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Abstract 
 

Heavy metal contamination, occurring due to both natural and anthropogenic activities, is a subject of major 

concern throughout the globe. Increase in heavy metal content can have an adverse impact on functioning of the 

soil ecosystem by hampering the activities of soil fauna. Earthworms play an important role in metal pollution 

monitoring and are widely recognized in terrestrial ecosystems. They have an inherent potential for 

bioaccumulation of metals in their chloragogenous tissues and can be used as an ecological indicator of soil 

contamination. The present review is focused on: biology and ecology of earthworms, their role as ecosystem 

engineers and the mechanism involved in uptake, accumulation and excretion of metals by different species of 

earthworm under varieties of soil. A brief discussion about kinetics of metal accumulation was also laid 

importance. The review brings these studies together in order to highlight the ability of earthworms to affect 

metal mobility and its availability in various contaminated sites and elaborates the potential of various species of 

earthworm to remediate metal dominant substrates. 
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Introduction 

Earthworms, the “Earth annelids”, having super-

streamlined and stripped down body are fairly highly 

evolved critters. Charles Darwin accentuated the role 

of earthworms in history of the world and also 

referred earthworms as “nature ploughs” because of 

mixing of soil and organic matter. Earthworms 

(phylum Annelida, class Oligochaeta) are also called 

megadriles (or big worms) as opposed to the 

microdriles (or small worms) in the families 

Tubificidae, Lumbriculidae, Enchytraeidae and 

among others. The importance of earthworms has 

been highlighted by several workers in the fields of 

waste management, environmental conservation, 

organic farming and sustainable agriculture 

(Talashikar and Powar, 1998; Senapati, 1992). 

Earthworms are one of the foremost components of 

soil communities and have ecological relevance in the 

formation and maintenance of soil structure. 

Earthworms function as ‘ecosystem engineers’, by 

directly and indirectly modifying the chemical, 

physical and biological properties of the soil and 

controlling ecosystem structure and functioning 

(Butenschoen et al., 2009; Jones et al., 1998; Lavelle, 

1997).  

 

The total heavy element content in soil is frequently 

used as a criterion for defining soil contamination. 

Heavy metals due to their role in biological processes 

as micronutrient (iron, zinc, copper, cobalt, etc.) or 

non-essential and toxic elements (Hg, Cd, Pb) are 

considered (Sary and Sari, 2014). The implication 

associated with heavy metal contamination is of great 

concern particularly in agricultural production system 

(Uzoma et al., 2013). One of the most peculiar and 

special behavior of earthworms is to accumulate 

heavy metals in their tissues and gut. Earthworms can 

bioaccumulate and biotransform many chemical 

contaminants including heavy metals and organic 

pollutants in soil and clean-up the contaminated 

lands for re-development. Earthworms are one of the 

best bioindicators of trace metals amongst soil 

invertebrates because they are able to accumulate 

metal ions in their body tissues. (Nahmani and 

Lavelle, 2002; Terhivuo et al., 1994). These soil 

organisms can provide important information for 

assessing environmental risks, and serve as useful 

biological indicators of contamination because of the 

fairly consistent correlation between the 

concentration of some contaminants in their tissues 

and those in soil. Mostly earthworms are also often 

the subject of inoculation programmes during the 

restoration of degraded lands and inoculation of 

earthworms to metal-contaminated soils has been 

suggested (Dickinson, 2000) largely due to the role 

earthworms are known to play in soil formation at 

such sites (Frouz et al., 2007). Earthworms have great 

potential in risk assessment of contaminated land and 

acts as an indicator for ecosystem health (Nahmani, 

2007). Thus, earthworms being the dominant and 

dynamic macrofauna can do wonderful jobs for man 

and biosphere. 

 

The purpose of this review is to bring together 

studies, which focuses on earthworm’s inherent 

ability to accumulate heavy metals in their bodies and 

also on their nutrient enriching properties in soil by 

their composting abilities. This review further 

emphasizes on: importance of earthworms in 

ecosystem; their biology and ecology; species 

associated with metal uptake; mechanism by which 

earthworms accumulate heavy metals; and a brief 

discussion about the kinetics of accumulation pattern. 

 

Biology and ecology of earthworms 

Earthworms (Annelida, Oligochaeta) are relatively 

large detritivores (Sims and Gerard, 1985) as well as 

are soft-bodied, cylindrical, long, narrow, segmented 

and symmetrical organisms. Their body is dark 

brown, glistening, covered with soft cuticle. They 

generally range in weight from 1400-1500 mg after 8-

10 weeks. The life-span of earthworms varies from 3-7 

years depending upon the type of species and the 

ecological conditions prevailing there. Earthworm 

body contains 65% protein (70-80% high quality 

‘lysine-rich protein’ on a dry weight basis), 14% fats 

and 14% carbohydrates. They grow throughout their 

life and the number of segments continuously 
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proliferates from a growing zone just in front of the 

anus (Sinha et al., 2008). 

 

Earthworms are burrowing in nature and forms 

tunnels by literally eating their way through the soil. 

Their distribution in soil depends on factors like soil 

moisture, pH, and availability of organic matter. They 

prefer to live in dark and moist places. Cattle dung, 

humus, kitchen waste and other organic materials are 

highly attractive sites for some species. Earthworms 

are very sensitive to touch, light and dryness. Worms 

can tolerate a temperature range between 5 and 29ºC. 

Optimum temperature of 20-25ºC and moisture 

content of 50-60% is optimum for earthworm 

function (Sinha et al., 2008; Edwards and Bohlen 

1996).  

 

Role of earthworms as ‘ecosystem engineers’ 

Earthworms in vermicomposting 

Vermicomposting, utilizing earthworms, is an eco-

biotechnological process that transforms energy rich 

and complex organic substances into a stabilized 

humus-like product (Benitez et al., 2000). 

Vermicomposting (Latin: vermes-worm) is a kindred 

process to composting, featuring the addition of 

certain species of earthworms used to enhance the 

process of waste conversion and produce a better 

end-product. Commonly used earthworms for 

vermicomposting are Eisenia fetida, Perionyx 

excavatus, Lampito mauritii, Lumbricus rubellus, 

Lumbricus terrestris, Aporrectodea and 

Allolobophora. Several ecological groups of 

earthworms are present such as (i) epigeic, (ii) 

endogeic, and (iii) anecic (Nei et al., 2009). 

 

The vermicomposting process includes two different 

phases involving the activity of earthworms: (a) an 

active phase during which earthworms process 

wastes, thereby modifying their physical state and 

microbial composition (Lores et al., 2006), and (b) a 

maturation-like phase marked by the displacement of 

the earthworms toward fresher layers of undigested 

waste, during which the microbes take over the 

decomposition of the earthworm-processed waste 

(Lazcano et al., 2008; Dominguez, 2004). 

Earthworms through vermicomposting process 

degrade different types of wastes, converting them 

into a valuable fertilizer. They bring about 

decomposition of the organic waste initially due to its 

gut-associated processes (GAPs) by ingestion, 

digestion and assimilation of the organic matter and 

microorganisms in the gut and by casting i.e., cast-

associated processes (CAPs) (Fig. 1). 

 

 

Fig. 1. Earthworms affect the decomposition of the 

animal manure during vermicomposting through 

ingestion, digestion and assimilation in the gut (gut-

associated processes) and then casting (cast-

associated processes), which are more closely related 

with ageing processes. (Source: Brandon et al., 2013). 

 

Chemical and metal resistance in earthworms 

Earthworms are highly resistant to many chemical 

contaminants such as inorganic, organic pollutants in 

soil. Earthworms were even able to survive the Seveso 

chemical plant explosion in 1976 in Italy, in which a 

large area inhabited by humans was contaminated 

with certain chemicals including the extremely toxic 

TCDD (2, 3, 7, 8- tetrachlorodibenzo-p-dioxin) due to 

which several fauna perished. Earthworm species 

which ingested TCDD contaminated soils were shown 

to accumulate dioxin in their tissues and concentrate 

it on an average of about 14.5-fold. They have the 

potential to replace the environmentally destructive 

chemical fertilizers from farm production thereby 

playing an important role in chemical element 

transformations (Lee, 1985).  
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Vermiremediation (Uptake of metals from 

contaminated sites by earthworms and 

immobilization) 

Earthworms uptake metals from contaminated soil, 

fly ash, slag through gut uptake. Earthworms 

accumulate heavy metals and other cations. They are 

known to be potential bioaccumulators and therefore 

they have been successfully demonstrated in 

mitigating the toxicity of industrial and municipal 

waste by vermicomposting technology.  

 

A number of mechanisms are followed by the 

earthworms for uptake, immobilization and excretion 

of other metals (Sinha et al., 2008). They either 

biotransform or biodegrade the chemical 

contaminants turning them harmless in their bodies. 

The biotransformation and biodegradation takes 

place in the gut before entering of the metals in their 

tissues. All the contaminants do not follow the path of 

the gastro-intestinal tract. Some of the contaminants 

are excreted directly as casts via gut. Those entering 

the gut can be metabolized, immobilized and excreted 

or sequestered in tissues or vacuoles. 

Vermiremediation may prove a very cost-effective and 

environmentally sustainable way to treat polluted 

soils and sites contaminated with hydrocarbons. 

 

 

Earthworms as metal accumulators 

Earthworms are numerous large bodied individuals, 

resistant enough and sensitive enough to 

contaminants; which make them good bioindicators. 

They are important micro-organisms in terms of soil 

functionality (Brown et al., 2000) and consequently 

play a key role in terrestrial ecotoxicological risk 

assessment (Weeks et al., 2004; Sheppard et al., 

1997). They are exposed by direct dermal contact with 

heavy metals in the soil solution or by ingestion of 

pore water, polluted food and/or soil particles (Lanno 

et al., 2004). Soluble metal concentrations are the 

best descriptors of bioaccumulation in earthworms. 

(Peijnenberg et al., 1999; Spurgeon and Hopkin, 

1996).  

 

Earthworms are soft-bodied, soil-dwelling organisms 

exposed to metals either through direct dermal 

contact with metals in soil solution or by ingestion of 

bulk soil or specific soil fractions. (Nei et al., 2009; 

Lanno et al., 2004). Their studies suggest an 

important role of the gut uptake route (Morgan et al., 

2004; Morgan and Morgan, 1992). The main part is 

voided in casts containing particulate organic 

material and nutrients excreted, such as urine and 

mucopolysaccharides. These casts serve as habitat for 

microorganisms (Tiunov and Scheu, 2000), which 

mineralize the organic matter therein and release 

nutrients that contribute to plant nutrition. Various 

species of earthworms can tolerate and bio-

accumulate high concentrations of heavy metals like 

cadmium (Cd), mercury (Hg), lead (Pb) copper (Cu), 

manganese (Mn), calcium (Ca), iron (Fe) and zinc 

(Zn) in their tissues (Table 1 and 2) without affecting 

their physiology and this particularly occurs when the 

metals are mostly non-bioavailable. Earthworms 

accumulate higher concentrations of Zn (II) and Cd 

(II) ions and lower concentrations of Pb (II) and Cu 

(II) ions in their bodies. In earthworms, lead is 

accumulated in muscles, nerve cord, cerebral 

ganglion, seminal vesicles and chloragocytes.  

 

Mechanism of metal accumulation 

Earthworms can bio-accumulate and bio-transform 

many chemical contaminants including heavy metals 

and organic pollutants in soil and clean-up the 

contaminated lands for re-development. Their body 

work as a ‘biofilter’ and they can ‘purify’ and also 

‘disinfect’ and ‘detoxify’ municipal and several 

industrial wastewater. The influence of metal-

contaminated soils on earthworm activity and metal 

bioaccumulation has been reported many times 

(Morgan and Morgan, 1999). It has been shown that 

earthworms can rapidly invade remediated soil 

(Langdon et al., 2001; Spurgeon and Hopkin, 

1999).They ingest soil particles and egest them as 

surface or subsurface casts. Aristotle called 

earthworms the ‘‘intestines of the earth’’. By ingesting 

organic debris, earthworms have been shown to 

enhance the bioavailability of soil nutrients such as 
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Carbon (C), Nitrogen (N) and Phosphorous (P) 

(Devliegher and Verstraete, 1996). Morgan et al., 

(1989) have shown that the posterior alimentary 

canal of earthworms is a major site of metal 

accumulation, with the chloragogenous tissue 

separating the absorptive epithelium from the coelom 

being a major metal depository (Morgan and Morgan, 

1989 a, b; Richards and Ireland, 1978). 

 

Table 1. Studies depicting metal uptake by Eisenia fetida. 

Type of exposure 
Time of 

exposure 
(days)/Study 

Metals 
Soil total 
content 

(mg kg-1) 

Measures in 
E. fetida 

References 

3 artificial soils OECD + 
sphagnum peat + CaCO3 + 
Metal NO3 

 

1, 3, 7, 10, 14, 
17, 24, 28, 35, 

42 

Zn 
Cu 
Cd 
Pb 

20.4 - 1420 
1.8 - 115 

<0.5 - 13.7 
7.95 - 656 

Accumulation 
of heavy 
metals, 

excretion rate 

Spurgeon 
and Hopkin, 

1999 

Artificial soils (ASTM + 
CaSO4 , PbNO3 , ZnSO4 

 
0 to 2 

Zn 
Cd 
Pb 

0.078 - 66.1 
0.02 - 41.3 

0.023 - 43.2 

Metal content, 
pH, mortality 

Conder and 
Lanno, 2000 

Artificial soil + copper 
oxychloride 

28 Cu 
1.66 - 372 

 

Metal content, 
weight, 

survival LC50, 
cocoon 

production 

Maboeta et 
al., 2004 

Soils from Joplin 
0, 12, 14, 24, 
44, 144, 192 

 

Pb 
Zn 
Cd 

1150 - 2800 
3500 - 4200 

22 - 29 

Metal content, 
uptake and 

excretion rate 

Maenpaa et 
al., 2002 

3 soil samples from 
contaminated sites 

1, 3, 7, 10, 14, 
21, 28 

Zn 
Pb 
Cu 
Cd 

56.6 - 43300 
37.9 - 19400 
17.4 - 2800 
0.084 - 325 

Accumulation, 
Excretion rate 

 

Spurgeon 
and 

Hopkins, 
1999 

20 soils from the 
Netherlands + artificial 
soils (OECD) 

70 

Zn 
Cd 
Pb 
Cr 

0.08 - 47.55 
<0.001 - 0.44 

0.34 - 4.09 
0.06 - 3.76 

Metal content, 
initial body 
weight, BCF 

Janssen et 
al., 1997 

Artificial soil + CdCl2  

(aqueous) 
70 

Cd 
Cu 

0 - 5.34 
0 - 7.56 

Metal content 
Spurgeon et 

al., 2004 

Urban wastes such as 
MSW, MW, FW 

60 

Cu 
Pb 
Zn 
Mn 
Cd 

0.47 
0.31 
1.49 
5.16 
0.05 

Metal content 
Pattnaik and 
Reddy, 2011 

Fly ash + CD in various 
ratios: 1:1 (T1) and 1:3 (T2). 

Field study 
Cr 
Pb 
Cd 

T1 - 0.04,T2 -0.11 
T1 - 0.98, T2 - 0.92 
T1 - 0.12, T2 - 0.19 

Metal content 
Bhattacharya 

et al., 2012 

OECD: Guidelines for testing of chemicals by the organization for Economic, Cooperation and Development; 

ASTM: American Society for Testing and Materials; ZnSO4: Zinc sulphate; CdCl2: Cadmium chloride; CaCO3: 

Calcium Carbonate; NO3: Nitrate; BCF: Bioconcentration factor; MSW: Municipal solid waste; MW: Market 

waste; FW: Flower waste; CD: Cow dung. 
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Table 2. Studies depicting metal uptake by Lumbricus rubellus. 

Type of Exposure 
Study/Time 

of 
Exposure 

Metals 
Soil total content 

(mg kg-1) 
Measures in 
L. rubellus 

References 

Soil samples from 
Broth, Cwmystwyth 
and Ystwyth, UK 
 

Field study Zn  
Ca  
Cu 
Cd 
Mn 
Pb 

100 - 992 
998 - 32129 
20 - 335 
0.4 - 2 
164 - 1330 
42 - 1314 
 

Metal content, 
BCF 

Ireland, 1979 

Soil samples from 
different areas of 
Braubach, Germany 
 

Field study Pb 
Cd 
Cu 

284 - 1542 
0.08 - 1.29 
10 - 17 

Metal content, 
Histological 
examination 

Jansen,1989; 
Kruse and 
Barrett, 1989 
 

12 contaminated soils 
from UK 

Field study Cd 
Cu 
Pb 
Zn 

0.1 - 350 
26 - 2740 
170 - 24600 
160 - 45000 

Metal content, 
weight 

Morgan and 
Morgan, 
1988  
 

Agricultural Soil 
samples from Wales 

Field study Zn 
Cd 
Cu 
Pb 

460 - 1550 
2.7 - 14.7 
23 - 62 
570 - 10110 

Metal content Morgan and 
Morgan, 
1992 
 

Agricultural Soils 
from Cwmystwyth 
 

At 10th day 
up to 90 days 

Cd 
Cu 
Ca 
Pb 
Zn 

0.2 - 117 
8 - 137.2 
132 - 127600 
3.9 - 6.4 
17 - 25425 

Metal content, 
kinetics 

Marino and 
Morgan, 
1999a 

Soil samples from 7 
mines in UK 
 

90 days Ca 
Cd 
Cu 
Pb 
Zn 

132 - 127600 
0.2 - 117 
8 - 137.2 
3.9 - 6.4 
17 - 25425 
 

Metal content Marino and 
Morgan, 
1999b 

Agricultural Soils 
from 
Halkyn 
 

Field study Zn 
Cu 
Pd 
Cd 

185 - 1870 
21 - 60 
158 - 10020 
0.8 - 16 
 

Metal content, 
pH  

Morgan and 
Morgan, 
1999 
 

Soil samples from 
pastures polluted by 
waste 
 

Field study Zn 
Pb 
Cd 

- 
- 
- 

Metal content Dai et al., 
2004 

UK: United Kingdom; BCF: Bioconcentration factor. 

 

The possibility that earthworm activity may raise 

heavy metal bioavailability is of considerable 

relevance for the success of soil remediation, 

especially when the methods that are used (i.e., soil 

washing, phytoextraction) remove only part of the 

(presumably labile and bioavailable) heavy metals or 

heavy metals even remain in the soil immobilized by 

the addition of various chemicals 

(solidification/stabilization). It has been reported 

that, after treatment with earthworms, the 

distribution of heavy metals in soil fractions was 

changed significantly, presumably increasing their 

bioavailability (Wen et al., 2004; Cheng and Wong, 

2002; Ma et al., 2002). Pokarzhevskii et al., (1997) 

showed that earthworms are ecosystemivorous 

feeding on entire soil microbial ecosystems. For 

terrestrial ‘soft-bodied organisms’ (such as 

earthworms), the concept of equilibrium partitioning 

(EqP) presumes a direct relationship between the 

tissue concentration, taken up through the derma and 

the free metal ion activity.  

 

The capability of earthworms to effectively 

compartmentalize potentially toxic metals within 

tissues may provide an insight into the underlying 

mechanisms which enable the accumulation of high 
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body burden surface soil dwellers and anecic (deep 

burrowing). Similarly, gut-related processes in 

earthworms may also increase metal availability as 

shown in Fig. 2. Metals taken up by earthworms in 

their gut are bounded by a protein called 

‘metallothioneins’. Ireland (1979) found that 

cadmium and lead are particularly concentrated in 

chloragogen cells in L. terrestris and Dendrobaena 

rubidus, where it bounds in the form of Cd-

metallothioneins and Pb-metallothioneins. The 

chloragogen cells in earthworms appear to 

accumulate heavy metals absorbed by the gut and 

immobilize the metals in small spheroidal 

chloragosomes and vesicles found in these cells 

(Sinha et al., 2008). 

 

 

 

Fig. 2. Conceptual model of mechanism of metal uptake and their excretion by earthworms exposed to 

contaminated site. Ingested contaminated soil travels through the gut and is egested. The egested soil may differ 

in pH, bacterial population and dissolved organic carbon content, all of which may modify soil + organic matter. 

Modified bacterial populations may impact on organic matter sorbed metals. pH and dissolved organic matter 

changes due to egestion of soil and excretion of mucus and urine may impact on sorbed metals. Some metals may 

be sequestered in earthworm tissues and are subsequently excreted in a form different from the ingested metal. 

(Adopted and modified from Sizmur and Hodson, 2009). 

 

A suggested mechanism for an increase in the 

availability of metals is the stimulation of bacterial 

populations which enzymatically degrade organic 

matter, releasing the organically bound metals into 

solution (Rada et al., 1996). An increase in the 

biomass of bacteria, actinomycetes and fungi has 

been found in the earthworm casts of soil where 

increase in the availability of metals to plants has 

been observed (Wen et al., 2004). The ability of a 

microbial species to survive these processes depends 

on its ability to adapt to the conditions a particular 

earthworm may induce (Brown, 1995).  

 

Uptake patterns, accumulation and excretion 

Cd, Cu, Pb and Zn burdens are generally accumulated 

by the earthworms. Different time-dependent 

patterns of uptake are found for non-essential and 

essential elements. In case of essential elements, Cu 

and Zn, equilibrium is reached within first seven days 

of exposure in all soils. Neuhauser et al., (1995) found 

similar patterns of uptake and excretion by E. fetida 

exposed to these metals added singly to natural soils. 

Nannoni et al., (2011) could not observe any 

significant differences in terms of metal uptake and 

bioaccumulation between different species within a 

same ecological group. The metal bioavailability of 

earthworms can be evaluated in terms of relative 

toxicity (as lethality) index and through 

bioaccumulation determinations, yielding 

bioconcentration factors (BCF) and possibly tissue 

concentration limits (Abdul Rida and Bouche, 1994). 

Heavy element fractionation among soil components 

represents one of the most significant factors 

influencing their mobility in soil and uptake by soil 

organisms. such as isopods, amphipods and 

earthworms (e.g., Hobbelen et al., 2006; Becquer et 

al., 2005; Dai et al., 2004; Lanno et al., 2004).  
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Kinetics of accumulation of heavy metals 

According to authors, kinetic experiments indicate 

that during the uptake phase, certain metals such as 

Pb, Cd, and Cu do not reach steady state in 

earthworms irrespective of exposure duration. An 

appropriate duration for experiment with heavy 

metals that do not reach steady state is 28 days. For 

elements in which plateau stage is already reached; 

40 days is an appropriate duration. The studies 

involving the kinetics of uptake and excretion of 

heavy metals using species of earthworms: L. 

terrestris, E. fetida/E. andrei and Dendrobaena 

veneta has been shown in Table 3. Radiotracers are 

generally used to follow the uptake and excretion of 

metals by the same earthworm (Nahmani et al., 2007; 

Sheppard et al., 1997). Studies indicate that metal 

accumulation and excretion rates are species 

dependent. Peijnenberg et al., (1999) studied about 

the rapid uptake and equilibration with Cr, Cu, Ni, Zn 

but little uptake of As, Cd, Pb and non-essential 

elements. Modeling of uptake rates is usually done 

involving the one compartment model of Atkins 

(1969) (Peijnenburg et al., 1999; Spurgeon and 

Hopkin, 1999; Marinussen et al., 1997). Kinetics 

model assumes that an animal constitutes a 

homogeneous system with a constant excretion rate. 

The model has a general formula:  

 
Qt = Co + (a/k) (1-ekt) 

Where: 

Co = concentration of residual metal in the animal  

Qt = concentration of metal in the animal 

a = accumulation rate 

k = excretion rate 

t = time 

Table 3. Studies and the derived equations that predicts uptake of metals and excretion kinetics by earthworms. 

Exposure Species 

Time of 

exposure 

(days) 

Model parameters Equation Results References 

Soil from 

Netherlands 

D. veneta 1, 2, 3, 7, 

14, 28, 56, 

112  

Ccu(t)= Cu concentration in 

the organism (mg kg-1). 

Ccu(0) = Copper initial 

concentration in the 

organism (mg kg-1) 
αcu= Cu uptake rate (mg kg-

1d-1) 
kcu = Cu excretion rate (d-1) 

 

Ccu(t) = Ccu(0) + αcu/kcu [1-e-
kcu(t)] 

Marinussen et 

al., 1997 

OECD soil + 

PbCl2 or  

CdCl2 

E. fetida 7, 14, 21, 

35, 42, 49, 

56  

Y= metal concentration in 

the worm at time x (mg kg-1) 

x= time(days) 

C= constant 

A= coefficient 

For Pb = 100 and 2000 mg 

kg-1 and Cd = 8 mg kg-1 

Y = C+Ax 

For Cd = 80 mg kg-1 

Y = C+A1x + A2x2 + A3e(-

A4xexp3) 

 

Scaps et al., 

1997 

Commercial 

potting soil 

L. 

terrestris 

1, 3, 6, 10, 

14 , 20  

A = Fraction of the 

radiotracer left in the gut 

subject to a gut clearance 

depuration rate constant ƛg. 

1-A = remaining fraction 

subject to a slower 

depuration rate constant ƛp  

ƛp= a rapid depuration rate 

 

 

Depuration 

C= A(e-ƛgt) + (1-A) (e-ƛpt) 

 

Uptake 

C=B[A(1-e-ƛpt) + (1-A)(e-ƛpt)] 

Sheppard et 

al., 1997 
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Exposure Species 

Time of 

exposure 

(days) 

Model parameters Equation Results References 

20 samples 

from Dutch 

soils and 1 

OECD 

E. andrei 0, 1, 3, 4, 7, 

14, 21, 28, 

42, 63  

Cw=metal concentration in 

worms (mmol kg-1 dry 

weight)  

Cw (0) = initial concentration 

in the organism  

K1(x) = uptake constant rate 

(kg soil kg-1 
earthworm dry 

weight day-1). 

K2 = elimination rate 

constant (day-1) 

Cx= Metal concentration in 

soil (mmol kg-1) 

 

Cw(t) = Cw(0)e-
k2t+((k1(x)Cx)/K2) 

(1-e-k2t) 

 

Peijenburg et 

al., 1999 

ASTM soil + 

Cd(NO3)2 

E. fetida 2, 4, 7, 14  Ct = earthworm pellet 

fraction concentration 

(mmol metal kg-1) 

Ms = concentration of metal 

M in the soil (mmol kg-1) 

Ku = uptake rate constant 

(kg mmol-1 day-1) 

Ke = the elimination rate 

constant (day-1) 

T = time (day) 

Ct = (Ku/Ke)Ms(1-e-ket) Conder et al., 

2002 

OECD: Guidelines for testing of chemicals by the organization for Economic, Cooperation and Development; 

ASTM: American Society for Testing and Materials; Pbcl2: Lead chloride; CdCl2: Cadmium chloride; Cd(NO3)2: 

Cadmium nitrate. 

 

Conclusion 

The increase in pollution levels in soil has lowered the 

quality of soil thus affecting crop productivity. The 

vermicasts produced by most earthworm species are 

known to contain hormones and enzymes, which 

stimulate plant growth and discourage pathogens. 

Moreover, most important is the earthworms’ 

potential of metal accumulation, which has 

maintained the ecosystem in a balanced state. They 

by their metal accumulating and nutrient enriching 

abilities have done wonders in maintaining the soil 

ecosystem. Earthworms can survive in heavy metal 

contaminated soils and can even accumulate metals 

such as Cd, Cu, Zn, Pb and various other metals in 

their tissues. It has been reported in several studies 

that by following treatment with earthworms, the 

distribution of heavy metals in soil fractions was 

significantly changed. Thus adopting this 

vermicomposting technology will not only provide 

greater availability of plant mineral nutrients but also 

promises more effective waste utilization for 

agricultural benefits by taking the advantage of 

increased microbial activities provided by 

earthworms. Moreover removal of heavy metals by 

biological means is more specific, eco-friendly and 

economical. 
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