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Abstract 

The importance of water supplies in the world, underscores the need for estimating and forecasting the trend of 

meteorological phenomena, understanding atmospheric phenomena and its trend in economic management. This 

includes optimization of profitability and productivity impact, especially in arid and semi-arid schedules. 

Conversely, climate and rainfall are highly non-linear and complicated phenomena, which require non-linear 

mathematical modeling and simulation for trusted accurate prediction. In this study, monthly rainfall data were 

obtained from 10 synoptic stations from 1985 to 2014. Thereafter, R software was employed in predicting the 

height of rainfall in 10 synoptic stations (2003 to 2014) using monthly height of rainfall data (1985 to 2014). In 

this research, five models (AR, MA, ARMA, ARIMA, and SARIMA) with 12 different structures were tested. After 

deciding on the optimal model to be used for each station, rainfall was forecast for 120 months (2014 to 2024) 

and then for the years 2014 and 2024 iso-rainfall maps were outlined. From the findings of this research, it was 

observed that in 80% of data, ARMA (2,1) had better results than the other models and according to the 

simulated and predicted rainfall by time series models, the drought situation was evaluated using standardized 

precipitation index (SPI). The result thus revealed that in comparison to 2014, severe drought will have decreased 

by the end of 2024. 
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Introduction 

One of the effective studies in micro and macro scales 

of social economic planning is that of selecting an 

appropriate model for forecasting monthly and 

annual rainfall. This will result in having reliable 

information about the situation of rainfall in future 

years. Also, directors and planners, and also different 

social sectors can be additionally prepared to deal 

with adverse events, such as taking action to deal with 

optimal utilization of water, soil and human resources 

(Nazemosadat et al., 2006). 

 

In this context, the precipitation forecast of the 

agriculture based economy in developing countries, 

especially in arid and semi-arid areas is important. 

Since the study area (Khorasan Razavi province) falls 

within this category and should be aware of the 

precipitation situation in the future, it requires such 

information to optimize management. 

 

Additionally, rainfall ranks among the most complex 

and challenging elements of the hydrological cycle as 

regards understanding and modeling due to the 

complexity of atmospheric processes that generate 

rainfall and the tremendous variation over a wide 

range of scales both in space and time (French et al., 

1992). 

 

Thus, in operational hydrology, accurate rainfall 

forecasting has remained one of the greatest 

challenges despite many advances in weather 

forecasting in recent decades (Gwangseob and Ana, 

2001).  

 

In this day and age, researchers, due to innovation 

and scientific development of intelligent techniques 

that are powerful devices, flexible and dynamic 

models are becoming independent in their search for 

ways of modeling and forecasting important 

meteorological parameters (Firouzi et al., 2012). Time 

series is a sequence of values or events measured at 

equal intervals that can be used to predict any future 

event. Time series analysis identifies any hidden 

pattern in previous data and predicts a future pattern. 

Agriculture, climatology, sales, transport and tourism 

sectors are some examples of different forecasting 

areas. 

 

Traditional methods, such as time series regression, 

exponential smoothing, and auto-regressive 

integrated moving average (ARIMA), are available for 

stochastic time series analysis. Development of time 

series models consists of three phases: identification, 

estimation and diagnostic checking (Shirmohammadi 

et al., 2013). It is widely recognized that time series 

modeling, can be a better option for an area where 

there is virtually nothing but the hydrological time 

series data in hand (Kumar et al., 2012). A number of 

stochastic time series models such as the Markov, 

Box-Jenkins (BJ) Seasonal Auto- Regressive Integ-

rated Moving Average (ARIMA), depersonalized 

Auto-Regressive Moving Average (ARMA), Periodic 

Auto-regressive (PAR), Transfer Function Nois (TFN) 

and Periodic Transfer Function Noise (PTFN), are 

currently being used for these purposes (Box et al., 

1994; Hipel and Mcleod, 1994; Brockwell and Davis, 

2010). Models of time series analysis (Box-Jenkins 

models and ANN models) are widely applied in 

various fields of hydrology and rainfall forecasting in 

irrigation schedule, some of which are described 

below. 

 

Through the use of ANN and ARMA models to 

forecast rainfall, Toth et al. (2000) demonstrated the 

success of both short-term rainfall forecasting models 

for forecast floods in real time. Also, in using the 

ARMA model for forecasting short-term rainfall, 

Burlando et al. (1993) utilized hourly rainfall data 

from two gauging stations in Colorado, USA, and 

from several stations in Central Italy, to show that the 

event-based estimation approach yields better 

forecasts. 

 

Regarding daily rainfall prediction using artificial 

neural network model, Saplioglu et al. (2010) used 

ARIMA (1,1) modeling variable seasonal flows in 

Rivers Yampayr monthly and White 3 in north-

western California. Haltiner et al. (1988) modeled 

parameters compared from the maximum likelihood 

method and the moment neural networks were used 

to forecast rain. Also, the results of Tokar et al. (1999)  
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showed that the runoff model precipitation of 

artificial neural networks in comparison with other 

statistical methods is more accurate and less time is 

spent on the model. 

 

In the present study, a comparative study of rainfall 

behavior was conducted as obtained by AR, MA, 

ARMA, ARIMA, and SARIMA with 12 different 

structures and comparison of iso-rainfall in 2014 and 

2024 (while 2014 is real data, 2024 is predicted data) 

and also provides SPI for the years mentioned. These 

models are applied in this research to help develop 

rainfall estimation models for Khorasan Razavi 

Province station, to compare the results of models 

and to evaluate the potential for estimating monthly 

rainfall. 

 

Materials and methods 

Study area 

According to the global desertification vulnerability 

map presented at the 1: 5’000’000 scale (USDA-

NRCS, 1995), the high vulnerability regions of the 

world are mainly located in the arid zone belts of 

Middle East countries. Iran, with more than 85% arid 

and semi-arid areas, includes a wide range of 

different types of ecosystems, characterized by high 

vulnerability to desertification and soil degradation 

processes. The study was conducted in Khorasan 

Razavi Province, which is in the second metropolitan 

city of Iran, Mashhad. This province is one of the 

regions at high erosion risk in Iran. The studied area 

covers about 116511 km2 and is approximately located 

between East longitude 56°19’ to 61°16’ and between 

North latitude 33°52’ to 37°42’ (Fig. 1). More than 

60% of the province comprises desert and semi-

desert areas. Thirteen cities are completely located in 

desert area, or a part of them is desert, and are 

characterized by difficult living conditions. It has low 

rainfall (about 210 mm/year) and extremely low 

vegetation cover. Typical vegetation formations are 

various species of Artemisia, Astragalus, Stipa, 

Luctuca, Festuca and Amygdalus. Clay plains (Dagh 

in Persian), playas, salty land and moving sand dunes 

are widespread morphologies. 

The most widespread soil types are aridisols, entisols, 

lithosols and rigosols. These conditions are highly 

vulnerable to wind and water erosion, and prone to 

desertification. 

 
Fig. 1. The location of Khorasan Razavi province in 

the north east of Iran. 

 

Time series models 

Time series data show many forms and represent 

different stochastic processes. Linear relationships 

are common models for time series. There are three 

basic types of linear models: autoregressive (AR), 

moving-average (MA), and ARMA models. In this 

study AR, MA, ARMA, ARIMA, and SARIMA models 

are used for evaluating time series performances. 

 

AR Model 

In a series where persistency is observed, that is, the 

event outcome of (t+1), the period is dependent on 

the present period magnitude and those preceding 

values. Hence, for such a series, the observed 

sequences X1, X2,…., Xt is used to fit AR model. 

Auto-Regressive model (AR) (p) can be expressed as 

Equation (1): 

tptpttt azzzz    ......2211  Eq. (1) 

Where 1 , 2 and p are coefficient and model 

parameters and ta
 is random term of the data 

followed by normal distribution with zero mean 

(Hannan, 1971). 
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MA Model 

Moving average models are simple covariance 

stationary and argotic time series models that can 

capture a wide variety of auto-correlation patterns. 

Moving Average model (MA (q)) can be expressed as 

Equation (2): 

tqtqttt aaaaz    ......2211  Eq. (2) 

Where 1 , 2  and q  are coefficient and model 

parameters and ta
is random term of the data 

followed by normal distribution with zero mean 

(Hannan, 1971). 

 

ARMA Model 

The ARMA model is a combination of an Auto-

Regressive (AR) model and a Moving-Average (MA) 

model. The auto-regressive moving average (ARMA) 

model forms a class of linear time series models that 

are widely applicable and parsimonious in 

parameterization. Autoregressive moving average 

(ARMA) model ARMA (p, q) can be expressed as 

Equation (3): 

tjt

q

j jt

p

i it eeyY    111


 Eq. (3) 

 

Where δ is the constant term of the ARMA model, i  

indicates the 
thi  autoregressive coefficient, j  is the 

thj  moving average coefficient, and shows the error 

term at time period t, with tY
refers to the observed 

or forecasted value of groundwater level at time 

period t (Erdem and Shi, 2011). 

 

ARIMA and SARIMA models 

Auto-regressive integrated moving average (ARIMA) 

models are among the most important linear models 

for time series forecasting. ARIMA models emanated 

from the combination of auto-regressive models (AR) 

and the moving average models (MA). ARIMA fits a 

Box-Jenkins ARIMA model to a time series 

(Shirmohammadi et al., 2013). ARIMA is aimed at 

modeling time series behavior and generating 

forecasts. 

Its modeling uses correlation techniques and can help 

to model patterns that may not be visible in plotted 

data (Box et al., 1994). In ARIMA, the future value of 

a variable is assumed to be a linear function of several 

past observations and random errors. A SARIMA 

model can be explained as ARIMA (p, d, q) (P, D, Q)s, 

where (p, d, q) is the non-seasonal part of the model 

and (P, D, Q)s is the seasonal part of the model in 

which there is non-seasonal auto-regression order, d 

is the number of regular differencing, that is, the 

order of non-seasonal MA, P is the seasonal auto-

regression order, D is the number of seasonal 

differencing, Q is the order of seasonal MA, and s is 

the length of season (Faruk, 2010). 

 

Model selection 

In most of the researches carried out, Auto 

Correlation Function (ACF) and Partial Auto 

Correlation Function (PACF) have been used to 

determine the best model. However, to enhance the 

accuracy of the model selection, coefficient of 

determination (
2R ) and Akaike information criteria 

(AIC) have been used in this research in addition to 

ACF and PACF.  

 

AIC and
2R can be expressed as Equations (4 and 5). 

kMSEnkAIC 2)ln()( 
    Eq. (4) 
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 Eq. (5) 

 

Wherein is the number of data points (for 

calibration), and k is the number of free parameters 

used in the models. MSE represents mean square 

error 
qi

,
iqˆ

, are observed and estimated values, 

while 
q̂

and
q

are the estimated mean values and 

computational model outputs, respectively. Usually, 

the preferred model gives higher 
2R or the smallest 

value of AIC.  
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The auto-correlation statistics as well as the 

corresponding 95% confidence bands from lag-0 to 

lag-20 were estimated for the rainfall time series (Fig. 

3) (.a,b). For the rainfall data time series, the partial 

auto-correlation function (PACF) showed significant 

correlation up to lag-2 for this time series within the 

confidence limits as well as auto-correlation function 

(ACF) decreases exponentially. The study area’s 

rainfall data behavior in Fig. 2 reveals the data of 

interest to be the three components (trend, seasonal 

and random), that were used as random components 

in forecasting. 
 

 
Fig. 2. Time series graphs with random, seasonal and 

trend components in Mashhad station. 

 

 
Fig. 3. (a) Auto-correlation and (b) partial auto-

correlation functions of the monthly. 

 

Meteorological drought  

Meteorological drought can be explained as 

precipitation decreasing along time and space. (Morid 

et al., 2006). Precipitation has commonly been used 

for meteorological drought analysis (Santos, 1983; 

Chang, 1991). 

Considering drought as precipitation deficit with 

respect to average values, several studies have 

analyzed droughts using monthly precipitation data. 

One of the most popular tools in meteorological 

drought tools is SPI index. 

 

Hayes et al. (1999) demonstrated how the SPI could 

have been used operationally at varying time scales to 

monitor the 1996 drought from its development to its 

conclusion in the southern Great Plains and 

southwestern USA. They concluded that ‘using the 

SPI as a drought monitoring tool will improve the 

timely identification of emerging drought conditions 

that can trigger appropriate state and federal actions 

(Wu et al., 2005). 

 

Although the SPI is not a drought prediction tool, SPI 

methodology has been used in identifying dryness 

and wetness conditions, and in evaluating their 

impact in water resources and management (Priento-

Gonzalez et al., 2011). 

 

Standardized precipitation index (SPI) 

The meteorological drought index for assessing the 

situation in each region is calculated based on long-

term rainfall record. SPI can be expressed as 

Equation (6): 

SPI=(Xi-X ̅)/S    Eq. (6). 

                                                                    

Where SPI: Standardized Precipitation Index, Xi: 

rainfall in the desired year, : Long-term average 

annual rainfall and S is standard deviation. The SPI 

classes based on McKee et al. (1993) are presented in 

Table 3. 

 

Thus, in this study, monthly rainfall data for the years 

1985 to 2014 were collected from 10 synoptic stations 

(General Directorate of Meteorology, Mashhad). After 

data was prepared, R software was used to predict the 

height of rainfall in 10 synoptic stations (2003 to 

2014) using monthly height of rainfall data (1985 to 

2014) to select the optimal model to predict. 

Thereafter, according to the best selected model, 
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the height of rainfall predicted from 2014 to 2024. 

Based on the predicted data (2014 to 2024), the 

drought situation was predicted and analyzed (Fig. 

15a, b). 

 

Results 

The findings obtained from AR, MA, ARMA, ARIMA 

and SARIMA models in Ghoochan, Golmakan, 

Neyshaboor, Sarakhs, Sabzevar, Kashmar, Torbate 

Heydarieh, Torbate Jam, Gonabad and Mashhad are 

shown in Table 2. Also, the models performance in 

highest rainfall forecasting versus the observed 

highest rainfall are shown in Figs. 4 to 13 in 

Ghoochan, Golmakan, Gonabad, Kashmar, Mashhad, 

Neyshaboor, Sabzevar, Sarakhs, Torbate Heydarieh 

and Torbate Jam stations respectively.  

 

The iso-rainfall map in 2014 and rainfall prediction in 

2024 are shown in Fig. 14a, b. Consequently, the 

drought assessment result of 2014 and 2024 are 

shown in Fig. 15a, b using drought index (SPI) in 

2014 and 2024 in Khorasan Razavi Province. 

 

Table 1. Synoptic stations characteristics. 

Station Longitude Latitude Height )m( Range of Values(mm/year) 
Mashhad 59º  38´ 36º  16´ 999.2 121.4-390.2 
Ghoochan 58º  30´ 37º04´ 1287 121.5-436.9 
Golmakan 59º  17´ 36º  29´ 1176 108.3-319.1 
Gonabad 58º  41´ 34º  21´ 1056 68.8-228.3 
Neyshboor 58º  48´ 36º  16´ 1213 130-356.8 
Sabzevar 57º  39´ 36º  12´ 972 58-295.4 
Torbate H 59º  13´ 35º  16´ 1450 82.1-390.6 
Torbate J 60º  35´ 35º  15´ 950 56.3-263.2 
Kashmar 58º  28´ 35º  12´ 1109 64.7-299.1 
Sarakhs 61º  10´ 36º  12´ 235 76.4-261 

 

Table 2. The results of time series models performance for ten stations. 

           
   Stations 
 
 

 
Models  

Ghoochan Golmakan Gonabad Kashmar Mashhad 

 
Model 
 coefficient 
 

 
AIC 

 
2R  

 
Model 
coefficie
nt 
 

 
AIC 

 
2R  

 
Model 
coefficie
nt 
 

 
AIC 

 
2R  

 
Model 
coefficient 
 

 
AIC 

 
2R  

 
Model 
coeffici
ent 
 

 
AIC 

 
2R  

AR(1) 
1  

-0.0087 1836.18 0.60 0.0916 1747.85 0.60 0.0339 1716.8 0.51 -0.1040 1852.83 0.63 -0.113 1848.59 0.62 

AR(2) 
1  

-0.0095 
1836.23 0.60 

0.1049 
1745.13 0.60 

0.0345 
1718.73 0.51 

-0.1098 
1854.3 0.63 

-0.1107 
1850.49 0.62 

2  -0.0944 -0.1473 -0.0181 -0.0498 0.0217 

MA(1) 
1  

-0.0108 1836.18 0.60 0.1173 1747.27 0.60 0.0344 1716.8 0.51 -0.1216 1852.5 0.63 -0.1134 1848.63 0.62 

 
MA(2) 1  

-0.4384 
1810.79 

0.61 

-0.3901 
1721.74 0.60 

0.031 
1718.79 0.51 

-0.1734 
1852.42 0.63 

-0.1191 
1850.61 0.62 

2  
-0.5615 -0.6098 -0.0086 -0.1385 -0.0167 

 
ARMA 
(1,1) 

1  
0.6194 

1796.2 0.61 
-0.2466 

1748.68 0.60 
0.0038 

1718.8 0.51 
0.6035 

1815.61 0.64 
-0.5655 

1850.01 0.62 

1  
-1 0.3610 0.0307 -1 0.4615 

 
 
ARMA 
(1,2) 

1  
0.4803 

1790.93 

0.61 

0.4722 

1698.55 0.60 

-0.5234 

1720.26 0.51 

0.5233 

1815.61 0.64 

-0.6042 

1852 0.62 1  
-0.7601 -0.6707 0.5677 -0.8743 0.4956 

2  
-0.2399 -0.3293 0.0697 -0.1257 -0.0144 

 
 
ARMA 
(2,1) 

1  
0.7550 

1787.13 

0.61 

0.8495 

1689.67 0.59 

0.8328 

1673.67 0.5 

0.6726 

1814.49 0.64 

0.6741 

1810.56 0.62 2  -0.2223 -0.3297 -0.2412 -0.1222 -0.0969 

1  -1 -1 -1 -1 -1 

 
 
ARMA 
(2,2) 

1  
1.4591 

1765.27 *** 

1.4349 

1680.84 *** 

0.1667 

1715.6 0.5 

1.5309 

1790.36 0.64 

-0.3094 

1814.6 0.62 
2  -0.6799 -0.6826 -0.8971 -0.6615 0.5694 

1  
-1.8137 -1.7279 -0.1282 -1.9814 -0.0756 

2  
0.8137 0.7279 1 0.9817 -0.9244 

 
 
ARIMA 
(1,1,2) 

1  
-0.4789 

1836.01 

0.60 

-0.892 

1747.38 0.59 

-0.0691 

1717.19 0.51 

-0.5974 

1853.1 0.63 

-0.5693 

1847.99 0.62 
d 1 1 1 1 1 

1  
-0.5032 -0.0669 -0.8947 -0.4777 -0.5318 

2  
-0.4967 -0.9330 -0.1051 -0.5223 -0.4681 

 
1  

-0.4526 1927.55 0.60 -0.3718 1836.63 0.60 -0.4689 1795.44 0.5 -0.5287 1943.45 0.60 -0.57 1930.71 0.62 
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ARIMA 
(1,2,1)  

d 2 2 2 2 2 

1  
-1 -1 -1 -1 -1 

 
 
SARIMA 
(1,1,0) 
(1,1,1)(12) 

1  
-0.4473 

1864.47 

0.58 

-0.3796 

1188.33 0.57 

-0.46 

1737.49 46/0  

-0.5399 

1883.32 0.59 

-0.5699 

1869.86 0.61 

d 1 1 1 1 1 

1
 

-0.0184 0.0437 -0.1521 -0.0552 -0.0038 

D 1 1 1 1 1 

1
 
-0.9390 -1 -0.8657 -1 -1 

 
 
SARIMA 
(1,1,1) 
(1,1,1)(12) 

1  
-0.0169 

1780.82 

0.57 

0.0956 

1147.87 0.57 

-0.0457 

1667.46 0.49 

-0.1377 

1898.22 0.62 

-0.1116 

1865.37 0.61 

d 1 1 1 1 1 

1  
-1 -1 -1 -1 -1 

2  0.0604 0.006 -0.1076 0.970 -0.03 

D 1 1 1 1 1 

2  -0.9999 -1 -0.8599 -0.9996 -0.9673 

 

 

Table 2 (continued) 

  Sinoptic   
     station 
 
 

Model 

Neshaboor Sabzevar Sarakhs Torbate Heydarieh Torbate Jam 

 
Model 

coefficient 
 

 
AIC 

 
2R  

 
Model 

coefficient 
 

 
AIC 

 
2R  

 
Model 

coefficient 
 

 
AIC 

 
2R  

 
Model 

coefficient 
 

 
AIC 

 
2R  

 
Model 
coeffici

ent 

 
AIC 

 
2R  

AR(1) 
1  

-0.1235 1802.52 0.57 -0.0675 1808.48 0.49 -0.2533 1730.2 0.66 -0.0796 1946.62 0.58 0.0339 1716.8 0.54 

AR(2) 
1  

-0.1274 
1804.3 0.57 

-0.0721 
1816.35 0.49 

-0.2505 
1732.17 0.66 

-0.0797 
1948.62 0.58 

0.0345 
1718.73 0.54 

2  -0.0315 -0.0988 0.0115 -0.0023 -0.0181 

MA(1) 
1  

-0.1346 1802.27 0.57 -0.0861 1816.18 0.49 -0.2611 1730.44 0.66 -0.0837 1946.58 0.58 0.0344 1716.8 0.54 

 
MA(2) 1  

-0.155 
1803.49 0.57 

-0.4753 
1808.48 0.49 

-0.2659 
1732.4 0.66 

-0.1147 
1948.12 0.58 

-0.031 
1718.79 0.54 

2  
-0.0952 -0.4753 -0.0182 -0.0714 -0.0086 

 
ARMA 
(1,1) 

1  
0.6017 

1764.2 0.57 
0.6271 

1816.35 0.49 
-0.3482 

1732.13 0.66 
-0.7001 

1947.66 0.58 
0.0038 

1718.8 0.54 

1  
-1 -0.9720 0.1015 0.6241 0.0307 

 
 
ARMA 
(1,2) 

1  
0.5378 

1764.97 0.57 

0.4727 

1771.62 0.49 

-0.6171 

1733.67 0.66 

-0.6904 

1949.65 0.58 

-0.5234 

1720.26 0.54 
1  

-0.8994 -0.8081 0.3573 0.6183 0.5677 

2  
-0.1006 -0.1919 -0.0990 0.0071 0.0697 

 
 
ARMA 
(2,1) 

1  
0.6581 

1764.17 0.57 

0.6927 

1769.39 0.50 

0.7115 

1734 0.66 

-0.6882 

1949.66 0.58 

0.8328 

1673.67 0.54 
2  -0.09725 -0.1725 -0.0906 0.0049 -0.2412 

1  -1 -1 0.4652 0.6145 -1 

 
 
ARMA 
(2,2) 

1  
1.4823 

1741.39 0.57 

1.5306 

1747.38 0.49 

-0.714 

1695.51 0.66 

-0.1397 

1911.09 0.58 

0.1667 

1715.6 0.54 
2  -0.6576 -0.6591 0.393 -0.4685 -0.8971 

1  
-1.7826 -1.9888 -0.4269 -0.2534 -0.1282 

2  
0.8827 0.9891 -0.5731 -0.7466 1 

 
 
ARIMA 
(1,1,2) 

1  
0.6095 

1766.74 0.57 

-0.8936 

1817.37 0.49 

-0.3739 

1730.91 0.66 

-0.7046 

1945.14 0.58 

-0.0691 

1717.19 0.54 
d 1 1 1 1 1 

1  
-1.9985 -0.1093 -0.8668 -0.3694 -0.8948 

2  
0.9999 -0.8906 -0.1332 -0.6306 -0.1051 

 
ARIMA 
(1,2,1)  

1  
-0.5431 

1894.04 

0.54 

-0.4851 

1912.54 0.49 

-0.6345 

1824.58 0.66 

-0.5425 
2029.0

2 
0.53 

-0.4689 

1795.44 0.53 d 2 2 2 2 2 

1  
-1 -1 -1 -1 -1 

 
 
SARIMA 
(1,1,0) 
(1,1,1)(12) 

1  
-0.5549 

1823.05 

0.41 

-0.4112 

1820.21 0.49 

-0.6299 

1768.62 0.64 

-0.5256 

1962.44 0.51 

-0.46 

1737.49 0.49 

d 1 1 1 1 1 

1
 

0.0191 0.004 -0.075 -0.0951 -0.1521 

D 1 1 1 1 1 

1
 

-0.7675 -0.8408 -1 -0.8885 -0.8657 

 
 
SARIMA 
(1,1,1) 
(1,1,1)(12) 

1  
-0.1338 

1738.22 

0.52 

-0.0673 

1763.21 0.49 

-0.2648 

1682.72 0.64 

-0.048 

1885.9 
 

0.57 

-0.0457 

1667.46 0.52 

d 1 1 1 1 1 

1  
-1 -1 -1 -1 -1 

2  0.0283 0.0696 -0.0149 -0.0979 -0.1076 

D 1 1 1 1 1 

2  -0.7734 -1 -1 -0.8571 -0.8599 
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Table 3. Classification Scale for SPI (Hayes et al., 1999) and results of assessment of drought in 2014 and 2024. 

Cumulative probability 
2024 % 

Cumulative 
probability 2014 

% 
Classification SPI value 

- - Extremely wet 2.00 or more 

- - Very wet 1.50 to 1.99 

- - Moderately wet 1 to 1.49 

100 83.8 Near normal -0.99 to 0.99 

- 16.2 Moderate drought -1 to -1.49 

- - Severe drought -1.50 to -1.99 

- - Extreme drought -2 or Less 
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Fig. 4. Models prediction versus observed data in 

Ghoochan station. 
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Fig. 5. Models prediction versus observed data in 

Golmakan station. 
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Fig. 6. Models prediction versus observed data in 

Gonabad station. 
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Fig. 7. Models prediction versus observed data in 

Kashmar station. 
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Fig. 8. Models prediction versus observed data in 

Mashhad station. 
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Fig. 9. Models prediction versus observed data in 

Nyshaboor station. 
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Fig. 10. Models prediction versus observed data in 

Sabzevar station. 
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Fig. 11. Models prediction versus observed data in 

Sarakhs station. 
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Fig. 12. Models prediction versus observed data in 

Torbate Hydarie station. 
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Fig. 13. Models prediction versus observed data in 

Torbate Jam station. 

 

 

Fig. 14 (a,b). Simulated and predicted of iso- rainfall 

maps in 2014 and 2024. 

 
Fig. 15 (a,b). Drought simulation and prediction using 

SPI index in 2014 and 2024. 

 

Discussion 

The highest rainfall in 10 rain gauge stations was 

simulated during 2003 to 2014 using R software 

according to monthly highest rainfall data (1985 to 

2003). Time series data have 4 components (trend, 

seasonal, jump and random( (Fig. 2). According to the 

deterministic nature of trend, seasonal and jump 

components, the modeling process has been run for 

stochastic model component at random based on AR, 

MA and ARMA; however, random components’ 

modeling is a highly important hydrological modeling 

that uses stochastic models especially for AR, MA and 

ARMA. Thus, there was a decomposition of the time 

series and a modeling of the random component in 

these models. Nevertheless, for ARIMA and SARIMA, 

models fitted the original time series. 

 

In this study, five (5) models with 12 different 

structures were examined. According to the results, 

the highest rainfall data showed a seasonal trend 

before removal of deterministic components of the 

data (Fig. 2). From the research by Nirmala and 

Sundaram (2010), it is possible to determine the best 

model using ACF and PACF (Fig. 3a, b), however 
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for a more accurate prediction, the Akaike criterion 

and correlation coefficient were also used for model 

selection. The ACF and PACF of selected series 

showed the seasonal behavior of the monthly rainfall. 

The observations revealed that in Ghoochan, 

Golmakan, Gonabad, Kashmar, Mashhad, 

Neyshaboor, Sabzevar and Torbate Jam stations, the 

ARMA (2,1) model displayed better performance than 

the other models, however, for Sarakhs and Torbate 

Heydarieh the ARMA(2,2) shows a more suitable 

results (more square R and low AIC) (Table 2 and 

Figs. 4 to 13). In determining the best models, some 

of the models were eliminated due to violation of 

model parameters from absolute value (Table 2). 

Based on the results these models show a low
2R in 

comparison to the other models. To ascertain the best 

models in time series, it is imperative that the models 

are assessed based on Akaike and correlation 

coefficient using the ACF and PACF graph. The 

studies show a wide range of results for determining 

the best time series model as the data used varies 

(Saeidian and Ebadi, 2004; Soltani et al., 2007; 

Javidi Sabbaghian and Sharifi, 2009; Khadar et al., 

2011; Mansour et al., 2011; Schaars et al., 2012 ; 

Poormohammadi et al., 2013; Said et al., 2013; 

Mirzavand and Ghazavi, 2015). Hence, it is essential 

that the all-time series models for any area and any 

hydrological parameters are assessed in the course of 

determining the best model for our subjects. Finally, 

it can be expressed that the time series models can be 

used in forecasting the highest rainfall up to the next 

120 months (2014 to 2024) with an acceptable 

accuracy (as presented in Figs. 4 to 13). It is also 

possible that the assertion that time series models are 

fast to compute, easier to model, easier to identify 

changes in trends, random, jumps and seasonal 

components of rainfall is correct. Based on the 

simulation and prediction of rainfall for 2014 and 

2024, iso-rainfall maps were drawn (Fig. 14a, b). To 

assess cases of future drought in Khorasan Razavi 

province, the SPI index was used. The SPI index for 

2014 revealed that 83.8% of the area has near normal 

situation while 16.2% are experiencing moderate 

drought situation (Table 3). 

However, according to the forecasted time series data 

in 2024 obtained by means of stochastic models, the 

SPI index was used and the result revealed that 100% 

of the area is in near normal situation (Table 3). This 

means that by the end of 2024 there will have been 

considerable decrease in severity of drought in some 

areas. Consequently, according to the results, 

prediction of future drought situation with time series 

prediction using SPI, could help to better understand 

and make informed decisions for management of 

water resources in such areas in the future. 

 

Conclusion  

This research aimed to assess use of the time series 

models (AR, MA, ARMA, ARIMA and SARIMA) in 

predicting future rainfall as well as assessment of 

drought situation in the future using SPI index. The 

results reveal that the best model for forecasting 

rainfall in the next 120 months is ARMA (2,1) (in 80% 

of data). With use of the SPI index, drought severity 

will have decreased considerably by the end of 2024 

than in 2014. The use of time series model for rainfall 

prediction and assessment of drought situation 

according to the predicted rainfall data could furnish 

a water resources manager with better understanding 

and management of water resources in the future 

especially in arid and semi-arid environments. 
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