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Abstract 

Soil texture is one of the most important soil properties governing most of the physical, chemical and 

hydrological properties of soils. Variability in soil texture may contribute to the variation in nutrient storage and 

availability, water retention and transport and binding and stability of soil aggregates. It can directly or indirectly 

influence many other soil functions and soil threats such as soil erosion. Geostatistics has been extensively used 

for quantifying the spatial pattern of soil properties and Kriging techniques are proving sufficiently robust for 

estimating values at unsampled locations in most of the cases. For this purpose, 50 soil samples were provided 

from fields of Farahan plain during May 2014. Soil texture was measured for each sample. The Kriging method 

with Circular, Spherical, Tetra spherical, Pent spherical, Exponential, Gaussian, Rational Quadratic, Hole Effect, 

k-Bassel, J-Bassel and Stable semivariograms for Prediction the Spatial Variability of Soil Texture in Farahan 

plain.  The performance of methods was evaluated using by Root Mean Square Error (RMSE). The results showed 

that The Exponential has higher accuracy with RMSE=0.19221 for representing the spatial variability of 

semivariograms. Spatial variability of map showed loamy-sandy texture is higher in the central of Farahan plain 

than in the northern and southern area. 
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Introduction 

Soil texture, the relative percentage of sand, silt, and 

clay, is one of the most important physical soil 

properties that governing nearly all of the other 

attributes of soils (Zhai et al. 2006; Adhikari et al. 

2009). Considering the effects of the soil texture on 

soil-water retention, its availability and transform 

(Katerji and Mastrorilli 2009), leaching and erosion 

potential (Adhikari et al. 2009), plant nutrient 

storage (Kettler et al., 2001), distribution of plant and 

animal species in arid and semi-arid regions (Scull et 

al. 2004), and organic-matter dynamics (Kong et al. 

2009), it plays a key role in total behavior of soil. As 

other environmental variables, soil texture changes in 

space and time. These temporal and spatial soil 

texture variabilities may lead to structural differences 

in soil quality (Kettler et al. 2001). Detailed 

information about the soil quality factors and their 

distribution patterns in field scale is essential 

requirement for site-specific management (Emadi et 

al. 2008). The characterization of the soil texture 

spatial variability pattern, therefore, may be helpful in 

schematization permanent land management 

practices and also precision agriculture (Yemefack et 

al. 2005; Emadi et al. 2008). 

 

To achieve such an important purpose, geostatistics 

(e.g., Goovaerts 1997; Webster and Oliver 2001; 

Nielsen and Wendroth 2003) as a powerful 

pedometrical instrument, can be used to produce a 

thematic map of the soil texture. In recent years, 

some researchers focused on using geostatistics and 

different kriging methods to better understand soil 

properties spatial variability pattern, such as soil 

particles, over small to large spatial scale (Lark 2002; 

Emadi et al. 2008; Yasrebi et al. 2008).  

 

Istock and Cooper (1998) used kriging method to 

estimate heavy metals and found that the used 

method is the best estimator for spatial prediction of 

metals. In another research, spatial distribution maps 

were constructed for EC and pH of soil extracts using 

ordinary kriging interpolation in the agricultural 

lands of Rhodope District, northeastern Greece. 

Nemes et al. (1999) studied distribution patterns of 

the soil particles using four different interpolation 

procedures, i.e., loglinear interpolation method, 

Gompertz curve, nonparametric spline function and 

similarity indices, and stated that among them, the 

last one which uses an external source of soil 

information was capable of giving the most accurate 

interpolations Scull et al. (2004) compared several 

statistical and geostatistical techniques to reach more 

precise soil particle maps. Their results showed that 

predictive soil mapping techniques, such as linear 

regression and Kriging could be used to produce 

thematic maps of the particles that quantitatively 

express soil variability with high levels of accuracy. In 

order to supply the predictive surface map of 

hydraulic parameters in an agricultural farm, Santra 

et al. (2008) studied the spatial variability of the soil 

particles by kriging method. The results showed that 

spatial prediction of basic soil particles using 

geostatistics is better than assuming mean of the 

observed value for any unsampled location.  

 

Yu et al., (2008) analyzed the distribution of surface 

soil pH by combining classical statistics method with 

geostatistic method under three irrigation methods 

(furrow, drip and subsurface irrigation) in 

greenhouse. The results indicated that supplying 

method and quantity of water by irrigation can affect 

the spatial variability of soil pH. Adhikari et al. 

(2009) created the continuous maps of soil texture 

components and to better understand of their 

variability pattern suggested supplying information 

layers such as topographical parameters, land use, 

parent material and soil erosion, for factors which 

might influence the spatial distribution of the soil 

texture. The aim of this study provide the continuous 

maps of  soil texture by  Kriging method  and 

Determine the error and access to accuracy maps by 

Kriging method in Farahan plain. 

 

Method and material 

Study Area 

The study area refers the Farahan plain located in the 

province of Markazi, Iran with the geographic 



J. Bio. & Env. Sci. 2015 

 

332 | Afzali et al. 

coordinates from 49˚ to 50˚E longitude and 33˚ to 

34˚N latitude (Fig. 1). The entire area of Farahan 

plain is 35298/27 hectares with minimum elevation 

of 1658 m and maximum elevation of 1705 m above 

sea level. Climatic conditions can be characterized by 

an annual mean temperature of 13.7 c and with the 

annual precipitation of 325 mm.  According to De-

Martine advanced climatic classification system, this 

area has Mediterranean climatic class. 

 

Data Sampling and Analysis 

Soil samples were randomly taken from 50 locations 

in May 2014. Sampling points are showed in Fig. 1. 

Samples were taken at depths of 0–30 cm and air-

dried to remove stones and coarse crop residues. Soil 

texture was analytically measured in sampled soils. 

 

 

 

Fig. 1. The map of Farahan plain in Iran. 

 

Geostatistical analysis 

In general, geostatistical methods were used to 

estimate and map in this agricultural areas. It is based 

on the theory of a regionalized variable which is 

distributed in space (with spatial coordinates) and 

shows spatial auto correlation such that samples close 

together in space are more alike than those that are 

further apart. Geostatistics uses the variogram 

technique (or semivariogram) to measure the spatial 

variability of a regionalized variable, and provides the 

input parameters for the spatial interpolation of 

kriging (Goovaerts, 1999; Webster and Oliver, 2001). 

 

The semivariogram (variogram) was used in this 

study to analyze discrete soil samples. 

Semivariograms are a key tool in regionalized 

variables theory and are formed by three 

constituents: sill, range and nugget with increasing 

lag between samples; semivariance is increased to a 

maximal asymptotic value (sill). With this lag, 

semivariance is approached the observation variance. 

This lag is called range beyond which variables are 

independent with no correlations. Nugget occurs 

when semivariogram is not started exactly at 

intersection of coordinates generally due to 

laboratory test errors, a sharp variation of soil 

properties or when sampling distance is greater than 

range. Initial slope intensity in semivariogram 

exhibits variability as a function of distance and 

reduction of correlation between samples 

(Mashayekhi et al., 2007). 

 

Semivariogram is computed as half the average 

squared difference between the components of data 

pairs (Goovaerts, 1999, Webster and Oliver, 2001): 

The function is expressed as: 
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Where N (h) is the total number of data pairs 

separated by a distance; h; Z represents the measured 

value for soil property; and x is the position of soil 

samples. 

 

Before the geostatistical estimation, a semivariogram 

is calculated for classes of distance between sample 

pairs. Several standard models are available to fit the 

experimental semivariogram, e.g., spherical, 

exponential, Gaussian, linear and power models (Shi 

et al., 2007). In this study, the Circular, Spherical, 
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Tetra spherical, Pent spherical, Exponential, 

Gaussian, Rational Quadratic, Hole Effect, k-Bassel, 

J-Bassel and Stable models were selected. 

 

Interpolation method 

In this study, spatial patterns soil texture was 

determined using the geostatistical and interpolation 

methods such as, Kriging. 

 

Kriging 

Among the geostatistical techniques, kriging is an 

important tool in geostatistics. Kriging is a linear 

interpolation procedure that provides a best linear 

unbiased estimation for quantities which vary in 

space. Kriging estimates are calculated as weighted 

sums of the adjacent sampled concentrations. That is, 

if data appear to be highly continuous in space, the 

points closer to those estimated receive higher 

weights than those farther away (Cressie, 1990). 

Kriging (Krige, 1951) is regarded as an optimal 

method of spatial prediction. It is a theoretical 

weighted moving average:  
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Where 



z  is the value to be estimated at the location 

of x0, z(xi) is the known value at the sampling site xi 

and n is the number of sites within the search 

neighbourhood used for the estimation. The number 

n is based on the size of the moving window and is 

defined by the user. Kriging is different from other 

methods (such as IDW), because the weight is no 

longer arbitrary. The weights depend on the 

parameters of the semivariogram model and the 

sampling configuration and are decided under the 

conditions of unbiasedness and minimized estimation 

variance (Deutsch and Journel, 1998; Zhangand 

McGrath, 2004; Robinson and Metternicht, 2006). 

Data sets were analyzed with different software 

packages. The geostatistical and interpolation 

analysis were carried out with GS+ and geostatistic 

extension of ArcGIS. 

 

Performance evaluation 

Coefficient of correlation (R) and root mean square 

error (RMSE) were used to evaluate the performances 

of models and select the best one. In brief, the models 

predictions are optimum if R and RMSE are found to 

be close to 1 and 0 respectively. The higher the R 

value (with 1 being the maximum value) and he lower 

the RMSE values (with 0 being the minimum value) 

the better is the performance of the model. 
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Where oQ
, EQ

, n , AveQ
 and EAveQ   are observed, 

estimated, number of data, mean observed and mean 

estimated soil texture respectively. 

 
Results and discussion 

Measured variables in the data set were analyzed 

using SPSS 20.0 software to obtain the minimum, 

maximum, mean, median, variance, coefficient of 

variation (CV), skewness and peakness (kurtosis) 

coefficient. .Table 1 lists the summary statistics of the 

raw data of soil texture including minimum, 

maximum, mean, median, variance, skewness and 

kurtosis. To evaluate the normality of data a formal 

kolmogorov-Smirnov statistic test was executed. For 

this data to be normally distributed the p value should 

be more than 0.05. The p-value for raw soil texture 

was 0.31, 0.13 and 0.21 so geostatistical analysis could 

be used for this data (table 1, fig. 2).  

 
Table 1. The statistical values of soil texture properties. 

P valuea CV Kurt Skw Max Min Var Med Mean Variable Depth (cm) 

0.31 18.31 0.84 0.37 37.0 13.0 19.16 24.0 23.9  Clay 
0-30 0.13 20.38 1.19 −0.61 52.0 12.0 50.32 60.0 34.8  silt 

0.21 17.35 3.93 0.76 52.0 15.0 25.12 29.0 28.9   sand 

Med median, Var variance, Min minimum, Max maximum, Skw skewness, Kurt kurtosis, CV coefficient of variation. 

aShows confidence level of Kolmogorov–Smirnov test. 

https://www.google.com/search?hl=en&authuser=0&biw=1024&bih=629&q=kolmogorov-smirnov&spell=1&sa=X&psj=1&ei=1s2LVOLYBoO1sASz3oDgDg&ved=0CBkQvwUoAA
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Fig. 2. qq-plot of raw of soil texture. 

 

Kriging method executed with Circular, Spherical, 

Tetra spherical, Pent spherical, Exponential, 

Gaussian, Rational Quadratic, Hole Effect, k-Bassel, 

J-Bassel and Stable semivariograms were performed 

on data.  

 

The attributes of the semivariograms of soil particles 

for the data are summarized in Table 2. With 

attention to fig. 3, Semivariograms analysis indicated 

that best fitted to Exponential model with nugget, sill, 

and nugget/sill is equal to 0.153, 0.349 and 0.560, 

respectively. In this research, nugget/sill ratio (56%) 

indicated moderate spatial dependence at the large 

scale of the Farahan plain. The obtained results 

showed that Exponential outperformed all other 

models. These results are in accordance with 

Cambardella et al. 1994; Vieira and Paz Gonzalez 

2003. 

 

Table 2. The best-fitted semivariogram models and their parameters for soil texture. 

R2 C/(Co+C) 
Effective 

Range (m) 
Range 

ParameterAo 
Sill 

(Co+C) 
Nugget 

(Co) 
model  

0.982 0.560 271 800.70 0.349 0.153 Exponential 
Soil 

texture 
 

 

Fig. 3. Empirical and fitted Exponential 

semivariograms for the soil texture 

 

The results of geostatistical analyses of soil texture 

have been presented in Table 3. The results showed 

that kriging (Exponential model) with RMSE = 

0.19282 was the best method to estimate soil texture, 

because it had the highest precision and lowest error 

for estimation of these elements. 

 

The cross-validation statistic given in Table 3 shows 

how well soil particles can be estimated by application 

of the ordinary kriging method. Hengl et al. (2004) 

argued that a value of RMSE% below 40% means a 

fairly satisfactory accuracy of prediction. Therefore, 

the kriging model performed best for both the soil 

particles in the studied area. 

 

Table 3. Results of geostatistical analyses of  soil 

texture in Farahan plain of Markazi province, center 

of Iran. 

Method 
type 

Model type RMSE 

Kriging 

Circular 0.19392 

Spherical 0.19567 

Tetraspherical 0.19412 

Pentaspherical 0.19532 

Exponential 0.19282 

Gaussian 0.19492 

Rational Quadratic 0.19562 

Hole Effect 0.19472 

k-Bassel 0.19472 

J-Bassel 0.19504 

Stable 0.19551 

  

In order to understand spatial variation of soil 

texture, a map was provided by kriging method for 

Farhan plain of Markazi province (Fig. 4). spatial 

variability of map showed loamy-sandy texture is 

higher in the central of Farahan plain than in the 

northern and southern area. 
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Fig. 4. Interpolation map of soil texture produced by 

Kriging. 

 

Conclusion  

Soil texture as an important soil property to support 

different agricultural and land use management 

practices was mapped in the Farahan plain using 

kriging estimator. Results of this research indicated 

that geostatistics are more suitable methods for 

estimation of soil properties. The Exponential model 

is found to be the best model representing the spatial 

variability of semivariograms. In this research, the 

nugget/sill ratio of soil texture belonged to the scope 

of moderate spatial dependence. spatial variability of 

map showed loamy-sandy texture is higher in the 

central of Farahan plain than in the northern and 

southern area. It is suggested that in the future 

studies, other interpolation methods such as co-

kriging and soil properties such as Na and SAR be 

used in order to prepare precision maps. 
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