called back 

propagation, which involves performing calculations 

backwards through the network. The basic back 

propagation training algorithm, in which the weights 

are moved in the direction of the negative gradient is 

called Gradient Descent (GD) (Wilson and Martinez, 

2003).  

 

This algorithm is too slow for practical problems. 

There are several high performance algorithms that 

analyze ten to one hundred times faster than GD. 

They are divided into two main fold; the first fold uses 

heuristic techniques developed from analyzing the 

performance of the standard steepest descent 

algorithm, 
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which involves the gradient descent with adaptive 

learning rate, gradient descent with momentum, 

gradient descent with momentum and adaptive 

learning rate, as well as the resilient algorithm.  

 

The second category applies standard numerical 

optimization techniques which includes the quasi-

Newton, conjugate gradient, and Levenberg-

Marquardt (LM) algorithm (Noori et al., 2010). In the 

standard steepest descent, the learning rate is 

constant during the training process.  

 

The performance of the algorithm is very sensitive to 

the proper setting of the learning rate. The 

performance of the algorithm can be improved if the 

learning rate is allowed to change throughout the 

training process. In the conjugate gradient 

algorithms, a search is performed along conjugate 

directions; therefore the convergence is faster than 

the steepest descent directions.  

 

The Quasi-Newton method often converges faster 

than the conjugate gradient methods, since it does not 

require the calculation of second derivatives (Lahmiri, 

2011). For instance, it updates an approximate 

Hessian matrix at each iteration.  

 

Finally, the Levenberg-Marquardt algorithm merges 

the steepest descent method and the Gauss-Newton 

algorithm, so that it takes the rapidity of the Gauss-

Newton and steadiness of the steepest descent 

method. For example, it uses the Jacobian which 

requires less calculation in comparison to the Hessian 

matrix. 

 

Designing the network 

In this study, 15 month time delay in the input data 

and 20 epochs selected by trial and error, were used 

for the training phase. Using cross validation 

technique to partition the data sets, the best 

proportion of data was determined as 70% for 

training while the remaining 30% of the data with 

equal proportion was selected for testing and 

validation of models. In order to calculate the error 

gradient and update the network weights and biases, 

the training set was applied. The error from the 

validation set was used to monitor the training 

process. However, when the network began to overfit 

the data, the error in the validation set increased. As 

the validation for a specified number of repetitions 

increased, the training was stopped, and the weights 

and biases at the minimum validation error were 

returned (Belayneh and Adamowski, 2012). The 

testing data set as an independent data set was used 

to confirm the performance of the model.  

Before applying the ANN algorithm, the data was 

normalized to [0-1], using the following 

transformation function(Dastorani and Afkhami, 

2011): 

 

 

Where: SPIn is the normalized value, SPIO is the 

measured value, SPIMin and SPIMax are the minimum 

and maximum values of SPIO, respectively. If SPIMin is 

equal to SPIMax then normalized SPIn is set as 0.5.  

 

Using the 12-month SPI obtained from the Mehrabad 

station in Tehran, the network architectures, having 

various algorithms and a single neuron in the hidden 

layer, were evaluated and compared by means of 

statistical indices and the number of epochs.  

 

Five groups of ANN training algorithms namely 

resilient back propagation (RP), batch gradient 

descent (GD and GDX), Quasi-Newton (BFGS), 

conjugate gradient (CGF,CGP,CGB) and Levenberg-

Marquardt (LM) were used (Table 3).  

 

According to the best algorithm, the number of 

neurons in the hidden layer was optimized. This was 

with a view of finding the best results with the 

number of epochs, high Correlation Coefficient (R2), 

least Root Mean Squared Error (RMSE) and Mean 

Absolute Error (MAE): 

 

 (12)  
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Table. 3. List of algorithms applied in FTDNN (Lahmiri, 2011).  

Algorithm Adaptation Description 

Gradient descent 
(standard)(GD)  

The weights and biases value are updated in the leading of 
the negative gradient of the performance function 

Gradient Descent with 
Momentum and Adaptive 
Learning Rate Back 
propagation (GDX) 

 

Weight and bias deal updates pursuant to gradient descent 
momentum and an adaptive learning rate. 

Resilient Back propagation(RP) 

 

Only the sign of the derivative can determine the direction 
of the weight update multiplied by the step size 

Conjugate Gradient Back 
propagation with Fletcher-
Reeves Update (CGF) 

 

 

 

 
 

Iteration onset via probing in the steepest descent 
direction. A search line method1 is applied to discover the 
optimal current search direction 
Next (update) search direction is calculated as it is 
conjugate to prior search directions. 

Conjugate Gradient Back 
propagation with Polak-Ribiére 
Update (CGP) 

 

 

 

 
 

Update is performed through calculating the product of the 
earlier change in the gradient with the current gradient 
divided by the square of the previous gradient. 

Conjugate Gradient Back 
propagation with Powell-Beale 
Restarts (CGB) 

 

Update of search direction is reset to the negative of the 
gradient just when just when there is this suitable 
condition.  

Quasi-Newton Back 
propagation (BFGS)  

The update is calculated as a function of the gradient. H is 
the Hessian (second derivatives) matrix. 

Levenberg-Marquardt (LM) 

 

 

 

J is the Jacobian matrix (first derivatives) and e is a vector 
of network errors. Update is performed like Quasi-Newton 

 
 

Where SPIPi and SPIOi are the predicted and observed 

SPI in period t, respectively. 

  (13) 

  (14) 

 

Results and discussion 

Fig. 3. shows the changes in different time series (3, 

6, 9, 12, 18, 24 and 48 monthly SPI and precipitation) 

from 1965 to 2014 in one of the selected stations 

(Tehran Mehrabad synoptic station). As shown in the 

Fig., the generally linear that fitted the curve was also 

indicated for each time series. According to the Fig., 

by increasing the time series, there was a slight 

increase in the steepness of the fitted curves and a 

downward trend was seen at all-time series. In other 

words, as the SPI time series increases, the negative 

steepness of the fitted curves increased. 

 

Fig. 3. The change in the variation of monthly mean 

of the precipitation and SPI (3, 6, 9, 12, 18, 24 and 48 

months) during 1965 to 2014 in Tehran Mehrabad 

synoptic station. 

 

The trained neural network was used to test the 

performance of the network on the test dataset. The 

testing results of the networks, based on a delay time 

of 15 months in the input layer and 25 neurons in the 
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hidden layer and 12-month SPI for the Mehrabad 

station, are shown in Table 4. The number of 

iterations (epoch), Root Mean of Squared errors 

(RMSE), Mean Absolute Error (MAE), Correlation 

Coefficient(R2) were considered to determine the 

effect of training algorithms on the performance of 

the FTDNN model.  

 

As shown in Table 4 and Fig. 4. in terms of statistical 

parameters, Levenberg-Marquart with the highest R2 

and Lowest MAE and RMSE performed the best.  

The Conjugate Gradient Back propagation algorithms, 

include the CGF, CBP and CGB, as well as Quasti-

Newton with the same RMSE, R and MAE had 

acceptable performance after the L-M. Whereas 

gradient descent and gradient descent with 

momentum and adaptive Learning with high MAE, 

RMSE and low correlation coefficient had the worst 

performance. Also, the performance of Resilient back 

propagation in drought forecasting, owing to low R, is 

unacceptable. 

 

Table. 4. Performance of training algorithms on FTDNN model. 

Algorithms Epoch MAE RMSE R2 

Gradient descent (standard)(GD) 20.00 0.50 0.62 -0.20 
Gradient Descent with Momentum and Adaptive Learning 
Rate Back propagation (GDX) 

20.00 0.26 0.34 0.15 

Resilient Back propagation(RP) 19.00 0.09 0.11 0.77 

Conjugate Gradient Back propagation with Fletcher-Reeves 
Update (CGF) 

20.00 0.06 0.09 0.85 

Conjugate Gradient Back propagation with Polak-Ribiére 
Update (CGP) 

16.00 0.06 0.09 0.85 

Conjugate Gradient Back propagation with Powell-Beale 
Restarts (CGB) 

20.00 0.06 0.09 0.86 

Quasi-Newton Back propagation (BFGS) 19.00 0.06 0.08 0.86 

Levenberg-Marquardt (LM) 10.00 0.05 0.07 0.91 

 

 

Fig. 4. Comparison of statistical parameters (MAE, 

RMSE and R) and number or iteration (Epoch) for 

the effect of training algorithms. 

 

To compare algorithms in terms of the number of 

epochs, the Levenberg-Marquardt algorithm was 

found to be better than others. Subsequently, most 

speed of convergence is related to the Polak-Ribiére 

algorithm. The Gradient descent, gradient descent  

with momentum and adaptive Learning, Fletcher-

Reeves and Powell-Beale with the same number of 

epochs were found to be worst.  

 

The findings of this study clearly show that the 

Levenberg-Marquardt (LM) provides the best 

accuracy not only for the time required for training. 

This technique is the lowest in terms of epoch 

numbers, but also had low RMSE, MAE and highest 

R2 statistics. 

 

The prediction performance of the FTDNN models 

using LM training algorithm on the 600 independent 

test, training, validation and all datasets are shown in 

Fig. 5. As shown in this Fig., R2between the predicted 

and measured values for FTDNN trained with L-M 

was found to be 93.42% (training) and 85.09% 

(testing), respectively. Therefore, the LM training 

algorithm could be used reliably with FTDNN for 

drought forecasting. 
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Fig. 5. Focused Time Delay Neural Networks 

prediction accuracies using Lavenberg-Marquardt 

(LM) training algorithm. 

 

This result is also in agreement with the results of 

some previous studies that assessed the role of 

learning algorithms in ANN models for predicting. 

For instance,Benmahdjoub et al. (2013) in their study 

on the prediction of precipitation using Time Delay 

Neural Network in Tizi-Ouzou (Algeria), compared 

two learning algorithms including recursive gradient 

with constraint of shared weights and algorithm of 

Lavenberg-Marquardt.  

 

After evaluating the correlation between the inputs 

and TDNN outputs, they found that the Lavenberg-

Marquardt yields better description and forecast of 

rainfall. In a study by Lahmiri (2011), the accuracy of 

back propagation neural networks trained using 

various heuristic and numerical algorithms was 

measured for assessment purpose in financial 

prediction. Consequently, BFGS and Levenberg-

Marquardt were determined as the best in terms of 

accuracy. Generally, Levenberg–Marquardt algorithm 

is regarded as one of the most efficient training 

algorithm sowing to its ability to resolve problems 

existing in both the gradient descent method and the 

Quasi–Newton method for neural-networks training, 

by the combination of these two algorithms (Hagan 

and Menhaj, 1994).  

In the gradient descent method, the sum of the 

squared errors is reduced by updating the parameters 

in the direction of the greatest reduction of the least 

squares objective. In the Quasi -Newton method, the 

sum of the squared errors is reduced by assuming 

that the least squares function is locally quadratic, 

and finding the minimum of the quadratic. When the 

parameters are away from their optimum, the 

performance of the Levenberg-Marquardt method is 

similar to the gradient-descent method, and its action 

is similar to the Quasti-Newton method when the 

parameters are close to their optimal value. Indeed, 

the LM converges faster than other methods since the 

Hessian matrix is not computed, but only 

approximated and the Jacobian needs less 

computation than the Hessian matrix. 

 

Then the number of nodes in the hidden layer was 

optimized for the FTDNN model. Hence, the number 

of iteration and statistical parameters for the 

Levenberg-Marquart algorithm, as the most efficient 

training algorithm, were identified by varying the 

number of nodes in the hidden layer chosen 

empirically between 25 to 35, since there is no reliable 

method for systematically determining them (Adeoti 

and Osanaiye, 2013; Aparisi et al., 2006; Demuth et 

al., 2008). The results are shown in Table 5. The 

number of nodes in the hidden layer that gave the 

lowest Epoch, RMSE, MAE and highest R was 

determined by focused time delay neural network. 

 

As shown in Table 5, for node 26, the RMSE and MAE 

were at minimum, the highest R was seen, but the 

number of epochs was at maximum; and conversely, 

less speed, more MAE and RMSE and less R were 

found for node 27. Also, for nodes 32 and 33, similar 

conditions can be seen (less epoch and R), other 

nodes were shown to be of either acceptable statistical 

parameters or appropriate epochs, but the best node 

in the hidden layer was found to be 31 based on the 

fact that it is more appropriate in both statistical 

parameters and number of epochs, and theR2between 

the predicted and measured values was found to be 

92.96% for training data and 87.75% for testing data. 
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Table. 5. Efficiency of the nodes number in hidden layer on FTDNN model trained with Levenberg-Marquart. 

NN 
Configuration 

Epoch MAE RMSE R2 

1-25-1 4 0.05 0.07 0.92 

1-26-1 9 0.04 0.06 0.93 

1-27-1 2 0.06 0.08 0.87 

1-28-1 4 0.05 0.07 0.91 

1-29-1 4 0.05 0.07 0.91 

1-30-1 5 0.04 0.06 0.92 

1-31-1 4 0.04 0.06 0.92 

1-32-1 3 0.06 0.08 0.89 

1-33-1 3 0.05 0.07 0.90 

1-34-1 4 0.05 0.07 0.92 

1-35-1 4 0.05 0.07 0.91 

 

Finally, the designed Focused Time Delay Neural 

Network was applied for all SPIs in all stations to be 

determined, the performance of time series was more 

accurate in prediction, therefore, only the statistical 

parameters were compared and the results are shown 

in Tables 6 and 7. According to the results, SPI 48 

followed by SPI 24, were recognized as the best SPI 

time series for forecasting in all stations and SPI 3 

was observed as the worst. In other words, the 

prediction performed better in long term time series.  

The results in Table 7 showed that R2between the 

predicted and measured values for training and 

testing data was improved by increasing the time 

series. Fig. 5 shows a comparison between the 

response of the network for SPI 3 and SPI48. A1 and 

B1 show the difference between output and target; 

also, A2 and B2 represent the error of response of 

FTDNN for SPIs time series. Based on the 

aforementioned, the difference between the output 

and target and consequently the error of prediction 

for SPI 48 was smaller than SPI 3.  

 

Table. 6. Statistical parameters of FTDNN model for 3, 6 and 9 monthly SPI time series in Central Iran. 

Station name 3 monthly SPI 6 monthly SPI 9 monthly SPI 

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 

Arak 0.11 0.15 0.64 0.86 0.11 0.81 0.0.7 0.09 0.87 
Bam 0.07 0.09 0.68 0.07 0.09 0.75 0.6 0.08 0.86 

Esfahan 0.14 0.18 0.44 0.11 0.15 0.71 0.09 0.11 0/83 
Fasa 0.09 0.12 0.60 0.07 0.09 0.78 0.05 0.07 0.92 

Kashan 0.11 0.14 0.65 0.08 0.11 0.79 0.06 0.08 0.89 
Kerman 0.11 0.14 0.62 0.09 0.11 0.74 0.06 0.09 0.86 
Qazvin 0.08 0.11 0.71 0.07 0.09 0.84 0.05 0.07 0.90 

Sabzevar 0.09 0.11 0.64 0.08 0.10 0.81 0.06 0.09 0.89 
Semnan 0.09 0.12 0.65 0.11 0.13 0.73 0.08 0.10 0.85 
Shahrud 0.08 0.11 0.67 0.08 0.10 0.80 0.06 0.08 0.89 

Tabas 0.82 0.11 0.67 0.07 0.1 0.78 0.07 0.09 0.87 
Tehranmerhabad 0.09 0.12 0.68 0.07 0.10 0.76 0.06 0.07 0.89 

Yazd 0.10 0.14 0.62 0.09 0.12 0.79 0.08 0.10 0.88 
Zanjan 0.09 0.12 0.68 0.06 0.08 0.85 0.06 0.08 0.90 

 

In a study carried out byRezaeian-Zadeh and Tabari 

(2012) on MLP-based drought forecasting using SPI 

(3,6,9,12 and 24) in different climatic regions, it was 

concluded that MLPs can forecast SPI24 and SPI12 

more accurately than the other SPIs. Also, Belayneh 

et al. (2014) forecasted the long-term SPI (12 and 24 

month) drought in the Awash River Basin in Ethiopia 

using wavelet neural network and wavelet support 

vector regression models.  

The results obtained from all the data driven models 

generally showed that SPI 24 forecasts are more 

accurate than SPI 12 forecasts. 

 

Moreira et al. (2012) and Vicente-Serrano (2006), in 

their respective studies, emphasized that large time 

scales of SPI recognizes anomalous dry periods of 

relatively long duration and relates well with the 

conditions assumed in the adopted definition. 
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This can result in the limitation of SPI analysis in 

defining drought in low precipitation areas at shorter 

time scales, where zero or small amount of droughts 

occurred for the whole time period using the 3-month 

and sporadically 6-months SPI test. This was due to 

the median precipitation being zero in these regions, 

for the periods on record. By increasing the time 

scales and considering additional months, this 

problem can be solved (Bari Abarghouei et al., 2011; 

Kangas and Brown, 2007). 

 

Fig. 6. The response of FTDNN for Tehran Mehrabad 

SPIs series: In A1 and B1 the dashed line shows the 

error and the solid line showed the response. In B1 

and B2 the error of response has been represented. 

 

Table. 7. Statistical parameters of FTDNN model for 12, 18 , 24 and 48 monthly SPI time series in Central Iran. 

Station name 
12 monthly SPI 18 monthly SPI 24 monthly SPI 48 monthly SPI 

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 

Arak 0.05 0.07 0.91 0.05 0.07 0.94 0.04 0.06 0.96 0.28 0.04 0.98 
Bam 0.05 0.08 0.91 0.05 0.07 0.92 0.04 0.06 0.95 0.03 0.03 0.98 

Esfahan 0.06 0.08 0.92 0.04 0.06 0.94 0.04 0.05 0.96 0.03 0.05 0.97 
Fasa 0.05 0.07 0.92 0.04 0.06 0.95 0.03 0.05 0.97 0.03 0.04 0.99 

Kashan 0.06 0.08 0.92 0.05 0.07 0.94 0.05 0.07 0.93 0.04 0.06 0.94 
Kerman 0.05 0.07 0.92 0.05 0.06 0.92 0.03 0.05 0.96 0.03 0.05 0.98 
Qazvin 0.07 0.09 0.89 0.05 0.07 0.94 0.04 0.06 0.95 0.04 0.06 0.96 

Sabzevar 0.07 0.09 0.92 0.05 0.07 0.95 0.05 0.06 0.95 0.04 0.05 0.96 
Semnan 0.05 0.09 0.90 0.06 0.08 0.91 0.04 0.06 0.94 0.04 0.05 0.96 
Shahrud 0.05 0.07 0.93 0.04 0.06 0.95 0.04 0.05 0.96 0.03 0.04 0.98 

Tabas 0.05 0.07 0.92 0.05 0.07 0.90 0.04 0.06 0.95 0.03 0.05 0.97 
Tehranmerhabad 0.05 0.07 0.90 0.06 0.07 0.91 0.04 0.06 0.95 0.03 0.06 0.97 

Yazd 0.06 0.08 0.91 0.05 0.08 0.93 0.04 0.06 0.95 0.03 0.05 0.97 
Zanjan 0.05 0.07 0.90 0.04 0.06 0.94 0.05 0.06 0.95 0.04 0.05 0.97 

 

Table. 8. R2 between the predicted and measured values for training, testing and all data by FTDNN for 

Tehranmehrabad SPIs series. 

SPI time series Testing data     Training data                             all 

3 monthly SPI 0.50 0.74 0.68 

6 monthly SPI 0.59 0.52 0.76 

9 monthly SPI 0.83 0.91 0.88 

12 monthly SPI 0.84 0.92 0.90 

18 monthly SPI 0.92 0.91 0.91 

24 monthly SPI 0.95 0.94 0.95 

48 monthly SPI 0.95  0.98 0.97 

 

Conclusion 

Focused time-delay neural networks were designed in 

order to predict various time series of SPI in central 

Iran. As such, the performance of the algorithms was 

assessed on optimized network with delay time of 15 

months in the input layer and 25 neurons in the 

hidden layer. It was found that the LM algorithm 

provide the greatest performance in terms of speed of 

convergence and statistical parameters for the 

prediction of SPIs.  

 

The designed networks were applied for SPIs time 

series in 14 stations in study area. The accuracy of the 

predictions was higher for the long term time series 

(R>0.90) compared to the short term time series 

(R<0.90). Concerning the statistical parameters, by 

increasing the time scale, the accuracy of forecasting 

increased. 

 



J. Bio. & Env. Sci. 2016 

 

242 | Vali and Roustaei  

The developed neural network model can be a very 

helpful tool for water resource planners to take 

necessary actions timely when there is water scarcity 

which may ultimately develop into drought 

conditions. 

 

Future work in different climatic stations with SPI 

and other drought indices is suggested to analyze the 

efficiency of FTDNN in the forecasting of drought in 

various time scales.  

 

Also, a survey, based on the simulation and prediction 

of result using other artificial neural networks and 

back propagation algorithms for SPI forecasting and 

comparing the forecasted result accurately with 

current forecasting methods, can further improve the 

efficiency of the Focused Time Delay method. 
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