

Journal of Biodiversity and Environmental Sciences (JBES)

ISSN: 2220-6663 (Print), 2222-3045 (Online) http://www.innspub.net Vol. 6, No. 1, p. 676-681, 2015

RESEARCH PAPER

OPEN ACCESS

A study of changes in lead concentrations in soils in the andimeshkshoosh highway margin

Ebrahim Panahpour*, KosarJafari and AliGholami

Department of soil science, Collage of Agriculture, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

Key words: Lead, Absorbable Concentration of Lead, Andimeshk, Azadi Town, Shoosh, Highway Margin. Article published on January 31, 2015

Abstract

Lead from Vehicle Fuels as the Most Important and the Largest Source of Environmental Pollution. Given the daily increasing global pollution and with regard to the stability of heavy metals in soil and their devastating effects on the ecosystems, this research was conducted on Lead pollution in Andimeshk-Shoosh Highway. The purpose of this study was to investigate the spatial distribution of Lead in the soil. In this regard, three stations including Andimeshk, Azadi town and Shoosh were selected. At each station, soil sampling was performed in three replications from distances of 15, 50 and 100 meters from the margin of the road and depths of 0-15cm. Values for pH, lime percentage, organic matter, CEC, soil texture and absorbable concentration of Lead were measured using graphite furnace atomic absorption spectrometry (GFAAS). The results indicated that the Lead concentrations decreased with taking distance from the margin of the road. The mean Lead concentrations at 15, 50 and 100 meters were measured 3.01,2.29 and $2.04(\mu g/kg)$, respectively. Moreover, the results showed that the concentrations of Lead declined from Andimeshk to Shoosh so that the mean Lead concentrations in Andimeshk, Azadi town and Shoosh stations were 2.49, 2.24 and 2.45 ($\mu g/kg$), respectively.

*Corresponding Author: Ebrahim Panahpour 🖂 e.panahpour@gmail.com

Introduction

All researchers who have conducted studies on soil pollution by lead believe that its concentration decreases with increasing distance from roads (Alloway*et al*, 1995).

Studies on soil pollution by lead, especially in roadside soils, have revealed that lead concentration in these soils varies. Lead concentration in soil samples of studied areas had a direct correlation with traffic volume on the related highways.

Madrid *et al* (2002), conducted a study and found that soils in urban areas had been severely degraded. Both anthropogenic factors (such as vehicles and broken industrial pipelines) and natural biogenic ones (such as tree leaves and other plant material) play a direct role in dust formation on streets and roads. Subsequently, Han *et al* (2006), discovered that a set of environmental problems centered on pollution with heavy and toxic metals, especially in soils of urban areas and in roadside soils, would pose a major problem.

Particles worn from car tires, particles detached from street surfaces, and particles released by car brake pads directly and indirectly increase the heavy metal content of soils. Under these conditions, heavy metals are transported to underground water or soils of other areas with the help of surface runoff, suspensions, and leaching (Venue *et al*, 2003).

Herious*et al.* (1981) measured concentrations of cadmium, copper, iron, manganese, lead, and zinc in eight roadside soils of urban highways with different traffic flows in Gipuzkoa in Spain. Results indicated concentrations of lead, zinc, and cadmium varied with distance from the highway.

Ward *et al.* (1977) took soil samples at different distances from the margins of four highways in Iran and found a strong descending trend in soil lead concentration with increasing distance from highway margins.

In a study conducted by Alloway (1990), it was found that metals such as lead, zinc, and copper could be indicators of densities and sources of pollution. Following this research, Abraham *et al* (2002) and Boca *et al.* (2004) stated that accumulation of certain heavy metals such as lead, chromium, and cadmium in urban areas would persist for a long time due to the stability, lack of degradation, and long half-lives of these metals. Therefore, these elements are called chemical time bombs.

Researchers have conducted studies that show lead added to gasoline is the most important pollutant of the environment (KhademHaghighat, 1985).

People, through excessive use of lead, unknowingly expose themselves to pollution caused by this element (Tiller, 1989). The aim of this study is a Study of Changes in Lead Concentrations in Soils in the Andimeshk-Shoosh Highway Margin and indicated that the Lead concentrations decreased with taking distance from the margin of the road.

Materials and methods

Research Materials

This research was conducted in Andimeshk-Shoosh Highway in the north of Khouzestan Province. Three stations including Andimeshk, Azadi town and Shoosh were selected. In each station, soil sampling was performed in three replications in three points including distances of 15, 50 and 100 meters from the margin of the road and depth of 0-15cm

Research hypothesis

The coordinates of sampling sites were recorded using GPS. The pH values were measured by pH meter, percentage of T.N.V by back titration method, organic matter percentage by Walkley Black (WB) method, CEC using ammonium acetate method, soil texture by hydrometer method and the concentration of absorbable Leadby the DTPA extraction method and graphite furnace atomic absorption. The location of the study area and sampling sites are shown in Fig. 1 (Rahmani, 1995).

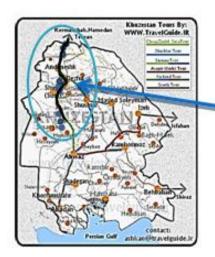
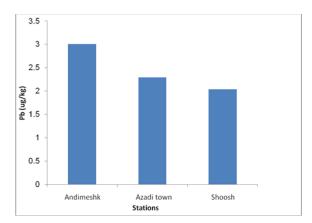


Fig. 1. The location of the study area and sampling sites.

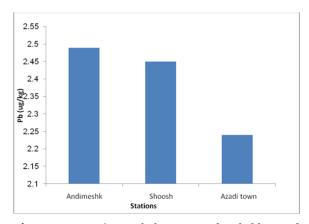
Results and discussion

Chart 1 shows the mean Lead concentrations in the depth of 0-15 cm and distances of 15, 50 and 100 meters from the margin of the road in three areas of Andimeshk, Azadi towns and Shoosh, so that the mean Lead concentrations in Andimeshk, Azadi town and Shoosh stations were 3.01, 2.29 and 2.04 (μ g/kg), respectively. In the point source pollution phenomena it is expected that the pollutant concentrations decrease with the increase in the distance from the source of pollutant where observation of such behavior in the case of Lead in Chart 1 in the study area confirms the validity of this fact. Lead concentrations at a distance of 15 meters from the margin of the road was higher compared to distances of 50 and 100 meters where the reason can be attributed to the location of the sampling area, because it was located near the road margins. In general, Leadconcentrations decreased with taking

Table 1. The coordinates (UTM) of the sampling sites.


distance from the road margins. The results showed that the Lead concentrations in the highway margins decreased with the increase in the distance from the road and also it was directly related to the traffic load (Alwi, 1990), (Fuge, 2005) and (Ward *et al*, 1977).

Chromium, which was present mostly in residual form, was mainly of natural origin in the studied samples and was not highly mobilisable. Cadmium was the most easily exchangeable element in case of variations in the physical and chemical conditions but the quantities involved remained small. Lead and copper did not appear to be highly mobile. Only drastic conditions, such as those that may be produced by randomized spillage of a chemical product (acid or complexion agent), mobilized them quantitatively. A significant risk of mobilization was to be feared only in the case of zinc, which is very sensitive to acid pH (Pagotto *et al.* 2001).


Distance(m)								
100		50		15		Station		
Latitude	Longitude	Latitude	Longitude	Latitude	Longitude	_		
3590093	0245644	3590092	0245646	3639020	0225206	Andimeshk		
3582092	0237960	3582060	0237919	3590142	0245643	Azadi town		
3570922	0240396	3570909	0240376	3570908	0240375	Shoosh		

CEC (meq / 100 g soli)	O.M %	T.N.V %	рН	Soil Texture	Distance (m)	Station	
17.9	0.072	44.12	8.50	S.L	15	Andimeshk	
17.9	0.072	44.10	8.52	S.L	50	Anumesnk	
17.9	0.072	44.12	8.51	S.L	100		
24.1	0.164	39.25	8.00	S.C.L	15	Azadi town	
24.1	0.164	39.20	8.01	S.C.L	50	Azaul towll	
24.1	0.164	39.23	8.04	S.C.L	100		
23.5	0.131	46.14	8.14	S.L	15	Shoosh	
23.5	0.131	46.12	8.16	S.L	50	51100511	
23.5	0.131	46.15	8.16	S.L	100		

Table 2. Some of the physical and chemical characteristics of the sampled sites (Andimeshk, Azadi town and Shoosh).

Fig. 1. Changes in the mean absorbable Lead concentration in soil with taking distance from the roadside of Andimeshk, Azadi town and Shoosh (μg/kg dry mass).

Fig. 2. Comparison of the mean absorbable Lead concentrations in soil in the three areas of Andimeshk, Shoosh and Azadi town (μg/kg dry mass).

According to Fig. 2 which compares the mean Lead concentrations in soil in the three areas of Andimeshk, Azadi town and Shoosh, it is observed that the Lead concentration was decreased from Andimeshk to Shoosh; so that the mean Lead concentrations in Andimeshk, Shoosh and Azadi town stations were 2.49, 2.45 and 2.24 (μ g/kg), respectively. This could be due to the location of the sampling area, because in Andimeshk and Shoosh the sampling areas were located near squares where the accumulation of metals is in this range due to the higher traffic load and because vehicles drive with low gear. Therefore, wear and tear of tires is higher and the vehicle exhaust fumes increase which leads to increased concentration of pollutants in urban areas. However, in areas outside the city the traffic volume is lower and vehicles drive with high gear and wear of tires and exhaust fumes of vehicles are lower. Thus, pollutant concentrations are lower compared to the urban areas (Frey et al, 2001).

According to the results collected by Sezgin *et al.* (2003) at 14 sample points, the highest lead concentration (555.4 mg/kg dry soil) in the street dust samples has been found at points in Merter that is 700 m away from the E-5 highway and the lowest lead concentration (105.5 mg/kg dry soil) was found at the entrance of Avcilar sideroad. Among the E-5 side samples, the lowest concentration (111.85 mg/kg dry soil) was detected in Sirinevler and the highest concentration (281.45 mg/kg dry soil) was found in Merter.

Conclusion

The results indicated that the Lead concentrations decreased with taking distance from the margin of the road. The mean Leadconcentrations at 15, 50 and 100 meters were measured 3.01,2.29and $2.04(\mu g/kg)$,

respectively. moreover, the results showed that the concentrations of Lead declined from Andimeshk to Shooshso that the mean Lead concentrations in Andimeshk, Azadi town and Shoosh stations were 2.49, 2.24 and 2.45 (μ g/kg), respectively.

The high Pb, Cu and Zn concentrations show that there is heavy metal pollution at the sampling points. The points, where maximum concentrations that might exist in the soil are exceeded, are the places where the intensity of residential places, small and medium industrial facilities and traffic are heavier than other sampling points. The fuel that is used for heating purposes in some of the residential places chosen in this study was determined to be 49% solid fuels (coal) in one of the studies (Sahin and Bayat, 2003). It is a well-known fact that heavy metals within the structure of the solid fuels interfere with the atmosphere by the chimney gases of burning systems (Ersoy Mericboyu *et al.*, 1998).

References

Abdolvahhabi A, Ghoddossi, J. 1985. Distribution of Lead in Plants and Soils of Various Tea Orchards of Lahijan in Relation to Roads, Jahade Daneshgahi Publications

Abrahams PW. 2002. Soils: their implications to human health. Sci Total Environ, **291**,1-32.

Afyooni M. 2002.Examining the status of pollution in surface soils in the central region of Isfahan, Faculty of Agriculture, Isfahan University of Technology, practical report.

Alloway BJ. 1990. Heavy Metals in Soils. Blackie, London.

Alloway BJ. 1995. Heavy Metals in Soils. UK7 Chapman & Hal.

Amini M, Hosein Khademi N, Fathianpoor. 2002. Comparison of kriging and cokriging in estimation of the soluble chlorine concentration in the soil, Iranian Journal of Agricultural Sciences, 33(4), 741-747.

Bocca B, Alimonti A, Petrucci F, Violante N, Sancesario G, Forte G. 2004. Quantification of trace elements by sector field inductively coupled plasma spectrometry in urine, serum, blood and cerebrospinal fluid of patients with Parkinson's disease. Spectrochim*Acta*.B59, 559-66.

Bolacn NS, Adriano BC, Mani PA.2003.Immobili E. Alliani, N. 1995. Soil quality in a public garden: heavy metals from pedologiczation and phytoailibilityofcadmum in variable charge soil. e charge soil. e charge soil. II. Effect of Iime addition. Plant and soil.**251**, 187-198

Ersoy Mericboyu A, Gurbuz Beker U, Kucukbayrak S. 1998. Coal and environmental relations. In: Kural O, editor. Coal specialties, technology and environmental relations. Ozgun Ofset Matbaacilik; p. 571–83. In Turkish

Frey C, Rouphail N, Una A, Colyar J. 2001. Emission reduction through better management , North Carolina : Department of Civil Engineerhng, North Carolina State University.

Fuge R. 2005. Anthropogenic sources. In: Selinus, O. (Ed.), Essentials of Medical Geology: Impacts of the Natural Environment on Public Health.Academic Press, Amsterdam,43-60.

Han Du P, Cao J, Posmentier ES. 2006. Multivariate analysis of heavy etalcontamination in urban dusts of Xi'an, Central China.Science of the Total Environment. **355**, 176-186.

Harrison RM. Laxen DPH. Wilson SJ. 1981. Chemical associations of lead, cadmium, copper, and zinc in street dusts and roadside soils.Environmental Science and Technology,**15 (11)**, 1378-1383. **KhademHaghighat M, Ghoddossi VJ.** 1985. Distribution of Lead in Plane Tree Leaves in Relation to Centers of Car Traffic in Various Tehran districts, Jahad-e Daneshgahi Publications.

Khodakarami L, Sofyanian A, MohammadiTofigh A, Mirghaffary N. 2011. Evaluation of the concentrations of copper, zinc and arsenic heavy metals in soil using RS and GIS, Journal of Remote Sensing and GIS Applications in Natural Resource Sciences, **2 (1)**, 79-89.

Madani A. 2002. Determination of Spatial Distribution of the Heavy Metals Iron, Cobalt, and Vanadium in Surface Soils of Hamadan, M.Sc. Thesis in Environment, Industrial University of Isfahan,52-55.

Madrid L, Diaz-Barrientos E, Madrid F. 2002.Distribution of heavy metal ontents of urban soils in parks of Seville.*Chemosphere*.**49**, 1301-1308.

Mohammadi J. 2006. Pedometry 2 (Spatial Statistics), Pelk Publications, p. 453.

Pagotto C, Rémy N, Legret M, Le Cloirec P. 2001. Heavy Metal Pollution of Road Dust and Roadside Soil near a Major Rural Highway. Environmental Technology.**22(3)**, Pp 307-319.

Rahmani HR. 1995. Soil contamination by lead resulting from vehicles in some highways in Iran, Soil Science M.Sc. thesis, University of Isfahan, 59-67.

Sahin U, Bayat C. Air pollution inventories of Avcilar and Kucukcekmece districts (Istanbul-Turkey). In: Sarisakal MN, Oztoprak S, editors. Engineering Sciences Young Researchers First Congress Abrast Book. Istanbul, Turkey: Istanbul University Press; 2003. p. 80 (In Turkish).

Sezgin N, Kurtulus Ozcan H, Demir G, Semih Nemlioglu S, Bayat C. 2003. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway. Environment International **29**, Pp 979– 985.

Stat Soft. 2001. Inc. STAISICA, (data analysis software system), Verion 0.6.

Stigliani WM, Doelman P, Salomons W, Schulin R, Schmidt GRB, VanDerZee SEATM. 1991. Chemical time bombs – predicting the unpredictable.Environment, **33**, 4-30.

Tiller KG. 1989. Heavy Metals in Soil and their EnvironmethalSignificance. Advances in Soil Science.Springer, Verlag. New York. Inc., **90**, 113 - 142.

VanBohemen HD, Janssen Van De Laak WH. 2003. The influence of road infrastructure and traffic on soil, air and water quality, Journal of Environmental Management, **31(1)**,50-68.

Ward N, Brooks R, Roberts E. 1977. Heavy metal pollution automotive emissions and its effect on roadside soil and pasture species in New Zealand".